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Abstract. A selection of ring theory papers by Jenő Szigeti is reviewed with an emphasis on
aspects related to matrix algebras.

The present overview concentrates on three areas of Szigeti’s work. ”Eulerian
polynomial identities” deals essentially with polynomials in several non-commuting
indeterminates corresponding to directed Eulerian graphs. ”Lie nilpotent determin-
ant theory” adapts to the non-commutative case the classical concepts of determinant,
adjoint and characteristic polynomial to yield analogues of well known linear algebra
results, especially over Lie nilpotent rings. ”Centralizers and zero-level centralizers”
is about some non-commutative extensions of theorems on centralizers and double
centralizers in matrix algebras, with additional considerations of two-sided annihil-
ators.

We aim at a condensed but self contained presentation of a selection of results.

1. EULERIAN POLYNOMIAL IDENTITIES

Let � be a directed graph with vertex set V.� / D f1;2; : : : ;kg and edge set
E.� / D fx1;x2; : : : ;xN g. For each 1 � r � N , xr is an edge from �.r/ to �.r/,
both in V.� /. A directed Eulerian path which starts at p and ends at q is viewed
as a permutation � of the edges (or rather their indices). The polynomial P� .X/ in
the set X D E.� / of non-commuting indeterminates, induced by � , is defined as
follows:

P� .X/D
X

�2˘.�;p;q/

sgn.�/x�.1/x�.2/ : : :x�.N/;

where ˘.�;p;q/ is the set of all directed Eulerian paths of � from p to q. The
main result of [16] states that if N � 2kn, then P� .X/D 0 is a polynomial identity
on the n�n matrix ring Mn.˝/, where ˝ is an arbitrary commutative ring with 1.
This is a broad generalization of the famous Amitsur-Levitzki theorem. Surprisingly,
the above graph based construction led to essentially new identities even for 3� 3

Dedicated to the occasion of Jenő Szigeti’s 60th birthday.
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matrices. The Capelli polynomials in [4] appear as Eulerian polynomials corres-
ponding to a particular class of graphs, where the authors proved that the inequalities
conditioning the corresponding matrix identities are sharp.

Assuming certain lower bounds on out degrees the sign free (permanental) version

Q� .X/D
X

�2˘.�;p;q/

x�.1/x�.2/ : : :x�.N/

of P� .X/ also yields the identityQ� .X/D 0 on Mn.˝/, where˝ is a commutative
ring of characteristic d . The lower bounds assumed depend on both d and n (see
[7]). A variation on these assumptions on the graph � which ensure the validity of
the identity Q� .X/D 0 on Mn.˝/ can be found in [2].

It is worth to note that the proof of the matrix identity P� .X/ D 0 is based on
the use of Swan’s theorem on the signs of directed Eulerian paths, while the proof
of Q� .X/ D 0 is based on a formula (due to Aardenne-Ehrenfest and de Bruijn)
counting the number of directed Eulerian paths. A particularly concise form of the
mentioned theorem of Swan is formulated in [3] using a special adjacency matrix
over the Grassmann algebra.

The form of the polynomial P� .X/ is enriched in [8] by an involution operator
� applied to indeterminates traversed in opposite direction in an undirected Eulerian
path, providing identities involving matrix transposition also.

2. LIE NILPOTENT DETERMINANT THEORY

The following are the outlines of a new determinant theory developed in the series
of papers [5, 6, 9–12, 14, 15, 18, 19].

For an n� n matrix A D Œai;j � over a not necessarily commutative ring (or K-
algebra) R with 1, the element

sdet.A/D
X

˛;ˇ2Sn

sgn.˛/sgn.ˇ/a˛.1/;ˇ.1/ : : :a˛.t/;ˇ.t/ : : :a˛.n/;ˇ.n/

of R is called the symmetric determinant of A. The .r; s/ entry of the symmetric ad-
joint A�D Œa�i;j � of A is the signed symmetric determinant a�r;s D .�1/

rCssdet.As;r/
of the .n�1/� .n�1/ minor As;r of A arising from the deletion of the s-th row and
the r-th column of A. If R is commutative, then sdet.A/ D nŠdet.A/ and A� D
.n�1/Šadj.A/, where det.A/ and adj.A/ denote the ordinary determinant and adjoint
of A.

