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1. INTRODUCTION AND PRELIMINARIES

Abbott in [ 1] established a correspondence between the class of Tarski algebras, or
implication algebras, and join-semilattices in which every principal filter is a Boolean
lattice with respect to the induced order. There is an algebraic structure that gener-
alizes the class of Tarski algebras: nearlattices. A nearlattice is a join-semilattice in
which every principal filter is a lattice. The class of nearlattices forms a variety that
has been studied in [9] and [1 1] by Cornish and Hickman, and in [4], [6] and [7] by
Chajda, Kolafik, Halas and Kiihr. In [2] the authors showed that the axiom systems
given in [11] and [4] are dependent and that the variety of nearlattices is 2-based.
An important class of nearlattices is the class of distributive nearlattices. Recently in
[3], a full duality between distributive nearlattices with greatest element and certain
topological spaces with a distinguished basis was developed.

It is well known that the notion of distributivity in a lattice can be characterized
in different ways, for example, a lattice A is distributive if and only if the lattice
Fi(A) of all filters of A is distributive. Another way is through some special subsets,
called annihilators. In a lattice A, the annihilator of a relative to b is defined as
the set (a,b) = {x € A : x Aa < b}. In [12], Mandelker studied the properties of
relative annihilators and characterized the distributivity of a lattice in terms of its
relative annihilators. To be more precise, a lattice A is distributive if and only if
{a,b) is an ideal of A for all a,b € A. These results were generalized by Varlet to the
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class of distributive semilattices ([14]) and subsequently to the variety of distributive
nearlattices by Chajda and Kolaiik ([6]).

The main aim of this paper is to propose a definition of relative annihilator in
distributive nearlattices with greatest element different from that given in [6]. In Sec-
tion 2 we introduce the relative annihilators and we develop new characterizations.
In Section 3 we present the class of normal and p-linear nearlattices. In Section 4
we study the lattice of filters of a distributive nearlattice. Finally, in Section 5 we
characterize the semi-homomorphisms that preserve annihilators.

Given a poset (X, <), aset Y C X is called increasing if it is closed under <,
i.e., if forevery x € Y andevery y € X, if x <y then y € Y. Dually, Y C X is
said to be decreasing if for every x € Y and every y € X, if y <x then y € Y.
The complement of a subset ¥ € X will be denoted by X —Y. Foreach Y C X,
the increasing (decreasing) set generated by YV is [Y) ={xe X : Iy €Y (y < x)}
(Y]={xeX:3yeY (x <y)}). IfY ={y}, then we will write [y) and (y] instead
of [{¥}) and ({y}], respectively.

A join-semilattice with greatest element is an algebra (A, V, 1) of type (2,0) such
that the operation V is idempotent, commutative, associative and x vV 1 = 1 for all
x € A. The binary relation < defined by x < y if and only if x V y = y is a partial
order. In what follows, we shall write simply semilattice.

A filter of a semilattice A is a subset F' C A such that 1 € F, F is increasing and if
x,y € F then x Ay € F, whenever x A y exists. The set of all filters of A is denoted
by Fi(A4). Let X be a non-empty subset of A. The least filter containing X is called
the filter generated by X and will be denoted by F(X). Note that if X = {a} then
F({a}) = [a), called the principal filter of a.

A subset I of A is called an ideal if I is decreasing andif x,y € [ thenx Vv y € [.
The least ideal containing X is called the ideal generated by X and will be denoted
by 7(X). We shall say that a non-empty proper ideal P is prime if for all x,y € A,
if x Ay € P, whenever x A y exists, then x € P or y € P. We will denote by Id(A)
and X(A) the set of all ideals and prime ideals of A, respectively. Finally, we will
say that a non-empty ideal / of A is maximal if it is proper and for every J € Id(A),
if I CJ thenJ =1 or J = A. We denote by Idm(A) the set of all maximal ideals
of A. It is easy to prove that every maximal ideal is prime.

Definition 1. A nearlattice is a semilattice A such that for each a € A the principal
filter [a) = {x € A : a < x} is a bounded lattice.

The class of nearlattices forms a variety since every nearlattice A can be described
as an algebra with one ternary operation: if x,y,a € A, the element m(x,y,a) =
(x va) Aqg (y Vva) is correctly defined because x Va,y Va € [a) and [a) is a lattice,
where A, denotes the meet in [a).

Proposition 1 ([2]). Let A be a nearlattice. The following identities are satisfied:
(1) m(x,y,x) =x,
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(2) m(m(x,y,z),m(y,m(u,x,2),z),w) = m(w,w,m(y,m(x,u,z),2)),
3) m(x,x,1)=1.

Conversely, let (A,m, 1) be an algebra of type (3,0) satisfying the identities (1)—
(3). If we define x V' y = m(x,x,y), then A is a semilattice and for each a € A, [a)
is a bounded lattice, where the meet of x,y € [a) is x A\q y = m(x,y,a). Hence A is
a nearlattice.

