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Abstract. Let A be an RG-module, where R is an associative ring, A=CA.G/ is an infinite R-
module, CG.A/D 1, G is a locally soluble group. Let Lnf .G/ be the system of all subgroups
H � G such that quotient modules A=CA.H/ are infinite R-modules. The author studies an
RG-module A such that Lnf .G/ satisfies the minimal condition as an ordered set. It is proved
that a locally soluble group G with these conditions is soluble. The structure of G is described.
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1. INTRODUCTION

Let A be a vector space over a field F . The subgroups of the group GL.F;A/
of all automorphisms of A are called linear groups. If A has a finite dimension over
F then GL.F;A/ can be considered as the group of non-singular .n�n/-matrices,
where nD dimFA. Finite dimensional linear groups have played an important role
in various fields of mathematics, physics and natural sciences, and have been studied
many times. When A is infinite dimensional over F , the situation is totally differ-
ent. Infinite dimensional linear groups have been investigated little. The study of this
class of groups requires additional restrictions. In [5] it was introduced the definition
of the central dimension of an infinite dimensional linear group. LetH be a subgroup
of GL.F;A/. H acts on the quotient space A=CA.H/ in a natural way. The authors
define centd imFH to be dimF .A=CA.H//. The subgroup H is said to have a fi-
nite central dimension if centd imFH is finite and H has infinite central dimension
otherwise. LetG �GL.F;A/. In [5] it was considered the systemLid .G/ of all sub-
groups of G of infinite central dimension. In order to investigate infinite dimensional
linear groups that are close to finite dimensional, it is natural to consider the case
where the system Lid .G/ is “very small”. The authors have studied locally soluble
infinite dimensional linear groups such that Lid .G/ satisfies the minimal condition
as an ordered set [5].
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If G � GL.F;A/ then A can be considered as an FG-module. The natural gen-
eralization of this case is the consideration of an RG-module A, where R is a ring
whose structure is near to a field. At this point the generalization of the notion of the
central dimension of a subgroup of a linear group is the notion of the cocentralizer
of a subgroup. This notion was introduced in [8]. Let A be an RG-module, R be
an associative ring, G be a group. If H � G then the quotient module A=CA.H/
considered as an R-module is called the cocentralizer of H in the module A.

Modules over group rings of finite groups have been considered by many authors.
Recently this class of modules was investigated in [6]. Study of modules over group
rings of infinite groups requires some additional restrictions as in the case of in-
finite dimensional linear groups. In [2] it was investigated an RG-module A such
that R is a dedekind domain and the cocentralizer of G in the module A is not an
artinian R-module. It was considered the system Lnad .G/ of all subgroups of G
such that their cocentralizers in the module A are not artinian R-modules which is
ordered by the usual inclusion. It is investigated an RG-module A such that the sys-
tem Lnad .G/ satisfies the minimal condition as an ordered set, G is a locally soluble
group, CG.A/D 1. The analogous problem for the ring of integers R was investig-
ated in [3].

In [1] we have studied an RG-module A such that R is the ring of integers, the
cocentralizer of G in the module A is not a noetherian R-module and CG.A/ D 1.
Let Lnnd .G/ be the system of all subgroups of G such that their cocentralizers in
the module A are not noetherian R-modules. It was investigated an RG-module A
such that Lnnd .G/ satisfies the minimal condition as an ordered set and G is locally
soluble.

In [4] we have considered the similar problem where R is the ring of integers and
the noetherian condition is replaced by the minimax condition.

In this paper we investigate RG-module, where R is an associative ring, A=CA.G/
is an infinite R-module, CG.A/ D 1, G is a locally soluble group. Let Lnf .G/ be
the system of all subgroups H � G such that A=CA.H/ are infinite R-modules.
We study an RG-module A such that Lnf .G/ satisfies the minimal condition as an
ordered set. It is proved that a locally soluble groupG with these conditions is soluble
and the structure of G is described.

