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Abstract. Let I be a nonzero ideal of a ring T , let ' W T ! E WD T=I denote the canonical
projection, let D be a ring contained in E, and let RD '�1.D/. The main purpose of this paper
is to characterize when the ring extension R � T is n- (resp., universally) algebraic modulo I in
case I is an intersection of finitely many maximal ideals of T .
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1. INTRODUCTION

All rings considered below are commutative with identity but not necessarily in-
tegral domains. All subrings and inclusions of rings are (unital) ring extensions; all
ring/algebra homomorphisms are unital. Let A be a ring and n � 1 be an integer.
We denote by AŒn� the ring of polynomials in n indeterminates over A (for n D 1,
AŒ1�D AŒX� is the ring of polynomials in one indeterminate). For convenience, we
write AD AŒ0�.

Let I be a nonzero ideal of a ring T , ' W T !E WD T=I the natural projection, and
D a ring contained in E. Then R D '�1.D/ is the ring arising from the following
pullback of canonical homomorphisms:

R �! D

# #

T �! T=I DE

Following [4], we say that R is the ring of the .T;I;D/ construction and we set
R WD .T;I;D/. We shall assume that D is properly contained in E (and hence, that
R is properly contained in T ), and we shall refer to this as a pullback diagram of
type .�/. If I is an intersection of finitely many maximal ideals of T , we shall refer
to this as a diagram .�\/. A very good account of pullback constructions has been
given in [4, 5] and [6]. It has fashionable in recent years to study rings via pullback
diagrams. It is well worth noting that pullback constructions provide a rich source
of examples and counterexamples in commutative algebra (see [1–5,11,12]). Unless
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otherwise specified, the symbols T;D;I;R have the above meaning throughout the
paper.

In [8] the authors introduced the concept of n-algebraic extension modulo I for
a diagram .�/ when T and D are integral domains and n � 0 is an integer. More
precisely, the ring extension R � T (of integral domains) is said to be n-algebraic
modulo I if for every two prime idealsQ0�Q of T Œn� such that I Œn� 6�Q0, I Œn��Q
and ht.Q\RŒn�=Q0\RŒn�/D 1, thenRŒn�=.Q\RŒn�/�T Œn�=Q is algebraic. This
concept was first used to characterize when an integral domain R of the form DCI ,
(where I is a nonzero ideal of an integral domain T andD is a subring of T satisfying
D\I D .0/) is a (stably) strong S-domain (cf. [8, Théorème 1.7]). In [2], the authors
dealt with a more general situation and used this concept to characterize when a ring
R arising from a diagram .�/ is a (stably) strong S-domain. The main purpose of
this paper is to study n-algebraic extensions modulo I for a diagram .�\/ in order to
deepen our knowledge about such extensions. We first extend this notion to arbitrary
commutative rings. Our motivation is an example constructed by Fontana et al (see
[8, Exemple 1.8]) of a diagram .�\/ in order to produce a ring extension R � T
which is 0-algebraic modulo I but not 1-algebraic modulo I . For this reason, M.
Fontana et al (see [8]) have introduced the following definition: The ring extension
R � T is said to be universally algebraic modulo I , if R � T is n-algebraic modulo
I for each positive integer n. Our contribution (see Theorem 1) is to prove that for
a diagram .�\/, R � T is n-algebraic modulo I if and only if R � T is 1-algebraic
modulo I if and only if R � T is a residually algebraic extension. The key step
(Lemma 1) is to show, for any diagram .�/, that if R � T is n-algebraic modulo I
(where n� 1), then R � T is .n�1/-algebraic modulo I .

Throughout the paper, we use “�” to denote proper containment and “�” to denote
containment. Transcendence degrees paly an important role in our study; ifA�B are
two domains, we denote by t r:degŒB W A� the transcendence degree of the quotient
field of B over that of A. Any unexplained terminology is standard as in [9, 10].
Relevant terminology and results will be recalled as needed through the paper.

2. MAIN RESULTS

We extend Fontana-Izelgue-Kabbaj’s definition, mentioned in the introduction, to
arbitrary commutative rings in the following way:

Definition 1. Let n� 0 be an integer. For a diagram .�/, the extension R � T is
said to be n-algebraic modulo I if for every two prime ideals Q0 �Q of T Œn� such
that I Œn� 6�Q0, I Œn��Q and ht.Q\RŒn�=Q0\RŒn�/D 1, thenRŒn�=.Q\RŒn�/�
T Œn�=Q is algebraic.

