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Abstract. We consider the Zassenhaus conjecture for the normalized unit group of the integral
group ring of the sympletic simple group S4(4). As a consequence, we confirm for this group
the prime graph conjecture.
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1. INTRODUCTION, CONJECTURES AND MAIN RESULTS

In the integral group ring ZG, where G is a finite group, we consider the group of
normalized units

V(ZG) = {u =Y agg cUEZG) |ew) = Y oy = 1}.

geG geG
A conjecture of Zassenhaus (ZC) states that:

(ZC) Every torsion unit u € V(ZG) is conjugate in the rational group
algebra QG to an element g € G. Thatis, for every u € V(ZG), there
exists v € QG such that vuv~! =g € G.

The main tool in the investigation of the Zassenhaus conjecture (ZC) for finite
groups with small numbers of normal subgroups is the Luthar-Passi method, which
appeared in [24] to show (ZC) in the case where G = A5. M. Hertweck (see [19,20])
applied the theory of Brauer characters to the Luthar-Passi method and used it to
study the conjecture of Zassenhaus (ZC) for G = PSL(2, p").

Now the Luthar-Passi method is very useful to study of (ZC) for arbitrary groups.
As recent results, we cite [4, 18,21-23,25-27]. Now, we need to introduce some
notation. For P;(H ) denote the set of all prime divisors of the orders of elements of
torsion part ¢ (H) of a group H. The prime graph (or Gruenberg-Kegel graph) of H,
denoted by 7 (H ), is the graph with vertices as the primes in P, (H ) and we connect
of p to ¢ if there is an element of order pqg in the torsion part #(H). In [23] was
proposed the following conjecture,
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(PGC) If G is a finite group then 7(G) = 7 (V(ZG)).

Clearly, this conjecture is a weaker version of the conjecture of Zassenhaus (ZC).
In [23], W. Kimerle showed that (PGC) holds for finite Frobenius groups and solv-
able groups. V. Bovdi and M. Hertweck in [3] completed the p-version of the Zassen-
haus conjecture for Frobenius groups. In [2,5-15] the conjecture (PGC) was studied
for several simple sporadic groups.

Here, we are investigating the conjecture (ZC) for the symplectic simple group
S4(4). Using the Luthar-Passi method, we can not prove the rational conjugacy (ZC)
for all torsion units in V(ZS4(4)), but for units of order {3, 5, 17} we are able to prove
(ZC). Also our main result gives a lot of information about the partial augmentations
of some units. Finally, as a consequence we obtain that (PGC) is valid for this group.

Let G = S4(4). Ttis well known (see [17]) that |G| = 28-3%2.5%.17 and exp(G) =
22.3.5-17. Let

€ ={C1,C24,C2p,Cac, C3a,C3p, Caa, Cap, C54,Csp, C5¢,Cs4, Cse, Coa, Cep,

C10a.C10b-C10c:C104:C154:C15p,C15¢, C154. C17a. C17b. C17¢,. C174 }

be the collection of all conjugacy classes of S4(4), where the first index denotes the
order of the elements of this conjugacy class and C; = {1}. Suppose u = ) agg €
V(ZG) has finite order k. Denote by

Ve = va (W) =ec,, () = Y ag
g€Cy;

the partial augmentation of u with respect to Cy;. From the Berman—-Higman The-
orem (see [1]) one knows that vy = @7 = 0 and

Z vt = 1. (1.1)
C,€€

Hence, for any character y of G, we get that y(u) = > vy x(hn:), Where hy; is a
representative of the conjugacy class C;.
Our main result is the following

Theorem 1. Let G denote the symplectic group S4(4). Let u be a torsion unit of
V(ZG) of order |u|. Denote by *P3(u) the tuple

(V2a, V2b, v2C7 v3t17 U3b7 V4a, U4ba vSaa VSb, vs(,’? USd, VSe, V6aa v6b7 lea,
26
vl()b? U1009 led? VlSay Ulsb’ vlS(,‘v vlsdv V17a, U17b, v17C’ U17d) € Z

of partial augmentations of u in V(ZG). The following properties hold.
(1) There is no elements of orders 34, 51, 85 in V(ZG).
(i) If |u| € {3,5,17}, then u is rationally conjugate to some g € G.
(i) If |u| = 2, then all components of P (u) are zero except possibly v, 4, Vop and
Vae, and the tuple (vag,Vap, Vac) is one of