The right adjoint sequence .Pk/k�1 of A is defined by the following recursion:
P1 D A

� and PkC1 D .AP1 � � �Pk/� for k � 1. The k-th right determinant of A is
the trace

rdet.k/.A/D tr.AP1 � � �Pk/
and the k-th right adjoint of A is the product

radj.k/.A/D nP1 � � �Pk :
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An important observation is that

rdet.1/.A/D tr.AA�/D sdet.A/D tr.A�A/:

For 2� 2 and 3� 3 matrices we have the following symmetric analogues of the
Newton trace formulae : if A 2M2.R/, then

sdet.A/D tr2.A/� tr.A2/

and if A 2M3.R/, then

sdet.A/D tr3.A/� Œtr.A/ � tr.A2/C tr.A � tr.A/ �A/C tr.A2/ � tr.A/�

C Œtr.A3/C tr
�
.A>/3

�
�;

where A> denotes the transpose of A. The term preceded by the negative sign can
also be expressed more symmetrically, with the notation tr.A/ D a, as the trace of
aAACAaACAAa.

The k-th right characteristic polynomial of A is the k-th right determinant of the
n�n matrix xIn�A in Mn.RŒx�/:

pA;k.x/D rdet.k/.xIn�A/

and pA;k.x/ is of the form

pA;k.x/D �
.k/
0 C�

.k/
1 xC�� �C�

.k/

nk�1
xn

k�1
C�

.k/

nk
xn

k

;

where �.k/0 ;�
.k/
1 ; : : : ;�

.k/

nk�1
;�
.k/

nk
2 R and �.k/

nk
D nf.n�1/Šg1CnCn

2C���Cnk�1

. Un-
der additional assumptions onA it is proved in a recent work [14] that the coefficients
of pA;k.x/ are in the fixed ring of a certain group of automorphisms of R.

If R satisfies the commutator identity

ŒŒŒ: : : ŒŒx1;x2�;x3�; : : :�;xk�;xkC1�D 0

(i.e. if R is Lie nilpotent of index k), then the product A � radj.k/.A/ is a scalar matrix

A � radj.k/.A/D nAP1 � � �Pk D rdet.k/.A/ �In

and the Cayley-Hamilton identity with right scalar coefficients

.A/pA;k D In�
.k/
0 CA�

.k/
1 C�� �CA

nk�1�
.k/

nk�1
CAn

k

�
.k/

nk
D 0

holds for A. We also have .A/uD 0, where u.x/D pA;k.x/h.x/ and h.x/ 2RŒx� is
arbitrary. Clearly, these results can be viewed as the index k Lie nilpotent version of
classical determinant theory.

At this stage the application of the new theory culminates in the following theorem
(see [14]). Let R be a Lie nilpotent algebra (over Q) of index k � 1. If ı W R �! R

is an automorphism with ınD idR, then the skew polynomial algebra RŒw;ı� is right
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integral over Fix.ı/Œwn� of degree nk . In other words, for any f .w/ 2 RŒw;ı� we
have

g0.w
n/Cf .w/g1.w

n/C�� �Cf n
k�1.w/gnk�1.w

n/Cf n
k

.w/D 0

for some gt .wn/ 2 Fix.ı/Œwn�, 0� t � nk �1.
In case of an arbitrary R and A 2Mn.R/, we have

n.xIn�A/.xIn�A/
�
D pA;1.x/InCC0CC1xC�� �CCnx

n;

where the matrices Ci 2Mn.R/ are uniquely determined by A, tr.Ci /D 0 and each
entry of Ci is in the additive subgroup ŒR;R� generated by the commutators, i.e.
Ci 2Mn.ŒR;R�/ for all 0� i � n. Now the identity

.�
.1/
0 InCC0/CA.�

.1/
1 InCC1/C�� �CA

n�1.�
.1/
n�1InCCn�1/CA

n.nŠInCCn/D 0

with right matrix coefficients holds for A. Since commutativity of R would imply
C0 D C1 D �� � D Cn�1 D Cn D 0, this is a direct right sided generalization of the
classical Cayley-Hamilton theorem.

All the results above have a natural left sided version.
Matrix algebras over the infinitely generated Grassmann algebra, which is Lie nil-

potent of index 2, are particularly in the purview of this non-commutative determinant
theory. Polynomial identities satisfied by these matrix algebras play a central role in
Kemer’s classification of T-prime T-ideals.

3. CENTRALIZERS AND ZERO LEVEL CENTRALIZERS

For a linear transformation of a finite dimensional vector space over an algebraic-
ally closed field the existence of the Jordan normal base is well known in elementary
linear algebra. An astonishing fact is that a far reaching generalization of this fun-
damental result can be formulated for nilpotent complete join homomorphisms of
lattices (see [13]). The description of the centralizers and zero level centralizers (two
sided annihilators) in Szigeti’s papers ([1, 17]) depends on the use of the following
remarkable consequence of this lattice theoretical Jordan normal base theorem.

