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proofs of some known theorems in resultant theory.
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1. INTRODUCTION

The multivariate resultant is a fundamental tool of computational algebraic geo-
metry which was introduced by F. S. Macaulay [4] in 1902 after earlier work due
to Euler, Sylvester and Cayley. The resultant of a polynomial system has many im-
portant properties for the geometry of the variety that the system defines. Indeed,
the resultant is an algebraic condition in terms of the coefficients of a given system of
polynomials which is satisfied if and only if the system has a common solution. More
precisely, suppose that K is an algebraically closed field. Let f =ag+---+ arx’
and g = by + -+ + by x™ be two univariate polynomials where a;’s and b;’s belong
to K and aj, by, # 0. The Sylvester matrix of f, g is defined as

- 4o b -
ay aop bl bO
azy djq b2 b1
a . a by .0b
S(f.g) = '2 | 0 '2 | 0
a woay bm by
aj as bm by
L aj bm |

The univariate resultant of f and g is the determinant of S(f,g) and is denoted
by Res(f,g). It is well known that Res(f,g) = 0 if and only if f and g have a
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nontrivial common root (see [, Chapter 3, Proposition 1.7]). A generalization of
this result can be used to decide whether a system of n + 1 homogeneous equa-
tions in n + 1 variables has a solution or not. Throughout this note we let R =
K[xo,...,xn]. To state the next theorem, we need to introduce some notation. Let
Fo,...,F, € R be n 4+ 1 homogeneous polynomials of degrees dy,...,d,. So, we
can write F; as Z|a|=d,~ ci.aXx® where some of the ¢; ,’s may be zero. For each
possible pair of indices i,«, we introduce a new variable u; . Let us associate a
polynomial P € Z[u; 4] to the universal homogeneous polynomials Z| al=d; Wi,aX®
fori =0,...,n. Then, when the polynomial P for a particular collection of poly-
nomials Z|a|= d; ci,ox® fori =0,...,n is considered, for each i and «, the variable
U; o 18 substituted by ¢; o into P.

Theorem 1 ([ 1, Chapter 3, Theorem 2.3]). Let us fix the degrees dy,...,d,. Then
there is a unique polynomial Res € Z[u; ] which has the following properties:

(1) If Fy,..., Fy, € R are homogeneous of degrees, respectively dy, ...,dy, then
the system Fo = --- = F,, = 0 have a nontrivial solution over K if and only
if Res(Fop,..., Fy) =0,

) Res(xgo,...,xff”) =1,

(3) Res is irreducible as a polynomial in K[u; q).

If we fix the degrees dy, ...,dy, then the polynomial Res = Resg,, .. 4, € Z[u; q]
is called the resultant polynomial corresponding to dy,...,d,. Further, the constant
Res(Fop,..., Fy) € K is called the resultant of Fy, ..., Fy,. For more details, we refer
the reader to the books [1,2,5]. The resultant has many algebraic properties that make
it a convenient tool in constructive algebra. In this note, we consider the symmetry
and multiplicativity property of resultant.

Theorem 2. Suppose that Fy, ..., F, € R are homogeneous of degrees, respect-
ively dy,...,dp.

(a) Ifi < j then
Res(Fo..... Fi,....Fj.....Fy) = (=1)%79Res(Fy,..., Fj.....Fi...., Fy).

(b) IfFj=F J{ F JV is a product of homogeneous polynomials of degrees d J/ and
d ]’.’ then

Res(Fy,..., Fy) = Res(Fo,...,Fj/,...,Fn)Res(Fo,...,Fj”,...,Fn).

In 1991, Jouanolou [3, Section 5], proved this theorem, however, in Section 2 we
give a new and elementary proof for it. Further, in Section 3, we use some effective
elementary algebraic geometry results to prove the necessary and sufficient condi-
tions for the satisfiability of the “three ternary quadrics” system. For the classical
proof of this result, we refer the reader to ([6, Art. 90] and [, page 88]).
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2. THE PROOF OF THEOREM 2

In order to prove this theorem, we need some properties of ideals and varieties.
Let R = K|[xy,...,X] be a polynomial ring over an algebraically closed field K and
I C R ahomogeneous ideal. Further, let f1,..., f; be polynomials (not necessarily
homogeneous) in R. Then, the variety defined by f1,..., fi is the set

V(fi..... fi) ={(ao,....an) € K" | fi(ao,....an) =0 forall i}.

A subset V C K"t is called a variety if there exist f1,..., fx € R so that V =
V(fi,..., fr). Further, the ideal of a variety V is defined to be
I(V)={f €eR]| f(ao,...,ay) =0forall (ag,...,a,) € V}.

Theorem 3 (Hilbert’s Nullstellensatz). Suppose that I = (f1,..., f) is the ideal
generated by the f;’s. Then, I(V(f1..... fx)) = V1.