The main results of this paper are Theorems 2 and 3.

2. PRELIMINARY RESULTS

We reduce some elementary facts about RG-modules.
Later on it is considered an RG-module A such that CG.A/D 1.
Let A be an RG-module where G is a group, R is an associative ring. Recall

that if K �H � G and the cocentralizer of H in the module A is a finite R-module
then the cocentralizer of K in the module A is a finite R-module also. If U;V are
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subgroups of G such that their cocentralizers in the module A are finite R-modules,
then A=.CA.U /\CA.V // is a finite R-module also.

Suppose that a groupG satisfies the conditionmin�nf . IfH1 >H2 >H3 > � � �
is an infinite strictly descending chain of subgroups of G then there is the natural
number n such that the cocentralizer of Hn in the module A is a finite R-module.
Moreover, if N is a normal subgroup of G and the cocentralizer of N in the module
A is an infinite R-module then G=N satisfies the minimal condition on subgroups.

Lemma 1. Let A be an RG-module, G be a group, R be an associative ring.
Suppose that G satisfies the condition min�nf , X;H are subgroups of G and � is
an index set such that

(1) X DDr�2�X�, where 1 6D X� is an H -invariant subgroup of X , for each
� 2�.

(2) H \X �Dr�2�X� for some subset � of �.
If the set ˝ D �n� is infinite, then the cocentralizer of H in the module A is a

finite R-module.

Proof. Suppose that the set ˝ is infinite and let ˝1 �˝2 � � � � be a strictly des-
cending chain of subsets of the set ˝. Since H \Dr�2˝X� D 1, the chain of sub-
groups hH;X�j� 2˝1i > hH;X�j� 2˝2i > � � � is strictly descending. It follows
that for some natural number d the cocentralizer of the subgroup hH;X�j� 2˝d i in
the module A is a finite R-module. Therefore the cocentralizer of H in the module
A is a finite R-module also. �

Lemma 2. Let A be an RG-module, G be a group, R be an associative ring, G
satisfy the condition min�nf , H , K be subgroups of G such that K is a normal
subgroup of H . Suppose that there exists an index set � and subgroups H� of G
such that K � H� for all � 2 �, H=K D Dr�2�H�=K, and the set � is infinite.
Then the cocentralizer of H in the module A is a finite R-module.

Proof. Let � and˝ are infinite disjoint subsets of the set� such that�D � [˝.
Let U=K DDr�2�H�=K, let V=K DDr�2˝H�=K, and let �1 � �2 � �� � be a
strictly descending chain of subsets of the set � . Then we construct an infinite strictly
descending chain of subgroups

hV;H�j� 2 �1i > hV;H�j� 2 �2i > � � � :

It follows from the condition min�nf that the cocentralizer of V in the module A
is a finite R-module. Likewise, we obtain that the cocentralizer of U in the module
A is a finite R-module. Since H D UV , it follows that the cocentralizer of H in the
module A is a finite R-module also. �

Lemma 3. Let A be an RG-module, G be a group, R be an associative ring,
G satisfy the condition min�nf . If an element g 2 G has infinite order then the
cocentralizer of hgi in the module A is a finite R-module.
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Proof. Let p, q are distinct primes greater than 3 and let uD gp, v D gq . Then
there is an infinite descending chain of subgroups hui > hu2i > hu4i > � � � . It fol-
lows from the condition min�nf that there exists the natural number k such that
the cocentralizer of the subgroup hu2

k

i in the module A is a finite R-module. Simil-
arly, there exists a natural number l such that the cocentralizer of the subgroup hv3

l

i

in the module A is a finite R-module. Therefore the cocentralizer of the subgroup
hgi D hu2

k

ihv3
l

i in the module A is a finite R-module.
�

The following result gives an important information about the derived quotient
group under the condition min�nf .