{(1,-3,3), (2,—-2,1), (1,-2,2), (0,—2,3), (3,—1,-1), (2,—1,0),
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(1,-1,1), (0,-1,2), (-1,-1,3), (2,0,—1), (1,0,0), (0,0, 1),
(-1,0,2), (-2,0,3), (1,1,-1), (0,1,0), (—1,1,1), (-2,1,2),
(-3,1,3),(0,2,—-1), (—1,2,0), (-2,2,1), (—1,3,—1)}.

As an immediate consequence of part (i) of the Theorem we obtain

Corollary 1. If G = S4(4) then n(G) = n(V(ZG)).

2. PRELIMINARIES

The following result is a reformulation of the Zassenhaus conjecture in terms of
vanishing of partial augmentations of torsion units.

Proposition 1 (see [24]). Let u € V(ZG) be of order k. Then u is conjugate in
QG to an element g € G if and only if for each d dividing k there is precisely one
conjugacy class C with partial augmentation ec (u?) # 0.

This fact shows that several partial augmentations are zero.

Proposition 2 (see [19], Proposition 3.1; [20], Proposition 2.2). Let G be a finite
group and let u be a torsion unit in V(ZG). If x is an element of G whose p-part,
for some prime p, has order strictly greater than the order of the p-part of u, then
ex(u) =0.

The key restriction on partial augmentations is given by the following result that
is the cornerstone of the Luthar-Passi method.

Proposition 3 (see [20,24]). Let either p = 0 or p a prime divisor of |G|. Suppose
that u € V(ZG) has finite order k and assume k and p are coprime in case p # 0.
If 7 is a complex primitive k-th root of unity and y is either a classical character or
a p-Brauer character of G, then for every integer | the number

wi(u, x, p) = %ZTrQ(zd)/Q{X(ud)Z_dl} 2.1
dlk

is a non-negative integer.

Note that if p = 0, we will use the notation ; (u, y, *) for u;(u, x,0).
Finally, we shall use the well-known bound for orders of torsion units.

Proposition 4 (see [16]). The order of a torsion element u € V(ZG) is a divisor
of the exponent of G.

3. PROOF OF THE THEOREM

Throughout this section we denote S4(4) by G. The character table of G, as
well as the p-Brauer character tables, which will be denoted by BET(p) where p €
{2,3,5,17}, can be found using the computational algebra system GAP [17]. For the
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characters and conjugacy classes we will use throughout the paper the same notation,
indexation inclusive, as used in the GAP Character Table Library.

First of all we start to investigate units of orders 2, 3, 5 and 17, since the group
G possesses elements of these orders. After this, by Proposition 4, the order of each
torsion unit divides the exponent of G, so to prove the Kimmerle’s conjecture, it
remains to consider units of orders 34, 51 and 85. We prove that no units of all these
orders do appear in V(ZG).

Now we consider each case of possible orders separately.
Let u be an involution. By (1.1) and Proposition 2 we get

Vog +Vap +v2e = 1.

Put t; = 3vp4 + 3vyp —v2e and tp = 5vp4 — 3y + V2. By (2.1) we obtain the
system of inequalities

p1(u, g2, %) = 30 +18) > 0;  puo(u, x2.%) = 2(—211 +18) > 0;
po(u, x3,%) = 502 +34) 2 0; pa(u, g3, %) = 3(—212+34) > 0,

from which —9 <#; <9 and —17 <1, < 17. Furthermore, from the system of linear
equations

Vag +Vop t+V2e =1, 3 +3vpp —v2e =11, Svaq—3vyp +Vv2e =12,

we select only integer solutions, and using the condition that all u; (u, x;, *) are non-
negative integers, we obtain twenty three tuples (vaq, Vop, Vac)-
Let u be a unit of order 3. By (1.1) and Proposition 2 we get