Definition 2. Let A be a nearlattice. We call A distributive if the principal filter
[a) ={x € A :a < x}is a bounded distributive lattice for each a € A.

Theorem 1 ([7]). Let A be a nearlattice. Then A is distributive if and only if
satisfies either of the following identities:

(1) m(x,m(y,y,z),w) =m(m(x,y,w),m(x,y,w),m(x,z,w)),
Q) mx,x,m(y,z,w)) =m@m(x,x,y),m(x,x,z),w).

Theorem 2 ([10]). Let A be a distributive nearlattice. Let I € 1d(A) and let
F € Fi(A) such that I N F = &. Then there exists P € X(A) such that [ C P and
PNF=g2.

For distributive nearlattices we have the following lemma which characterizes the
generated filters and can be deduced from the results given in [9].

Lemma 1. Let A be a distributive nearlattice. Let X C A be a non-empty subset.
Then

F(X)={aecA : Ax1,....xp €[X)Ix1 A .. AXp (X1 AL AX, = a)}.

A filter H is said to be finitely generated if H = F(X) for some finite non-empty
subset X of 4. We will denote by Fir(A) the set of all finitely generated filters of A.

Recall that if A is a distributive nearlattice, then (Fi(A4), Y, A, {1}, A) is a bounded
distributive lattice, where the least element is {1}, the greatest element is 4, and for
all G,H € Fi(A) wehavethat GY H = F(GUH)andGAH =GNAH.

Theorem 3 ([4,9]). Let A be a nearlattice. The following conditions are equival-
ent:

(1) A is distributive.
(2) (Fi(A),Y,R,{1}, A) is a bounded distributive lattice.
3) (Fif (A), Y, A, {1}, A) is a bounded distributive lattice.

A function 2 : A — B between distributive nearlattices is a
semi-homomorphism if h(1) =1 and h(a v b) = h(a) v h(b) for all a,b € A. A
homomorphism is a semi-homomorphism /4 such that for all a,b € A, if a A b exists,
then h(a Ab) = h(a) A h(b). In [3] it was shown that there exists a duality between
semi-homomorphisms of distributive nearlattices and certain binary relations.



68 ISMAEL CALOMINO AND SERGIO CELANI

2. RELATIVE ANNIHILATORS

In this section we will develop new characterizations of the distributivity of a near-
lattice through relative annihilators and relative maximal ideals.

Definition 3. Let A be a semilattice. For a,b € A, the annihilator of a relative to
b is the set
aob={xe€A :b<xva}.

Let A be a semilattice. Let a,b € A,I € Id(A) and F € Fi(4). We introduce the
following subsets of A:

Iob = {xeA:3iel( <xVi)},
aoF = {xeA :3feF(f < xva)}.

Let X,Y € A. We denote by X oY the set

XoY =J{aoh : (a,b) e X xY}.
Remark 1. Note thataob = (alJob =ao[b) = (a]o[b) forall a,b € A.
The following theorem characterizes distributive nearlattices.

Theorem 4. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.

(2) aob €Fi(A) forall a,b € A.

(3) Iob €eFi(A) forall I €1d(A) and b € A.

(4) ao F €Fi(A) forall F € Fi(A) and a € A.

(5) I oF €Fi(A) forall I € 1d(A) and F € Fi(A).

Proof. (1) = (2) It is obvious that 1 € aob. Let x,y € A such that x < y and
x €aob. Then, xVva<yvaand b <xVva. So,b<yvaandy€e€aob. Let
X,y € aob such that x A y exists. Then,b <xVvaandb <yva,ie.,xVa,yVvac
[b). Since [b) is a bounded distributive lattice, b < (x Va) Ap (y Va) = (x Ay) Va.
Then, x Ay €aob andaob € Fi(A).

(2) = (3) Letb € A and I €1d(A4). We note that i ob C I ob foralli e I. It
is easy to prove that 1 € I ob and that [ o is increasing. Let x,y € I ob such that
x Ay exists. Then there exist i1,ip € [ such that b < xVi; and b < yVvip. Let
i=i1Vipel.So,b<xvVviandb <yVi.Sincex,y €iobandiob € Fi(A4), we
have that x Ay €iob C I ob. Therefore, [ ob € Fi(A).

(3) = (4) Leta € A and F € Fi(A). It follows easily that 1 € ao F and thatao F
is increasing. Let x,y € a o F such that x A y exists. Then there exist f1, f> € F
suchthat f <xVvaand /> <yVva.So,xVa,yvaeF.SincexVva,yVvae€ [a),
(xva)rg(yva)existsand (x Va)Ag(yVa)e F. As(xva)Ag(yVa)<xVa
and (x Va) Aq (yVa) <yva,wehave x,y €ao((xvVa)Aqg (yVa)). By Remark 1,
ao((xVva)rg(yVva))=(a]o((xVa)Aq(yVa)) and by hypothesis (a]o ((x Va) Aq
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(yva))eFi(A). Thenx Ay €ao((xVa)rqg(yVa)),butas (x Va) g (yVa) e F
we have that x Ay €ao F. So,ao F € Fi(A).