Lemma 4. Let A be an RG-module, G be a group, R be an associative ring.
Suppose that the cocentralizer of G in the module A is an infinite R-module, and G
satisfies the condition min�nf . Then the quotient group G=G0 is Chernikov.

Proof. Suppose that the quotient groupG=G0 is not Chernikov group. Let S be the
family of all subgroups H �G such that the quotient group H=H 0 is not Chernikov
and the cocentralizer of H in the module A is an infinite R-module. Since G 2S
then S¤ ¿. Since the set S satisfies the minimal condition, then it has a minimal
element. Let D be this minimal element. If U , V are proper subgroups of the group
D such that D D UV and U \ V D D0, then at least one of these subgroups, U
say, such that its cocentralizer in the module A is an infinite R-module. The choice
of D implies that U=U 0 is Chernikov. It follows with regard to the isomorphism
U=D0 ' .U=U 0/=.D0=U 0/ that U=D0 is also Chernikov. Since the cocentralizer of
U in the module A is an infinite R-module it follows that the abelian quotient group
D=U is also Chernikov. Hence the quotient group D=D0 is Chernikov. Contrary to
the choice of D. Therefore D=D0 is indecomposable. Hence D=D0 is isomorphic to
a subgroup of quasi-cyclic group Cq1 , for some prime q. Contradiction.

�

Let A be an RG-module, G be a group, R be an associative ring. Let FFD.G/ be
the set of all elements x 2 G such that the cocentralizer of hxi in the module A is a
finite R-module. Since CA.xg/D CA.x/g for all x;g 2 G, it follows that FFD.G/
is a normal subgroup of G.

Lemma 5. Let A be an RG-module, G be a group, R be an associative ring.
Suppose that the cocentralizer of G in the module A is an infinite R-module, and G
satisfies the condition min�nf . Then G is either periodic or G D FFD.G/.

Proof. We suppose to the contrary that G is neither periodic nor G 6D FFD.G/.
Let S be the family of all subgroups H � G such that H is not periodic and H 6D
FFD.H/. S is non-empty. If H 6D FFD.H/ then there is an element h 2H such
that the quotient module A=CA.h/ is an infinite R-module. Hence S�Lnf .G/, and
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therefore S satisfies the minimal condition. Let D be the minimal element of S, let
L D FFD.D/. Note that L 6D 1, since D is not a periodic group. If L � S � D
and S 6DD, then S D FFD.S/ so S � L. Hence D=L has order q for some prime
q. Let x 2 D nL. If an element a has infinite order, then the choice of D implies
that hx;ai DD. It follows that L is finitely generated and since LD FFD.L/, the
quotient module A=CA.L/ is a finite R-module. Since the subgroup L is normal in
D, then C D CA.L/ is an RD-submodule of A. It follows that A has the finite series
of RD-submodules

h0i � C � A;

such that A=C is a finite R-module. Since A=C is a finite R-module then
D=CD.A=C/ is finite. As C D CA.L/ then L � CD.C /. It follows that D=CD.C /
is finite too.

Let W D CD.C / \ CD.A=C/: By Remak theorem

D=W �D=CD.C / � D=CD.A=C/:

It follows that the quotient group D=W is finite. W acts trivially on each factor of
the series h0i � C � A. Therefore W is abelian.

Let U be a normal subgroup of finite index of D. The subgroup U is not periodic
and so hU;xi is neither periodic nor hU;xi 6DFFD.hU;xi/. The choice ofD implies
that D D hU;xi and hence the quotient group D=U is abelian. If E is the finite
residual of D, it follows that the quotient group D=E is abelian. Since E �W then
D=W is also abelian. It follows that D=.W \L/ is abelian. Since W \L � W ,
then the subgroup W \L is abelian, and so D is a finitely generated metabelian
subgroup. By theorem of P.Hall (Theorem 9.51 [9]) D is residually finite. As above,
D is therefore abelian. Since D D U hxi for every subgroup U of finite index, it
follows that the groupD is infinite cyclic. By Lemma 3DD FFD.D/. We have the
contradiction with the choice of D.