V3a +v3p = 1.
Put t; = v34 +4v3p. Using BET(2) and by (2.1) we obtain the system of inequalities
po(u,x7.2) = 1211 +16) =0, pi(u, x7.2) = 3(—11+16) > 0,
from which #; € {1 + 3k | =3 < k < 5}. Using inequalities
[o(u, x2.2) = 3(—4v3a +2v3 +4) > 0, 1o, x4.2) = 5(2vag —4v3p +4) >0,

we obtain only two integral solutions (v34,v3p) € {(0,1),(1,0)}.
Let u be a unit of order 5. By (1.1) and Proposition 2 we get

V5q + Vsp + V5¢c + V54 + V5. = 1.
Put
o = 3vs545 4+ 3vsp 4+ 3v50 + 3vsg —2vse and B = 4vsg + 4vsp — V5c — Vs — Vse.
Using ‘BET(2) and by (2.1) we obtain the system of inequalities
po(u, x2,%) = (4 +18) = 0;  pa(u, x2,%) = 5(—a+18) = 0;
o, x3.%) = 3(4B +34) = 0; 1o(u. x6.2) = 1 (4B +16) > 0,
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soa €{—2,3,8,13,18}and B € {—6,—1,4} and we obtain only five integral solutions
(vsq,vsp) € {(1,0,0,0,0),(0,0,0,0,1),(0,0,0,1,0),(0,0,1,0,0),(0,1,0,0,0)}.
Let u be a unit of order 17. By (1.1) and Proposition 2 we get
V17a + V175 + V17¢ + V174 = 1.
Put
t1 = 13v17g —4vi7p — 4170 — 4174, T2 = 4170 — 1317 + V170 +4v174,
and 13 =4v174 +4v17p — 130170 +4v174.
By (2.1) we have

1, x2.2) = 15(t1 +4) = 0; 13, x12,2) = 15 (=11 +64) > 0;

16 (. £12.2) = 75 (12 + 64) > 0; 1o, x2.2) = 17 (—t2 +4) = 0;

2, (12.2) = 15 (13 +64) > 0; w3, x2,2) = $5(—13+4) = 0.
This yields

t1 € {—4,13,30,47,64}, t, €{—64,—47,-30,—13,4},
and 3 € {—64,—47,-30,—13,4}.
Using inequality
o x2.2) = 75 (—4vi7a = 4vi7p — 4v17c + 130174 +4) 2 0

we have the four trivial solutions.
Let u be a unit of order 34. By (1.1) and Proposition 2 we have

V2g + V2p +V2c + V174 + V175 + V17c + V174 = 1.
Put
11 = 6v2q + 6V —2V20 — V174 — V17 — V17c — V17d s
2 = 5v2q —3vp +V2c, 13 =3v25 —Svpp—V2c,
tg = 15v24 + 15v2p —v2e —4v174 + 13v17p —4v17c —4v174
ts = 15v24 + 15v2p —v2e + 13v174 —4v17p —4v17¢ —4V174
te = 15v24 + 15v5p —voe —4v174 —4v17p —4v170 + 130174
Since |u!'7| = 2, for any character y of G we need to consider twenty three cases,
defined by part (ii) of the Theorem:
(1) Let
x'?) € {x(2a), x(2a) =21 (2b) +2x(2¢),2x(2a) — x(2b),—x(2b) +2x(2¢),
x(2D),—x2a)+2y(2c),—2x(2a)+ x(2b) +2x(2c),—x(2a) +2x(2b)}.