(4) = (5) Let I € 1d(A) and F € Fi(A). It is easy to see that 1 € [ o F and
that / o F is increasing. Let x,y € I o F such that x A y exists. Then there exist
(i1, f1),(i2, f2) € I X F suchthatx €ijo fiand y €i0 f5,i.e., f1 <xVijand f <
yVia. Leti =i Vip € I. Onthe other hand, x Vv f1,yV fo € F and (x V f1) Axay
(y Vv f2) exists in [x A y). It follows that (x V f1) Axay (¥ V f2) € F. We consider
ioF.Wenotethat (xV f1) Axay (YV f2) <xViand (xV f1) Axay (Y V f2) Sy Vi.
So,x,y €ioF.Byhypothesisio F €Fi(A) andx Ay €ioF,i.e.,thereexists f € F
suchthat f <(xAy)Vi.ThenxAye€iofandxAyeloF.Thus,IoF €Fi(A).

(5) = (1) Leta € A and x, y, z € [a). We know that the inequality x V (y A z) <
(x vV y) A (xVz) always holds. We prove the other inequality. As (x Vy)A(xVvz) <
yvxand (x Vy)A(xvz)<zvVvxtheny,z€xo((xVy)A(xVvz)). By Remark I,
xo((xVy)A(xVvz)) =(x]o[(xVy)A(xVz)) and by hypothesis (x]o[(x vV y) A
(xVvz)) €Fi(A). So, y Az e (x]o[(xVy)A(xVZz)),ie., there exist i € (x] and
felxvy)an(xvz))suchthat yAz €io f. So, f <(yAz)Vi. It follows that
(xVvy)A(xVvz) <xV(yAz)and [a) is a bounded distributive lattice. O

In lattice theory, a lattice is distributive if and only if every proper ideal is an
intersection of prime ideals. Here we present a generalization of this characterization.

Theorem 5. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.
(2) Every proper ideal of A is an intersection of prime ideals.

Proof. (1) = (2) See Corollary 2.9 of [3].

(2) = (1) Leta,b € A. We prove thataob € Fi(A). Itis easy to see that 1 € aob
and that ¢ o b is increasing. Let x, y € aob such that x A y exists. Let @ = ((x Ay) Vv
a] and suppose that b ¢ Q. So, Q is a proper ideal and by hypothesis we have that
O =P €X(A):Q C P}. Then there exists P € X(A) such that (x Ay)va e P
andb ¢ P. So,x Ay e Panda € P. As P is prime, x € P or y € P. Suppose
that x € P. Then x Va € P and since x €aob,ie., b < xVa, we have thath € P
which is a contradiction. The same reasoning applies when y € P. Then b € Q and
b <(xAy)Va. Therefore, x Ay €aob and a ob € Fi(A). It follows from Theorem
4 that A is distributive. g

We study a new characterization of distributive nearlattices in terms of the notion
of relative maximal ideal with respect to a set.

Definition 4. Let A be a semilattice. Let S be an increasing subset of A. An ideal
I of A is called a relative maximal ideal with respect to S, when [ is maximal among
all the ideals which are disjoint to S.
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Lemma 2. Let A be a semilattice. Let I € 1d(A) and F € Fi(A). Then I is
a relative maximal ideal with respect to F if and only if (H o F)N I # @ for all
H €1d(A) such that H 1.

Proof. Suppose that [ is a relative maximal ideal with respectto F. Let H € Id(A)
such that H < I. We consider the ideal / v H. Since [ is a relative maximal ideal
with respectto Fand I CIVv Hthen(IVH)NF # &, i.e.,thereexist f € F,i €]
and h € H suchthat f <iVvh. So,i € ho f andi € Ho F. Therefore, (Ho F)NI #
.

Assume that (H o F)N I # @ for all H € 1d(A) such that H € I. Suppose that
1 is not a relative maximal ideal with respect to F'. Then there exists J € Id(A4) such
that / C J and J N F = @. Since J € I, by hypothesis we get (J o F)N [ # @. Then
there existi € [ and (j, f) € J x F suchthati € jo f,ie., f <iVj.Asiel CJ
andi Vv j € J, we have that f € J. So, J N F # @ which is a contradiction. 0

Theorem 6. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.
(2) Every relative maximal ideal I with respect to a ob is prime for all a,b € A.