�

3. LOCALLY SOLUBLE GROUPS WITH THE CONDITION min�nf

Lemma 6. Let A be an RG-module, G be a periodic locally soluble group, R
be an associative ring. Suppose that the cocentralizer of G in the module A is an
infinite R-module and G satisfies the condition min�nf . Then G either satisfies
the minimal condition on subgroups or G D FFD.G/.

Proof. We suppose to the contrary thatG is neither satisfies the minimal condition
on subgroups nor G 6D FFD.G/. Let S be the family of all subgroups H �G such
that H does not satisfy the minimal condition on subgroups and H 6D FFD.H/.
Then S ¤ ¿. If H 6D FFD.H/ then the cocentralizer of H in the module A is
an infinite R-module and hence S � Lnf .G/. Therefore S satisfies the minimal
condition. Let D be the minimal element and let L D FFD.D/. There exists an
infinite strictly descending chain of subgroups of D:
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H1 >H2 >H3 > � � � :

SinceD satisfies the conditionmin�nf then there exists the natural number k such
that the cocentralizer ofHk in the moduleA is a finite R-module. ThereforeHk �L,
and hence L does not satisfy the minimal condition. If x 2D nL then it follows from
the choice of the subgroupD that hx;LiDD. Hence the quotient groupD=L has the
order q for prime q. If it is necessary we replace x by the suitable power and obtain
that x has the order qr for some natural number r . Since the groupD is not Chernikov
then by D.I.Zaicev’s theorem [10], D contains hxi-invariant abelian subgroup B D
Drn2Nhbni and we may assume that the elements bn have prime orders for all n 2
N. Let 1 6D c1 2 B and C1 D hc1ihxi. Then C1 is finite and there is the subgroup
E1 such that B D C1 �E1. Let U1 D corehxiE1. Therefore U1 has finite index
in B . If 1 6D c2 2 U1 and C2 D hc2ihxi then C2 is a finite hxi-invariant subgroup
and hC1;C2i D C1 �C2. Continuing in this manner, we can construct a family of
subgroups fCnjn 2 Ng for which hCnjn 2 Ni D Drn2NCn. By Lemma 1 x 2 L.
Contradiction.

�

From Lemmas 5 and 6 it follows the theorem.

Theorem 1. Let A be an RG-module, G be a locally soluble group, R be an
associative ring. Suppose that the cocentralizer ofG in the moduleA is an infinite R-
module, and G satisfies the condition min�nf . Then G either satisfies the minimal
condition on subgroups or G D FFD.G/.

Lemma 7. Let A be an RG-module, G be a locally soluble group. Suppose that
the cocentralizer ofG in the moduleA is a finite R-module. ThenG is almost abelian.

Proof. Let C D CA.G/. Then A has the series of RG-submodules h0i � C � A,
where A=C is a finite R-module. Since G � CG.C / then G=CG.C / is trivial. As
A=C is a finite R-module then G=CG.A=C/ is finite.

Let H D CG.C /\CG.A=C/. Each element of H acts trivially on every factor
of the series h0i � C � A=C . By Kaluzhnin Theorem (p. 144 [7]) H is abelian. By
Remak’s Theorem

G=H �G=CG.C /�G=CG.A=C/:

It follows that G=H is finite. Then G is an almost abelian group.
�

Lemma 8. Let A be an RG-module,G be a locally soluble group, R be an associ-
ative ring, and if the cocentralizer of G in the module A is an infinite R-module then
G satisfies the condition min�nf . Then either G is soluble or G has an ascending
series of normal subgroups 1DW0 �W1 � � � � �Wn � � � � �W! D[n2NWn �G,
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such that the cocentralizer of each subgroupWn in the moduleA is a finite R-module,
the factors WnC1=Wn are abelian for nD 1;2; � � � , and G=W! is a Chernikov group.