Definition 2. For a diagram .�/, the extension R � T is said to be universally
algebraic modulo I if R � T is n-algebraic modulo I for each integer n� 0.
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Recall that an extension of ringsA�B is said to be residually algebraic if for each
prime ideal Q of B , the extension A=.Q\A/ � B=Q is algebraic. It is clear that
if R � T is a residually algebraic extension, then so is RŒn� � T Œn� for any positive
integer n (cf. [7, Lemme 1.4]). Hence R � T is universally algebraic modulo I .

Recall from [10, Section 1-5] that if p is a prime ideal of a ring A, and Q is a
prime ideal of AŒX� with Q\AD p, but with Q ¤ pŒX�, then we call Q an upper
to p in AŒX� (or more simply, an upper to p, or just an upper).

The main result of this paper is the following theorem which identifies n-algebraic
extensions modulo I for a diagram .�\/. We assume that all rings are
finite-dimensional.

Theorem 1. Let n� 1 be an integer. For a diagram .�\/, consider the following
statements:

(1) R � T is 1-algebraic modulo I .
(2) t r:degŒT=M W R=.M \R/�D 0 for each maximal ideal M of T containing

I .
(3) R � T is a residually algebraic extension.
(4) R � T is universally algebraic modulo I .
(5) R � T is n-algebraic modulo I .
(6) R � T is 0-algebraic modulo I .

Then:
(a) In general, .1/, .2/, .3/, .4/, .5/) .6/.
(b) If, in addition, I 2Max.T /, then the above statements .1/� .6/ are equi-

valent.

To prove the implications (5))(1) and (5))(6) in Theorem 1, we need the fol-
lowing lemma.

Lemma 1. Let n � 1 be an integer. For a diagram .�/, if R � T is n-algebraic
modulo I , then R � T is .n�1/-algebraic modulo I .

Proof. Let Q0 �Q be two prime ideals of T Œn� 1� such that I Œn� 1� ªQ0 and
I Œn�1��Q. Set P 0 DQ0\RŒn�1�, P DQ\RŒn�1� and suppose that P 0 � P
are consecutive. Our task is to show that RŒn� 1�=P � T Œn� 1�=Q is an algebraic
extension. Let Q0 D Q0CXnT Œn� 1�ŒXn� and Q D QCXnT Œn� 1�ŒXn�. It is
obvious that Q0 respectively Q are uppers to Q0 respectively Q. Set P 0 D Q0 \

RŒn� and P D Q\RŒn�. One can check easily that P 0 D P 0CXnRŒn� and P D

P CXnRŒn�. As XnRŒn� � P 0 � P , then P 0 � P are consecutive. On the other
hand, since R � T is n-algebraic modulo I , then t r:degŒT Œn�=Q W RŒn�=P � D 0.
As T Œn�=QŠ T Œn�1�=Q and RŒn�=P Š RŒn�1�=P , it follows that t r:degŒT Œn�
1�=Q WRŒn�1�=P �D 0, as desired. �

Before proceeding to the proof of Theorem 1 it is convenient to recall the following
Cahen’s lemma [4, Proposition 4]. We shall make use of this result in the proof of
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Theorem 1. Note that this lemma holds even for polynomial rings since if R WD
.T;I;D/, then RŒn� WD .T Œn�;I Œn�;DŒn�/.

Lemma 2. For a diagram .�/, if P0 � : : : � Pn is a chain of primes in R such
that Pn is minimal among primes of R containing I and Pn�1, then this chain lifts
in T .

We now prove Theorem 1.

Proof of Theorem 1. (a) (1))(2) Let ˝ be the finite subset of Max.T / such that
I D

T
M2˝M . We discuss the following two cases.

Case 1. j ˝ j� 2. Since M C
T
M 02˝nfM gM

0 D T , then there exist
u 2

T
M 02˝nfM gM

0 and v 2M such that uC v D 1. Let P 01 D ..X �u/T ŒX�/\
RŒX� and P1 D .MŒX�C .X � u/T ŒX�/\RŒX�. The prime ideals P 01 � P1 are
not necessarily consecutive. Since T ŒX� is finite-dimensional, there exist two prime
ideals P 0 and P of T ŒX� such that P 0 is maximal among the primes such that
P 01 �P

0 �P1 and not containing I , and P is minimal such that P 01 �P
0 �P �P1.