Proof. (1) = (2) Leta,b € Aand I €1d(A) such that / is a relative maximal ideal
with respect to a ob. We prove that [ is prime. Let x,y € A such that x A y exists
and x Ay €. Supposethat x ¢ / and y ¢ [. Let Iy =1 Vv (x]and I, =1 Vv (y].
Then Iy Naob # @ and I, Naob # @, i.e., there exist f1, f> €aobandiy,ip €]
such that f1 <xVijand fob <yVip. Leti =ijVizel. So,xVi,yVvie€aob
and (x Vi) A; (y Vi) exists in [{). From Theorem 4, it follows that a o b € Fi(A4)
and (x Vi)A; (y Vi) = (xAy)Vi €aob. On the other hand, as I is an ideal,
(xAy)Vviel. Thus, I Naob # & which is a contradiction. Then / is prime.

(2) = (1) By Theorem 4, it is sufficient to prove that a o b € Fi(A). It is easy to
see that 1 € a ob and that @ o b is increasing. Let x,y € a ob such that x A y exists.
Suppose that x Ay ¢ aobh. Then (x Ay]Naob = @. We consider the following
family

F={l€ld(A) : xAy]STand I Naob=ya}.
So, ¥ # @. By Zorn’s Lemma there exists a maximal element M € . It is not
difficult to show that M is a relative maximal ideal with respectto aob. So, x Ay €
M and by hypothesis M is prime. Then x € M or y € M. Thus, M Naob # &
which is a contradiction. Therefore, x Ay € aob and a o b € Fi(A). U

3. NORMAL AND P-LINEAR NEARLATTICES

Let A be a semilattice and a € A. From Definition 3 we have the following relative
annihilator
al=aol={xe€A : xVva=1},

called the annihilator of a. We have the following result.
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Lemma 3. Let A be a distributive nearlattice. Let a,b € A and I € 1d(A). Then

(1) I Naob = @ if and only if there exists Q € X(A) such that I € Q, a € Q
and b ¢ Q.

2) I NaT = @ if and only if there exists Q € X(A) suchthat I € Q and a € Q.

(3) INa™ =@ ifand only if there exists U € Idm(A) such that I CU anda € U.

(4) U €ldm(A) ifand only if for alla € A, a ¢ U if and only if U NaT # @.

Proof. (1) Let J €1d(A) such that J Naob = @. Let H = I(J U{a}). We prove
that H N[b) = @. If x € H N[b) then there exists j € J such that x < j v a and
b<x.So,b<jvaandj €aob which is a contradiction. Then H N[b) = & and
by Theorem 2 there exists Q € X(A) suchthat J C Q,a€ Q and b ¢ Q.

The other direction is immediate.

(2) It follows from (1).

(3) If I Na™ = & then there exists Q € X(A) such that I € Q anda € Q. We
consider the family

Z={Reld(4)—{A} : I CRanda € R}.

So, Z # @ because Q € Z. Then, by Zorn’s Lemma, there exists a maximal element
U € Z. ltis clear that U is proper. We prove that U is a maximal ideal. Let b € A
suchthat b ¢ U. If U NDT = @ then H = I(U U {b}) is a proper ideal. Otherwise,
if 1 € H then there exists p € U such that pv b =1, i.e., p € U NDT which is a
contradiction. So U C H and H € Z, which is a contradiction because U is maximal.
Then U NbT # & and there exists ¢ € U such that ¢ Vb = 1. Therefore, H = A and
U is maximal.

Suppose that I NaT # &. Then there exists i € I such thati va = 1. So, there
exists U € Idm(A) such that I € Q anda € Q. Theni va =1 € U, which is a
contradiction because U is maximal.

(4) Let U € Idm(A). Suppose that a ¢ U. As U is maximal, /(U U{a}) = A.
Then 1 € I(U U {a}), i.e., there exists p € U such that pva = 1. So, p € aT and
UNaT #@.

If UNaT # @ and a € U then there exists p € U such that pva = 1. Thus, 1 e U
which is a contradiction.

Conversely, let I € Id(A) such that U C I. Then there exists a € I suchthata ¢ U.
So, U NaT # @, i.e., there exists p € U such that p va = 1. Since U C I, we have
that p e I andaVv p =1 € I. Therefore, I = A and U is maximal. g

We recall that a bounded distributive lattice is normal if each prime ideal con-
tains a unique minimal prime ideal. This concept was introduced by Cornish in [&]
and extended to the class of distributive semilattices in [13]. Now, we introduce a
generalization of this notion.

Definition 5. Let A be a distributive nearlattice. We say that A is normal if each
prime ideal is contained in a unique maximal ideal.
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We say that A is p-linear if the family of prime ideals which contain a prime ideal
is a chain.

Remark 2. We note that every normal nearlattice is p-linear.

Remark 3. If A is a bounded distributive lattice then the Definition 5 is equivalent
to saying that every prime filter contains a unique minimal filter, which is a concept
dual to the definition given by Cornish in [8].