Proof. If the quotient module A=CA.G/ is a finite R-module then G is soluble by
Lemma 7. Therefore it seemed reasonable to study locally soluble groups G such
that A=CA.G/ is an infinite R-module.

Later we consider the case when the cocentralizer ofG in the moduleA is an infin-
ite R-module. At first we prove that G is hyperabelian. To accomplish this we show
that every non-trivial image of G contains a non-trivial normal abelian subgroup.

Let H be a proper normal subgroup of G. Suppose that the cocentralizer of H
in the module A is an infinite R-module. Then G=H satisfies the minimal condition
on subgroups. Therefore G=H is Chernikov group, and contains a non-trivial normal
abelian subgroup. Now we suppose that the the cocentralizer of H in the module A
is a finite R-module. Let LD fM�=H j� 2˙g be the family of all non-trivial normal
subgroups of the quotient group G=H . At first we consider the case when for all � 2
˙ the cocentralizer of M� in the module A is an infinite R-module. We shall prove
that the quotient group G=H satisfies the minimal condition on normal subgroups.
Let fMı=H g be a non-empty subset of L. The cocentralizer of a subgroup Mı in the
module A is an infinite R-module for all ı. By the condition min�nf the set fMıg

has the minimal element M . Then M=H is the minimal element of subset fMı=H g.
Therefore G=H satisfies the minimal condition on normal subgroups. It follows that
the quotient group G=H is hyperabelian and contains a non-trivial normal abelian
subgroup. In the case when for some  2˙ the cocentralizer ofM in the module A
is a finite R-module, the subgroupM is soluble. ThenM=H is a non-trivial normal
soluble subgroup of G=H . Therefore the quotient group G=H contains a non-trivial
normal abelian subgroup and so G is hyperabelian.

Let 1 D H0 � H1 � � � � � H˛ � � � � � G be a normal ascending series with
abelian factors and let ˛ be the least ordinal such that the cocentralizer of H˛ in the
module A is an infinite R-module. Then, as above, the subgroup Hˇ is soluble for
all ˇ < ˛. Moreover, the quotient group G=H˛ satisfies the minimal condition on
subgroups, and so is a soluble Chernikov group.

At first we suppose that ˛ is not a limit ordinal. Then the subgroup H˛ is soluble
and it follows that G is soluble also. Now we consider the case when ˛ is a limit
ordinal, and G is not soluble. For all natural numbers k there exists an ordinal ˇk
such that ˇk < ˛, Hˇk

has derived length at least k. Moreover, we may assume that
ˇi < ˇiC1 for all natural numbers i . Let Ti D Hˇi

for all natural numbers i . It
follows that G has an ascending series of normal soluble subgroups 1D T0 � T1 �
� � � � � � � : Then the subgroup T! D[n2NTn is not soluble and so T! DH˛. A series
1DW0 �W1 � � � � �Wn � � � � �W! D[n2NWn �G with the propeties referred in
the theorem can be obtained from the series 1D T0 � T1 � � � � � T! �G.

�
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Lemma 9. Let A be an RG-module, G be a group, R be an associative ring.
Suppose that the cocentralizer of G in the module A is an infinite R-module, G
satisfies the conditionmin�nf and G D FFD.G/. Then the quotient group G=G=

is finite.

Proof. We suppose for a contradiction that the quotient group G=G= is infinite.
Then G has an infinite strictly descending series of normal subgroups G > N1 >

N2 > � � � , such that the quotient groups G=Ni are finite for each i . Therefore there
exists k for which the quotient groupG=Nk is finite and the cocentralizer ofNk in the
module A is a finite R-module. Since G D FFD.G/, there is the subgroup H such
that its cocentralizer in the module A is a finite R-module and G DHNk . Hence the
cocentralizer of G in the module A is a finite R-module. Contradiction.