For more details on this topic we refer the reader to [1,2].

Theorem 4 ([ |, Theorem 3.1, page 95]). Let us fix the degrees dy, ..., dy, then the

We continue with some notation. Let F' € R be a homogeneous polynomial. Then,
we denote the polynomial F(xo,...,xn—1,0) and F(xo0,...,xn—1,1) by
F(xg,...,xp—1) and f(xo,...,Xn—1), respectively.

Theorem 5 ([ |, Theorem 3.4, page 96]). IfRes(Fy. ..., F,_1) # 0, then we have
Res(Fy. ..., Fy) =Res(Fy, ..., Fy_1)%n. det(mp, ) where my, is the linear multiplic-
ation map by f, on K|[xo,...,.Xn—11/{fo..-., fu—1)-

Proof. of Theorem 2: (a) Let us denote by R; ; and R;; the polynomials
Res(Fy,..., Fyp) and Res(Fo,..., Fj,..., F;,..., Fy), respectively. By Theorem 1, if
R; ; vanishes, then

F0=...=Fj=...=F'l-:...= n=0

has a nontrivial solution. On the other hand, every nontrivial solution of this system
is a nontrivial solution of Fp =--- = F,, = 0. Hence R; ; vanishes on the set V(R; ;).
This shows that

Rij e I(V(R;;i)) =/ (Rj,i).
However, R; ; is irreducible, which implies that R; ; € (R, ;). By Theorem 4, R; ;
and R;; have the same degree. This follows that there exists a constant ¢ so that

R j = cR; ;. We shall prove that ¢ = (—=1)d0dn Since ¢ is constant, it’s enough to
show that

Res(xgo,...,x,‘f”) = (—l)do"'d”Res(ng,...,x;.lj,...,x?ﬂ...,x,‘f").

In doing so, we will use induction on the number of polynomials. For n = 2, the claim
is implied by the main properties of determinants. Now assume that the claim holds
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for n polynomials of degrees do,...,d,—1. By applying Theorem 5 on xgo, ... ,x,‘f”
d;j d; . .
and xgo, .. .,xj" N A .,x,‘f”, it follows respectively that
do dn
Res(xn",...,x
det(m _a,) = 500 7 "1)
Xn Res(x",....x, T 1)dn
d; .
Res(xgo,...,xj] ,...,x?’,...,x,‘f”)
det(mxdn) = do d: d: d 1 .
n Res(x,, ,...,xjj,...,xil,...,xnfT )dn
Thus, we can write
d d do dj d; d
Res(xy,...,x5") _ Res(x, seens X e X X ")
do dn—1N\d, do dj d; dn—1
Res(xy”, ..., x,"11)%  Res(xg peen XX X1 )dn

and therefore from the induction hypothesis we can conclude that

Res(xgo,...,x,‘f”)

d dy— d dj d; d,

_ Res(xoo,...,xnﬁl 1ydn ~Res(x00,...,xjj RS SR |
- d, d; d; dy—

Res(xoo,...,xjj U L Lydn

d d; d; dy— d dj d; d
(D90 dnRes(x 0 x ;X T D Res (600 X ™)
- d, d; d; dy—

Res(xoo,...,xjj RS SIS, i Vydn

_ do-d do dj d; dyn
= (=1)%9nRes(x, e XX X )

which proves the assertion. To prove (b), let us denote by R, R’, R” the polynomials
Res(Fo..... Fj..... Fa).Res(Fo..... Fl..... Fa).Res(Fo..... F/..... Fy). We shall
show that R = R’R”. Note that R may be considered as a polynomial in the coef-
ficients of FO,...,I*"].’,FJ-”,...,F,I. By Theorem 1, if either R” or R” vanishes, then
either the system Foy = --- = Fj/ =...= F, =0orthe system Fy = --- = FJV ==
F,, = 0 has a nontrivial solution. Every nontrivial solution of these systems is a non-
trivial solution of the system Fy = --- = F, = 0. Note that we consider R, R’ and R”
as the polynomials in the coefficients of polynomials Fy,..., F j’ JF j” ,....,F,,. Then

due to the irreducibility of R and R”, we have
ReI(V(R)) = V(R)=(R), ReIl(V(R")=(R")=(R").