The following results characterize normal nearlattices through annihilators.

Lemma 4. Let A be a distributive nearlattice. The following conditions are equi-
valent:

(1) A is normal.
(2) For every P € X(A) and for all a,b € A withavb =1, PNa' # & or
PNbT +@.

Proof. (1) = (2) Let P € X(A) and a,b € A such that a vV b = 1. Suppose that
PNaT=@and PNbT = . So, by Lemma 3, there exist Uy, U, € Idm(A) such that
P CU;, PCUy,aelU;and b € U,. Since A is normal, Uy = U,. Thena,b € Uy,
buta Vb =1 € U; which is a contradiction. Thus, P NaT # @ or P NDT # @.

(2) = (1) Let P € X(A) and Uy,U;, € Idm(A) such that P C U and P C U,.
If Uy # U, then there exists a € Uy such that a ¢ U,. As U, is maximal, 1(U, U
{a}) = A. Then 1 € I(Up U{a}), i.e., there exists b € U such thatavh = 1. On
the other hand, by Lemma 3, P NaT = @ and P NbT = &, which contradicts the
assumption. g

Lemma 5. Let A be a distributive nearlattice. The following conditions are equi-
valent:

(1) A is normal.
(2) Foralla,be€ A, (avb)T = F(aTUbT).
(3) Foralla,be Awithavb =1, FlaTUbT) = A.

Proof. (1) = (2) Let a,b € A. Note that the inclusion F(aTUbT) C (a Vv b)T
always holds. Let us prove the other inclusion. Suppose that there exists x € (a v b)T
such that x ¢ F(aTUbT). So, by Theorem 2, there exists P € X(A) such that x € P
and PN F(aTUbT) = @. Since aT,bT C F(aTUbT), we have that P NaT = @& and
P NbT = @. Then, by Lemma 3, there exist Uy, U, € Idm(A) such that P C Uy, P C
Uy,aeU;and b € Uy. As Aisnormal, Uy = U, and a,b € U;. Also, x € Uy. Then
xV (avb)=1eU; which is a contradiction. Therefore, (a v b)T = F(aTUDbT).

(2) = (3) It is immediate.

(3) = (1) Let P € X(A) and U;y,U; € Idm(A) such that P C Uy and P C U,.
Suppose that there exists a € U; such that a ¢ Us,. Since U, is maximal, there exists
b e U, suchthatavb =1. Then F(aTUbT) = A. Letx € P. Hence, x € F(aTUbT)
and there exist x1,...,x, € aTUbT such that x; A ... Ax, exists and X1 A ... A X, = X.
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So, X1 A... A X, € P and by the primality of P there exists x; € {x1,...,X,} such
that x; € P. If x; € a7 then x; € Uy and x; Va = 1 € Uy, which is a contradiction
because U is proper. If x; € bT, we arrive at a contradiction. Thus, U; C U, and
consequently U; = U,. Therefore, A is normal. O

Corollary 1. Let A be a distributive nearlattice. The following conditions are
equivalent:

(1) A is normal.
(2) The application p : A — Fi(A) defined by p(a) = a7 is a homomorphism of
distributive nearlattices.

Proof. It follows from Lemma 5. O

Theorem 7. Let A be a distributive nearlattice. The following conditions are
equivalent:
(1) A is p-linear.
(2) Forevery P € X(A) andforalla,b € A, PNaob # P or PNboa # @.
(3) Foralla,be A, F((aob)U (boa)) = A.

Proof. (1) = (2) Let P € X(A) and a,b € A. Assume that P Naob = & and
PNboa= . By Lemma 3 there exist 01, 0> € X(A4) suchthat P C Q1,a € 01,
bé¢ Q1, P Qs be Qr,anda ¢ Q. As A is p-linear, Q1 € Q 0r 02 € Q4. If
Q1 C Q5 then a € Q,, which is impossible. If Q> € @1, then b € Q1 which is a
contradiction. Thus, P Naob # S or PNboa # @.

(2) = (3) Suppose that there exista, b € A such that F((aob)U (boa)) # A. Then
there exists ¢ € A suchthatc ¢ F((aob)U(boa)). Since F((aob)U(boa)) € Fi(A),
by Theorem 2 there exists P € X(A) suchthatc € P and PN F((aob)U (boa)) =
@.So, PNaob =@ and P Nboa = @ which is impossible. Thus, F((aob)U (bo
a)) = A.