Then by (2.1) we obtain two incompatible inequalities

7, x2.%) = 37(160 +@) = 0. po(u, 2. %) = 37(—1611 4+ B) > 0,
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where (a, B) € {(40,28), (24,44)}.
(2) Let
X'y € {x(20),2x(2a) = 2x(2b) + x(2¢), x(2a) — x(2b) + x(2¢),
—x(2a) + x(2b) + x(2¢). =2x(2a) + 2x(2b) + x(2¢)3.
Using (2.1), we obtain the incompatible system of inequalities
17, g2, %) = 57(1611 +32) > 0;
po(u, x2.%) = 35 (=161 +36) > 0;
p1(u, x2.%) = 35 (—11 +15) > 0.
(3) Let
xW'7) € {=2x(2b) +3x(2¢). =2x(2a) +3x(20),
2x(2a) — x(2¢), 2x(2b) — x(2¢)}.
Using (2.1), we obtain the system of inequalities
o, x3,%) = 33(R20+a) 20, p17(u, x3,%) = 35(=3202+ ) > 0,
where («, 8) € {(52,16),(20,48)}, which has no integral solution.
4) Let y(u'”) = y(2a) —3x(2b) + 3x(2c). Using (2.1), we calculate the fol-
lowing system of inequalities
p17(u, x2. %) = 37(1611 +16) = 0 py(u, x2,%) = 55(—t1 —1) > 0
1 (u, x3,%) = 33(212) > 0; 17w, g3, %) = 37(=3212) > 0;
pa(u, g4, %) = 35213 +4) = 0; po(u, x4, %) = 35(=3213+4) = 0;

pa(u, x17.%) = 35t +271) = 0; 1 (u, x17.%) = 34(—t4 +205) > 0;

pa(u, x17.%) = 37(ts +254) = 0;  po(u, y17.%) = 37(—1s + 188) > 0;
12 (U, x17.%) = = (s +254) > 0; 13, x17.%) = 34(—te + 188) = 0.
It follows that 11 = —1, ¢, =0, t3 = —2,
ty €{1+34k | —-8<k <6}, 15,16 € {18+34k | -8 <k <5},

and we have no solutions.
(5) Let y(u'7) = 3y(2a) — x(2b) — x(2c). Using (2.1), we obtain the system of

inequalities
pa(u. 2. %) = 34 (t1 +3) 2 0; po(u. x2.%) = 34 (=161 +20) > 0;
p(u, x3,%) = 37(202) = 0; 17 (u, X3, %) = 37(=3212) > 0;

po(, xa k) = 252t +4) = 0;  po(u. xa.%) = 34(—3213+4) > 0;
pa(u, x17.%) = 37(ta +190) = 0;  py(u, x17.%) = 55 (—14 +252) > 0;
pa(, x17.%) = 37(t5 +190) = 0;  po(u, x17.%) = =5 (—t5 +252) > 0;
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m12(u, x17,%) =

Lt +207) > 0;

u3(u, x17.%) =

It follows that ;1 = —3, 1, =0, t3 = —2,
tg,t5€ {14434k | -6 <k <7}, t6 €{31+34k | -T<k <7},

and we have no solutions again.

(6) Let y(u'”) = —y(2a) — y(2b) +3y(2¢c). Again, using (2.1), we obtain the

system of inequalities

34 (—t6 +269) > 0.

17 (u, xo, %) = 37(1611 +16) = 0 py(u, x2.%) = 25 (—11 —1) > 0;
po(u, x3.%) = 373202 +36) = 0 p17(u, x3.%) = 55(=3212+32) > 0;
w17(u, x4,%) = ﬁ(3213 +32) > 0; wo(u, ya,%) = l4( 32134+ 36) > 0;
a(u. 17.%) = 37(ta +254) = 00 p1(u. x17.%) = 35(—t4 +188) > 0;
Ho(u, x17.%) = 35 (Is +254) = 00 po(u, x17.%) = 34 (15 + 188) > 0;
P12, x17.%) = 25 (le +271) = 0; 3, x17.%) = 34(—t6 +205) = 0.

It follows that 1 = —1,1, =1, t3 = —1,
ty,t5€ {18434k | -8 <k <5}, tsc{l+34k | -8 <k <6},

and we have no solutions again.
(7) Let x(u'”) = x(2a) + x(2b) — x(2c). Then, by (2.1), we obtain the system

of inequalities
o, x2.%) = 35 (11 +3) = 0; fo(u, x2.%) = 35 (=161 +20) > 0;
o, x3.%) = 2 (326 +36) = 0;  f17(u, x3.%) = 34(—3212+32) > 0;
17 (u, xa %) = 37323 +32) = 0; po(u, xa.%) = 57(—3213+36) > 0;
pa(u, x17.%) = 37 (ta +190) > 0;  py(u, x17.%) = 25 (—t4 +252) > 0;
Ho(u, x17.%) = 33(ts +190) = 01 po(u, y17.%) = 34(—ts +252) > 0;
p12(u, x17.%) = 35 (16 +207) = 0;  p3(u, x17.%) = 35(—t6 +269) > 0.