This proves that R’ | R and R” | R. It should be noted that R and R have degrees
Oand do---dj_1dj+1---dy in the coefficients of polynomial Fj” , respectively. Also,
R’ and R have degree do---dj—1dj+1---dy, in the coefficients of polynomial F jf .
Thus, there exists a polynomial g such that R = gR’ where g has degree 0 and
do---dj_1dj41--dy in the coefficients of ij and FJf’, respectively. From R € (R”)
it implies that R” | gR’. On the other hand, R” is irreducible, which implies that R”
divides either g or R’. Since R’ and R” have degrees 0 and do---dj—1dj+1---dy in
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the coefficients of Fj” , it follows that R” | g. Since R” and g have the same degree
in the coefficients of polynomial F j” there exists a polynomial ¢ of degree O in the
coefficients of F j” such that g = ¢R”. Thus, we conclude that R = ¢R’R”. Note that
R and R’R” have the same total degree. Therefore ¢ is constant. From the equality

d ay

Fo :xgo,...,Fj' :xj",l*"j":xj’ oo Fy :x,f”,
we see that R = R’ = R” =1 and thus ¢ = 1, which implies that R = R’R” and this
ends the proof. O

3. THREE TERNARY QUADRICS SYSTEM

In this section we consider the classical system of three ternary quadrics. This is
the following system

Fy= 001x2 + cozy2 + 60322 4+ coaxy + cos5xz + co6yz=0
Fi=ciix?> + c12y? + c1322 + cuaxy + cisxz + c16yz2=0
Fy=c1x?> + c22y? 4+ 2322 4+ coaxy + ca5x2 4+ ca6yz =0

where the ¢;;’s are parameters. By Theorem 1, Res(Fp, F1, F>) vanishes exactly
when this system has a nontrivial solution in x,y and z. However, Res(Fy, f1, F2)
is a large polynomial in 18 variables with 21894 terms (see [1, page 88]). The aim
of this section is to provide a new and simple proof for a compact representation of
Res(Fy, F1, F»). For the original proof, we refer to [6, Art. 90]. Let us denote by
J the Jacobian determinant of Fy, F, I, w.r.t. the variables x, y and z. Then, the
partial derivatives of J are quadratic and hence we can write

§_i = bo1x* + bo2y* + bosz® + boaxy + bosxz + bosyz
% = bux?* + bi2y* + bisz® + buxy + bisxz + bieyz
?J_g = bux® + bany* + bz’ 4+ buxy + basxz + baeyz.

Proposition 1.

o1 €Co2 €03 Co4 Co5 Co6
C11 C12 €13 Ci14 C15 Cil6
-1 c c c c c c
Res(Fo, F1, Fy) = det 21 C22 (€23 (24 C25 C26
512 boi1 bo2 bos bos bos bos
bi1 b2 b1z bia bis bis

bat bax b3z bas brs bos

Proof. We refer to the right hand side matrix as A. If we regard the monomials

xz,yz,zz,xy,xz,yz as unknowns, then Fy, Fy, F>, g—i, ‘3—;, g—é are linear and

aJ aJ aJ
Resi1,1,1,1,1(Fo. F1. Fp, -—, 7—. 7—) = det(4).
ox dy 0z
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Note that each b;; is a cubic polynomial in the ¢;;’s. Hence the polynomial
Res(Fo,Fl,Fz,g—i,g—;,g—g) has total degree 12 in cg1,...,c26. By Theorem 1, the
resultant vanishes iff
aJ dJ dJ
0 ! 27 ox dy 0z
has a nontrivial solution (xz, yz,zz,xy,xz, yz). Also, it can be easily verified that
every nontrivial solution of this system is a nontrivial solution of Fy = F; = F> = 0.
Hence (x, y,z) is a nontrivial solution of Fy = F; = F, = 0. Then
Resy 2,2(Fo, F1, F2) = 0. Thus Res, 2 2(Fo, F1, F2) vanishes on the set
oJ oJ dJ
V(Res(Fo.F1.F2, —,—,
dx dy 0z

This means that Ress > 2 (Fo, F1, F2) belongs to the ideal of this variety, i.e.

))-

aJ aJ aJ
Resz 2 2(Fo, F1, F2) € [ (Res(Fo, F1, F2, —, ——, 7))

dx dy 0z
On the other hand, if we substitute every b;; in the above matrix by the corresponding
cubic polynomial in the ¢;;’s, using the function irreduc of MAPLE, we can see

easily that det(A4) and therefore

aJ aJ aJ
Res(Fo, F1,F2, —,——. 7

ox 8y’3z)

is irreducible in the ¢;;’s which yields that

aJ aJ aJ
o @ g))-

By Theorem 4, Resz 2 2(Fo, F1, F2) has the total degree 12 in cg1,...,c26. Hence,
for a ¢ € K, we have

Resz 2.2 (Fo, F1, F2) € (Res(Fo, F1, F2,

aJ dJ dJ
Resz 2 2(Fo, F1,F2) =c-Res(Fo, F1,F, —, —, ).
= dox dy 0z
But, for the special case; if we set (Fo, F1, F») = (x2,y2,z?%), we can conclude that
1. 0 0 00 0]
010000
2 2 2 _ 001000 |_
Res(x*,y“,z%,8yz,8xz,8xy) = det 00000S8I|= 512.
000 O088DO0
| 00 0 8 0 0 |
Finally, by Theorem 1, we have Resz,zsz(xz,yz,zz) =landsoc = % O
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