B3)=(1)Let P,O1,02 € X(A) suchthat P C Q; and P C Q5. If O and Q>
are incomparable, then there exist a,b € A suchthata € Q1 — Qs andb € Q2 — Q.
Let x € P. Since A = F((aob)U (boa)), there exist xq,...,x, € (aob)U (boa)
such that x; A ... A X, exists and x; A... AX, = x. So, Xx] A... AX, € P and by the
primality of P there exists x; € {x1,...,X,} such that x; € P. If x; € aob, then
b<xiVva.Asxj,ac Q1,wehave x; Va € Q1 and b € Q1 which is a contradiction.
Similarly, if x; € boa we arrive at a contradiction. Thus, Q1 and Q» are comparable
and A is p-linear. g

4. THE LATTICE OF FILTERS

In this section we study the structure of the lattice of filters of a distributive nearlat-
tice. Recall that a Heyting algebra is an algebra (A, v, A,=,0, 1) of type (2,2,2,0,0)
such that (4, Vv, A,0, 1) is a bounded distributive lattice and the operation = satisfies
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the following condition: a Ab < ¢ if and only if « < b = ¢ for all a,b,c € A. The
pseudocomplement of an element a € A is the element a* = a = 0.

Let A be a distributive nearlattice. For each pair F, H € Fi(A) let us define the
subset F' > H of A as follows:

F>H={aeA: :[a)NF C H}.

Theorem 8. Let A be a distributive nearlattice. Let F, H € Fi(A). Then
(1) F > H €Fi(A).
2 FH={acA:VYfeF3aheH (h=<aVv f)}
(3) The structure (Fi(A),Y,A,>>,{1}, A) is a Heyting algebra.

Proof. (1) Let F, H € Fi(A). We prove that F > H € Fi(A4). Since [1) N F =
{I}C H,thenle Fr> H. Leta,be Asuchthata <b and a € F > H. Thus,
[b) Cla) and [@) N F C H. Tt follows that [p)) N F C H, ie, b e F > H. Let
a,b € F > H and suppose that a A b exists. By Theorem 3, the lattice Fi(A) is
distributive and

[aAb)NF = ([a) Y [p))N F
=(a)NF)Y([b)NF)
C H.

Therefore,a Ab € F > H and F > H € Fi(A).

Q) Let F,H €Fi(A). Let X ={acA:VfeF3aheH (h<av f)landa e X.
We prove thata € F > H,ie.,[a)NF C H.Ifxe[a)NF,thena <xand x € F.
Since a € X and x € F, there exists h € H suchthath <avx = x. As H is a filter,
xe€ H.So,ae Fr>H. Conversely,letae F > Hand f € F. ThenaV f €[a)NF
and by hypothesis, a v f € H. It follows that a € X. Therefore, F > H = X.

(3) By Theorem 3, (Fi(A),¥,A,{1},A) is a bounded distributive lattice. Let
F,G,H € Fi(4). We prove that FNG € H if and only if F € G > H. Sup-
posethat FNG C H andleta € F. If x € [a) NG, thena < x and x € G. Therefore
x € FNG and by hypothesis x € H,i.e., F C G > H. Conversely, letx € FNG. By
hypothesis F C G > H,thenx e G> H. As[x)NG C H,wehavethatx e H. [

Remark 4. As a particular case, we have a ob = [a) > [b). Indeed

x€aob iff b<xva iff [xVva)CZI[b)
iff [x)N[a) C[b) iff x€la)r>[b).

Then we can write the annihilator of a relative to b in terms of the binary operation
>.

Note that if F € Fi(A), then F* = F > {l} ={a € A : [a)NF = {1}}. The
following result describes the filter F* in a different manner.

Proposition 2. Let A be a distributive nearlattice. Then for every F € Fi(A),
F*={aeA:VfeF(avf=1}
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Proof. LetC ={ac A:VfeF (avf=1)}anda e C. Weprove that [a) N F =
{1}. Let x € Asuchthata < x and x € F. Then x =aVvx = 1. Thus, a € F*.
Conversely, let @ € F*. Then [a) N F = {1}. Sincea <aV f and f <aV f for
every f € F,and as F isafilter,aVv f €la)NF. So,aVv f =1 foreach f € F.
Therefore,a € C and F* = C. O

Remark 5. We note that [a)* = {x € A:xVva =1}, ie.,aT =[a)*.

We prove that the pseudocomplement of a subset X is the pseudocomplement of
the filter generated by X . This result was proved for Tarski algebras in [5].

Theorem 9. Let A be a distributive nearlattice. Then for every subset X C A, we
have X* = F(X)*.

Proof. Since X C F(X), we have that F(X)* € X*. Conversely, let x € X*.
We prove that for every a € F(X), x Va = 1. Suppose that there exists a € F(X)
such that x Va # 1. Then there exist x1,...,x, € [X) such that x| A ... A X, exists
and x1 A ... A X, = a. So, there exist yp,...,y, € X such that y; < x; forall i €
{I,...,n}. Asx e X*, xvy, =1forall y; € {y1,...,yn}. Then x v x; = 1 for all
Xi € {X1,....xXn}. Since x Va # 1, by Theorem 2, there exists P € X(A4) such that
xVaePand1¢ P. Then x; A... Ax, € P and as P is a prime ideal, there exists
Xi € {x1,...,X,} such that x; € P. On the other hand, x Va € P and x € P. So,
xVx; = 1€ P which is a contradiction. Thus, x Va = 1 for all ¢ € F(X) and
consequently x € F(X)*. O

5. SEMI-HOMOMORPHISMS PRESERVING ANNIHILATORS

Our next aim is to study a particular class of semi-homomorphisms: semi-homo-
morphisms preserving annihilators. We give some characterizations in terms of prime
and maximal ideals.