A doubly indexed subset X D fx
;i j 
 2 �;1 � i � k
g of a (unitary) left R-
module RM is called a nilpotent Jordan normal base with respect to ' 2 EndR.M/

if each R-submodule Rx
;i �M is simple,

˚

2�;1�i�k


Rx
;i DM

is a direct sum, '.x
;i /D x
;iC1; for all 
 2 � , 1� i � k
 �1, '.x
;k
 /D 0 and the
set fk
 j 
 2 � g of integers is bounded (� is called the set of Jordan blocks and the
size of the block 
 2 � is the integer k
 ). The existence of such Jordan normal base
implies that 'n D 0¤ 'n�1, where nDmaxfk
 j 
 2 � g.
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For ' 2 EndR.M/ the following are equivalent:
(i) RM is semisimple and ' is nilpotent.
(ii) RM has a nilpotent Jordan normal base with respect to '.

The rest of the section follows literally the exposition in [1] and [17].
If R is a local ring with Jacobson radical J and RM is a finitely generated semi-

simple left R-module, then the centralizer Cen.'/ of a nilpotent ' 2 EndR.M/ is
isomorphic to the opposite of the factor N .X/=I.X/ as an algebra over the center
Z.R/:

Cen.'/D f 2 EndR.M/ j  ı' D ' ı g Š .N .X/=I.X//op ;

where

N .X/D

2666664
RŒ´� RŒ´� RŒ´� � � � RŒ´�

J Œ´�C .´k1�k2/ RŒ´� RŒ´� � � � RŒ´�

J Œ´�C .´k1�k3/ J Œ´�C .´k2�k3/ RŒ´� � � � RŒ´�
:::

:::
:::

: : :
:::

J Œ´�C .´k1�km/ J Œ´�C .´k2�km/ J Œ´�C .´k3�km/ � � � RŒ´�

3777775
is a subalgebra of Mm.RŒ´�/ and

I.X/D

26664
J Œ´�C .´k1/ J Œ´�C .´k2/ � � � J Œ´�C .´km/

J Œ´�C .´k1/ J Œ´�C .´k2/ � � � J Œ´�C .´km/
:::

:::
: : :

:::

J Œ´�C .´k1/ J Œ´�C .´k2/ � � � J Œ´�C .´km/

37775
is an ideal of N .X/. The number of blocks m D dimR.ker.'//, � D f1;2; : : : ;mg
and the finite sequence of block sizes k1 � k2 � : : : � km � 1 in a nilpotent Jordan
normal base X D fx
;i j 
 2 �;1 � i � k
g with respect to ' are independent of the
choice of X and uniquely determined by '.

For another not necessarily nilpotent endomorphism � 2 EndR.M/, the contain-
ment Cen.'/ � Cen.�/ holds if and only if there is an R-generating set fyj 2M j
1� j � dg of RM and there are elements a1;a2; : : : ;an 2R such that

a1 .yj /Ca2'. .yj //C�� �Can'
n�1. .yj //D �. .yj //

for all 1� j � d and all  2 Cen.'/.
Since Cen.'/ � Cen.�/ is equivalent to � 2 Cen.Cen.'//, the last statement can

be viewed as a non-commutative generalization of Schur’s double centralizer theorem
in the nilpotent case.

Keeping the above conditions and notations, the zero-level centralizer Cen0.'/ of
the nilpotent ' is isomorphic to the opposite of the factor N0.X/=I.X/ as a Z.R/-
algebra:

Cen0.'/D f 2 EndR.M/ j  ı' D ' ı D 0g Š .N0.X/=I.X//
op ;
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where

N0.X/D

26664
J Œ´�C .´k1�1/ J Œ´�C .´k2�1/ � � � J Œ´�C .´km�1/

J Œ´�C .´k1�1/ J Œ´�C .´k2�1/ � � � J Œ´�C .´km�1/
:::

:::
: : :

:::

J Œ´�C .´k1�1/ J Œ´�C .´k2�1/ � � � J Œ´�C .´km�1/

37775
is a subalgebra of Mm.RŒ´�/, still containing I.X/ as an ideal.

Now let ' 2 EndR.M/ be an arbitrary R-endomorphism of a finitely generated
semisimple leftR-module RM . Then there existR-submodulesW1,W2 and V ofM
such thatW DW1˚W2 andM D V ˚W are direct sums, ker.'/�W , '.W /DW2,
'.V /D V , dimR.W1/D dimR.ker.'//, .' �W /2 EndR.W / is nilpotent and for the
zero-level centralizer of ' we have Cen0.'/Š T , where

T D f� 2 EndR.W / j �.W1/� ker.'/ and �.W2/D f0gg D Cen0.' �W /:
The double zero-centralizer theorem states that for another endomorphism
� 2 EndR.M/ the following conditions are equivalent:
(i) � 2 Cen0.Cen0.'//,
(ii) Cen0.'/� Cen0.�/,
(iii) ker.'/� ker.�/ and im.�/� im.'/.
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