It follows that 11 = =3, ¢, = 1, 13 = —1,
ta, t5 €{14434k | -6 <k <7}, tc € {31 +34k | -7 <k <7},

and we have no solutions.
(8) Let y(u'”) = —=3y(2a) + y(2b) +3x(2c). Then, by (2.1), we obtain the
system of inequalities

p17(u, x2, %) = 35(1601 +16) = 0: g (u, x2,%) = 35(—t1 —1) = 0
o, x3.%) = 25 (3212 +4) > 0; o, 3. %) = 25 (=2t +4) = 0;

17, xa.%) = 37(3213) = 0 1 (. 4. %) = 35(—213) > 0

e, x17.%) = 37(ta +254) =200 1 (u, x17.%) = 35(—t4 +188) = 0



450 ANTONIO L. ROSA

o, x17.%) = 3515 +271) = 0; po(u, f17,%) = 34(~t5 +205) > 0;
112, 117, %) = 25 (16 +254) = 00 pa(u, x17,%) = =5 (—t6 + 188) > 0.
It follows that 1y = —1, 1, = 2,13 =0,
ta,t6 € {18434k | -8 <k <5}, ts € {1 +34k | -8 <k <6},

and we have no solutions.
(9) Let y(u'”) = —x(2a) +3(2b) — x(2c). Then, by (2.1), we obtain the sys-
tem of inequalities

2, x2.%) = 37 (t1+3) = 0; po(u, x2.%) = 34 (=161 420) > 0;
poi, x3,%) = 320 +4) = 0; pa(u, x3,%) = 35(-20+4) = 0;
17U, x4, %) = 35(3213) = 0; (U, xa. %) = 25(—213) > 0;

aQu, x17.%) = 37(ta +190) = 0; 1 (. 17.%) = 57(—ta +252) > 0;
2, x17,%) = 3565 +207) 2 0 po(u, x17,%) = 37(—15 +269) > 0;
12, x17.%) = 35 (16 +190) = 0;  p3(u, x17.%) = 35 (—t6 +252) > 0.
It follows that 1y = —3, 1, = 2,13 =0,
ta,te € {14434k | -6 <k <7}, t5 €{31+34k | -7 <k <7},
and we have no solutions.
Let u be a unit of order 51. By (1.1) and Proposition 2 we have
V3a +V3p + V174 + V176 +V17¢ + V174 = 1.
Put
I1 =V17a + V176 + V17¢ +V17d-
Then using (2.1) we obtain the non-compatible system of inequalities
o(u, x2.%) = 2 (3261 +34) >0, p17(u, x2,%) = 25 (—16¢1 +34) > 0.
Let u be a unit of order 85. By (1.1) and Proposition 2 we have
Vsq + Vsp + Vs + Vsqg +Vse + V174 + V175 + V17 + V170 = 1.
Put
11 = 3vsq + 3vsp + 3vse + 3v5g —2Vs50 + V17a + V176 + V17 + V174 -
Since |u!7| = 5, for any character y of G we need to consider five cases, defined by
part (iii) of the Theorem:
(1) Let x(u'7) € {x(5a), x(5b), x(5¢), x(5d)}. Using (2.1), we obtain the sys-
tem of inequalities
o, x2,%) = o= (6411 +46) =0, p17(u, x2.%) = g5 (—1611 +31) = 0,

which has no integral solution.



TORSION UNITS OF INTEGRAL GROUP RING OF THE S4(4) 451

(2) Let y(u'7) = y(5e). Again, using (2.1), we obtain the system of inequalities
1o, x2,%) = g (6411 +26) > 0, s, x2,%) = gs (411 +9) > 0,

which has no integral solution.
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