Therefore P 0 does not contain I , P contains I and P 0 � P are consecutive. The
chain P 01 � P

0 � P lifts in T ŒX� as Q01 �Q
0 �Q. Notice that Q01 D .X �u/T ŒX�

because P 01 does not contain I and so it lifts uniquely in T ŒX�. Hence Q contains
X �u and I . The prime ideal Q cannot contain any prime containing u (if so, it
would contain X , thus X 2 P1 and hence u 2M , which is absurd). Consequently
Q is above M . Furthermore Q is an upper to M because X �u 2Q nMŒX�. The
prime ideal P is above p DM \R. Next, we demonstrate that P is an upper to p.
Consider the polynomial f D .X �u/.X �v/D X2�XCuv. Since uv 2 I , then
clearly f belongs to P 01 D ..X �u/T ŒX�/\RŒX�. Thus f 2 P . As f 62 pŒX�, we
deduce that P is an upper to p. As R � T is 1-algebraic modulo I , it follows that
T ŒX�=Q is algebraic over RŒX�=P . Since Q and P are uppers respectively to M
and p, we deduce that T=M is algebraic over R=p.
Case 2. j˝ jD 1. In this case I DM , whereM is a maximal ideal of T . The proof in
this case proceeds along the same lines as in the proof of Case 1 with some modific-
ations. Set P 01 D ..X �1/T ŒX�/\RŒX� and P1 D .MŒX�C .X �1/T ŒX�/\RŒX�.
These prime ideals are not necessarily consecutive, so let P 0 be maximal among the
primes such that P 01 � P

0 � P1 and not containing I , and P be minimal such that
P 01 �P

0 �P �P1. Therefore P 0 does not contain I , P contains I , P 0 �P are con-
secutive and the chain P 01 � P

0 � P lifts in T ŒX� as Q01 D .X �1/T ŒX��Q
0 �Q.

It is clear thatQ\T contains I , and as I is a maximal ideal of T , thenQ\T DM .
Moreover, since Q contains X � 1, then Q is an upper to M . The prime ideal P
is above p DM \R. We claim that P is an upper to p. Consider the polynomial
f D .X � 1/2 D X2� 2X C 1. It is obvious that f 2 P 01 D ..X � 1/T ŒX�/\RŒX�
and f 62 pŒX�. Hence f 2 P npŒX�. Therefore P is an upper to p as claimed. Since
R � T is 1-algebraic modulo I , it results that T ŒX�=Q is algebraic over RŒX�=P .
As Q and P are uppers respectively to M and p, it follows that T=M is algebraic
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over R=p.
(2))(3) Let q 2Spec.T /. Our purpose is to show thatR=.q\R/� T=q is an algeb-
raic extension. If I 6� q, then Tq ' Rq\R (see [4, Proposition 0]). So t r:degŒT=q W
R=.q\R/�D 0. If I � q, then q 2˝. Hence t r:degŒT=q WR=.q\R/�D 0.
(3))(4))(5) are trivial.
(5))(1) The conclusion is clear if n D 1. So assume that n � 2. The conclusion
follows readily from Lemma 1.
(5))(6) Follows readily from Lemma 1.
(b) We now assume that I 2Max.T /. We will prove that (6))(2). To this end, we
have only to show that t r:degŒT=I W R=I � D 0. Let q0 be a prime ideal of T such
that q0 � I are consecutive in T (such ideal exists since T is finite-dimensional). Let
p0 D q0\R, then p0 � I are also consecutive in R. Indeed, assume that there exists
a prime ideal p of R such that p0 � p � I . This chain lifts in T to q0 � q � I (notice
that the unique prime ideal of T lying over I is I itself since I 2Max.T /). The
desired contradiction since q0 � I are consecutive. As R � T is 0-algebraic modulo
I , then t r:degŒT=I WR=I �D 0, as asserted. �

Remark 1. If we leave out the assumption “I 2 Max.T /” in the statement of
Theorem 1 (b), the conclusion does not hold. More precisely, Fontana et al (see [8,
Exemple 1.8]) have already constructed a diagram .�\/, where I is an intersection of
two maximal ideals of T , such that R � T is 0-algebraic modulo I , whereas R � T
is not 1-algebraic modulo I .
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Noômen Jarboui
University of Sfax, Faculty of Sciences of Sfax, Department of Mathematics, P.O.Box: 1171, 3000

Sfax, Tunisia
E-mail address: noomenjarboui@yahoo.fr