�

Lemma 10. Let A be an RG-module, G be a locally soluble group, R be an
associative ring. Suppose that the cocentralizer of G in the module A is an infinite
R-module and G satisfies the condition min�nf . If G has an ascending series of
normal subgroups 1DW0 �W1 � � � � �Wn � � � � � [n�1Wn D G, in which the
cocentralizer of each subgroup Wn in the module A is a finite R-module, and each
factor WnC1=Wn is abelian, then G is soluble.

Proof. Since the quotient module A=CA.Wk/ is a finite R-module for each k 2
N then there is the series of RG-submodules A D A0 � A1 � A2 � � � � � Ak �
� � � � A! D CA.G/, such that Ak D CA.Wk/ and each factor Ak=AkC1 is a finite
RG-module. Let H D \j�0CG.Aj =AjC1/. Then G=CG.Aj =AjC1/ is finite for
each j 2 N. Since G=H embeds in the Cartesian product of the quotient groups
G=CG.Aj =AjC1/, it follows that G=H is residually finite. Moreover, G is a union
of subgroups such that their cocentralizers in the module A are finite R-modules.
Hence G D FFD.G/. By Lemma 9 the quotient group G=H is finite.

Since G D FFD.G/ then the cocentralizer of H in the module A is an infinite
R-module. We shall prove thatH is soluble. Let Lj D CH .A=Aj /, j D 1;2; � � � . Let
H 6D Lj for some j . The quotient group H=Lj is finite for each j D 1;2; � � � . We
suppose that there is the number j such that the cocentralizer of Lj in the module A
is a finite R-module. Let j be the least number with this property. It follows that the
cocentralizer of Lj�1 in the module A is an infinite R-module. On the other hand
since the quotient group Lj�1=Lj is finite and G D FFD.G/, then the cocentralizer
of Lj�1 in the module A is a finite R-module. We have contradiction. Therefore the
cocentralizer of each subgroup Lj in the module A is an infinite R-module. SinceH
satisfies the condition min�nf then there exists the number m such that Lj D Lm
for all j � m. From this fact and from the choice of subgroup Lj it follows that
the subgroup Lm is soluble. Since the quotient group H=Lm is finite then H is also
soluble. Then G is soluble.

�
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From the obtained results it follows Theorem 2.

Theorem 2. Let A be an RG-module, G be a locally soluble group, R be an
associative ring. Suppose that if the cocentralizer of G in the module A is an infinite
R-module, G satisfies the condition min�nf . Then G is soluble.

Theorem 3. Let A be an RG-module, G be a locally soluble group, R be an
associative ring. Suppose that the cocentralizer of G in the module A is an infinite
R-module and G satisfies the condition min�nf . Then G has the normal abelian
subgroup H such that G=H is Chernikov.

Proof. It should be noted that by Theorem 2 the groupG is soluble. To accomplish
this proof we consider the case when G is not Chernikov.

Let G DD0 �D1 �D2 � � � � �Dn D 1 be the derived series of G. There exists
the number m such that the cocentralizer of Dm in the module A is an infinite R-
module but the cocentralizer of DmC1 in the module A is a finite R-module. By
Lemma 4 the quotient groups Di=DiC1, i D 0;1; :::;m, are Chernikov. Let U D
DmC1. Then the quotient group G=U is Chernikov. Let C D CA.U /. C is an RG-
submodule of A. Therefore there exists the series of -submodules

h0i � C � A;

such that A=C is a finite R-module. Then G=CG.A=C/ is finite.
LetH DCG.C /\CG.A=C/: The subgroupH acts trivially on each factor of the

series h0i � C � A. Therefore H is abelian. Since the quotient group G=U
is Chernikov and U � CG.C / then the quotient group G=CG.C / is also Chernikov.
By Remak theorem G=H � G=CG.C / � G=CG.A=C/: It follows that G=H is
Chernikov. Therefore G contains the normal abelian subgroup H such that G=H is
Chernikov. �

In the paper the author have used the methods of the proofs of [5].
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