Definition 6. Let A, B be two distributive nearlattices and let 4 : A — B be a semi-
homomorphism. We say that 4 is a semi-homomorphism preserving annihilators, or
T-semi-homomorphism, if F(h(aT)) = h(a)T foralla € A.

Remark 6. We note that F(h(aT)) C h(a)T for alla € A. If x € F(h(aT)) then
there exist x1,...,X, € [1(aT)) such that x1 A ... A x, exists and x1 A... A X, = X.
AS X1,...,Xp € [h(aT)), there exist y1,...,yn € h(aT) such that y; < x; for all i €
{1,...,n}. So, there exist 1, ...,t, € aT such that h(¢;) = y; for 1 <i <n. Thus, t; vV
a=---=t,va=1and since & is a semi-homomorphism, we have that y; v h(a) =
o=y, Vh(a)=1.ThenxVh(a) =[(y1 VX)) A ... A(Yn VXn)]Vh(a). As[x)isa
bounded distributive lattice, x Vh(a) = (y1 VX1 Vh@)A...A(yn VX Vh(a)) = 1.
Therefore, x V h(a) = 1 and x € h(a)T.

Let h: A — B be a semi-homomorphism between distributive nearlattices. In
general, i~ (P) ¢ X(A) for each P € X(B). Now, we prove that if P is maximal
and / is a T-semi-homomorphism, then 2~ (P) is maximal and therefore prime.
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Lemma 6. Let A, B be two distributive nearlattices and let h : A — B be a T-
semi-homomorphism. Then h~1(P) € Idm(A) for every P € Idm(B).

Proof. Let P € Idm(B). Since / is a semi-homomorphism, /=1 (P) is an ideal.
As h(1) =1 ¢ P, we have that =1 (P) is proper. Let a € A such thata ¢ h~1(P).
Then h(a) ¢ P and as P is maximal, by Lemma 3, P Nh(a)T # &. So, there exists
x € A such that x € P N F(h(aT)) # @, i.e., there exist x1,...,x, € [h(aT)) such
that x; A ... A x, exists and x; A ... Ax, = x. Thus, there exist yq,...,yn € h(aT)
such that y; < x; foralli € {1,...,n}. It follows that there exist t1,...,#, € aT such
that i(¢;) = y; for 1 <i <n. Thentyva =...=1,Va =1 and since A is a semi-
homomorphism, we have that y; Vh(a) = ... = y, Vh(a) = 1. As

X=X1 A AXp = X1 VYDA AKXV Yy)EP

and P is prime, there exists i € {1,...,n} such that x; Vy; € P. So, y; = h(t;) €
P,ie.,t; e 1 (P)and h~'(P)NaT # @. Conversely, it is easy to prove that if
h=Y(P)NaT # @, thena ¢ h~!(P). Therefore, by Lemma 3, 7~ (P) e Idm(4). O

Theorem 10. Let A, B be two distributive nearlattices and let h : A — B be a
semi-homomorphism. Then the following conditions are equivalent:

(1) his a T-semi-homomorphism.

(2) For all P € X(B) and for every Q € X(A) such that h~'(P) C Q, there
exists D € X(B) such that P € D and Q € h~1(D).

(3) Idm(A) N[~ (P)) € h~'[X(B) N[P)] for all P € X(B).

Proof. (1) = (2) Let P € X(B) and Q € X(A) such that =1 (P) € Q. Let us
consider the ideal H = I(P Uh(Q)). We note that H is a proper ideal. Indeed, if
we assume otherwise, there exists p € P and ¢ € Q such that p Vv h(g) = 1. So,
p € h(q)T = F(h(qT)). Then, there exist x1,...,x, € [A(gT)) such that x; A ... A x,
exists and x1 A... Ax, = p. So, there exist y1,..., y» € h(gT) such that y; < x; for all
i €{1,...,n}. It follows that there exist 1, ...,#, € ¢T such that h(¢;) = y; for 1 <i <
n. Thenty Vg =...=1t, Vg = 1 and since & is a semi-homomorphism, we have that
ViVh(@)=..=y,Vh(@)=1. Asx =x1 A AXp = (X1 VYD)ALA(XRVYy) EP
and P is prime, there exists i € {1,...,n} such that x; vV y; € P. So, y; = h(t;) € P,
ie,ti e h™(P)C Q and since g € Q, t; Vg = 1 € Q which is a contradiction.
Therefore, H is a proper ideal and there exists D € X(B) such that P € D and
0 Ch™Y(D).

(2) = (3) Let P € X(B) and Q € Idm(A) N[A~'(P)). Then Q € X(A) and
h=1(P) € Q. By hypothesis, there exists D € X(B) such that P € D and Q C
h=Y(D). Since h~1(D) is an ideal and Q is maximal, Q = h~(D). So, D €
h~'[X(B)N[P)] and Idm(4) N[h~1(P)) € h~'[X(B)N[P)].

(3) = (1) Leta € A. We prove that h(a)T C F(h(aT)). Suppose that there exists
x € h(a)T such that x ¢ F(h(aT)). By Theorem 2, there exists P € X(A) such that
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x € Pand PN F(h(aT)) = &. Then,
PNh(a)T# @ and PNh(a") =@.

Thus, A~ (P)NaT = @ and h~ ! (P) €1d(A). By Lemma 3, there exists U € Idm(A)
such that A~1(P) C U and a € U. So, we get that

U eldm(4) N[k~ (P)) € h ' [X(B)N[P)].

Then, there exists D € X(B) such that P € D and U = h~'(D). Since a € U,
h(a) € D and D Nh(a)T = @. On the other hand, P NAh(a)T # @ and P C D. Thus,
D Nh(a)T # @ which is a contradiction. Therefore, 2(a)T C F(h(aT)) and &k is a
T-semi-homomorphism. g

It is possible to give another characterization of the 7-semi-homomorphisms in
normal nearlattices.

Proposition 3. Let A, B be two distributive nearlattices and let h : A — B be a
semi-homomorphism. Suppose that B is normal. Then h is a T-semi-homomorphism
if and only if:

(1) Forall P € X(B) and for all Q1, Q> € Idm(A), ifh~'(P) € Q1N Q> then

01 = 0o
(2) h=1(P) e Idm(A) for every P € Idm(B).

Proof. =) Suppose that & is a T-semi-homomorphism. By Lemma 6, we only
need to prove (1). Let P € X(B) and Q1, Q> € Idm(A) such that »~1(P) € 01 N
0». Suppose that there exists a € Q1 such that a ¢ Q». Since Q5 is maximal, there
exists b € Q5 such that a Vb = 1. Then h(a Vv b) = h(a) v h(b) = h(1) = 1. As
B is normal, by Lemma 4, we have that P Nh(a)T # @ or P Nh(b)T # @, and
since /1 is T-semi-homomorphism, P N F(h(aT)) # @ or P N F(h(bT)) # @. If
P N F(h(aT)) # @, then there exists x € P such that x € F(h(aT)), i.e., there exist
X1,...,Xn € [h(aT)) such that x; A ... A x, exists and X1 A ... A x, = X. So, there exist
V1s.es ¥n € h(aT) such that y; < x; for all i € {1,...,n}. It follows that there exist
t1,....tn € a¥ such that h(t;) = y; for 1 <i <n. Then, tyjva=..=t,Va =1
and since / is a semi-homomorphism, we have that y, Vh(a) =... = y, Vh(a) = 1.
AsX =X1 A AXp =1 VY1) A...A(Xy,Vyy) € P and P is prime, there exists
ief{l,..nysuchthatx;Vvy; € P.So,y; =h(t;)e Pandt; e "1 (P) S Q1N Q>.
Since a,t; € Q1, we have that t; Va = 1 € 01, which is a contradiction because Q1
is maximal. If P N F(h(bT)) # &, we get also a contradiction. Therefore, 01 C Q>
and consequently Q1 = Q5.

<) Leta € A. We prove that h(a)T C F(h(aT)). Suppose that there exists x €
h(a)T such that x ¢ F(h(aT)). Then there exists P € X(B) such that x € P and
PN F(h(aT)=0,ie., PNh(a)T # @ and PN F(h(aT)) = @. Since B is normal,
there exists a unique Q € Idm(B) such that P € Q. We note that h(a) ¢ Q. Indeed,
if i(a) € Q then h(a)T N Q # @ and there exists x € Q suchthath(a)vx =1€ Q,
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which is a contradiction. Since a ¢ A~!1(Q) and by (2) we have A/~1(Q) € Idm(A),
then, by Lemma 3, A~ 1(Q)NaT # @, i.e., O N F(h(aT)) # @. On the other hand,
since P N F(h(aT)) = @ then h~'(P)NaT = @& and, by Lemma 3, there exists
U €Idm(A) such that 7='(P) C U anda € U. Then A~ (P) € h~1(Q)NU and by
(1), we have h~1(Q) = U, which is a contradiction because a € U and a ¢ h~1(Q).
Therefore, h(a)T = F(h(aT)) and 4 is a T-semi-homomorphism. 0
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