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Abstract. In this paper, we investigate a class of 2nth-order regular differential operator with
eigenparameter-dependent boundary conditions and transmission conditions at an interior dis-
continuous point. By constructing a new linear operator A associated with the problem, we
prove that the operator A is self-adjoint in a suitable Hilbert space H, and the eigenvalues of the
problem coincide with those of A. In terms of basic solutions of differential equation, we show
that the eigenvalues of this problem coincide with the zeros of the entire function det @(1,1), and
obtain that the operator A has only point spectrum.
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1. INTRODUCTION

The Sturm-Liouville theory is one of the most actual and extensively developing
fields of theoretical and applied mathematics. In recent years, highly important re-
sults in this field have been obtained for the case when the eigenparameter appears
not only in the differential equation but also in the boundary conditions. The litera-
ture on such results is voluminous and we refer to [1,2,4,5,7,8, 11, 13, 14]. While
the general theory and methods of such second-order boundary value problems are
highly developed, very little is known about the general character of the higher order
problems.

While dealing with interior discontinuousness, some boundary value problems
with transmission conditions arise in heat and mass transfer, vibrating string prob-
lems, diffraction problems and various physical transfer problems [3, 6, 9]. Also,
some problems with transmission conditions which arise in mechanics [12]. In this
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paper we shall investigate a class of 2nth-order boundary value problems with ei-
genparameter boundary conditions and transmission conditions at an interior discon-
tinuous point. The goal of this study is to extend some results of the standard S-L
problems to the higher order discontinuous case.

We consider a 2nth-order differential operator with eigenparameter boundary con-
ditions and transmission conditions, and define a new linear operator A associated
with the problem in a suitable Hilbert space H, and prove the operator A is self-
adjoint, the eigenvalues of the problem coincide with those of A. We construct basic
solutions, and show that the eigenvalues of this problem coincide with the zeros of
the entire function det®@(1, 1), and get that the operator A has only point spectrum.

This paper is organized as follows. In Section 1, we introduce the problem cons-
idered, a formulae of the operator A in the suitable Hilbert space H is constructed.
In Section 2, we prove the operator A is self-adjoint. Basic solutions are achieved in
Section 3, and show that the eigenvalues of this problem coincide with the zeros of
the entire function det®(1,1). In Section 4, we prove that the operator A has only
point spectrum.

In this paper, we investigate a discontinuous boundary value problem which con-
sists of the differential equation

Tu = —(p(x)u™)® 4 g(x)u = Au,x € J, (LD

where J =[—1,0)U(0,1], p(x) = p% forx € [-1,0), p(x) = p% for x € (0, 1], p1, p2
are nonzero real numbers; g(x) € L1(J, R), A € C is the so-called eigenparameter;
with boundary conditions

liw:= a1 +azn—u® (=) =0i = 1,20, (12)
the eigenparameter-dependent boundary conditions
Ingite := ADu =D (1) + bh,, y_u® 7D (1))
+biulV () +ban—u® (1) = 0,0 = 1,2, ,n, (1.3)

and transmission conditions at the interior discontinuous point

2n
bontiv = w0 O0+4) = Y JciuD0-) =00 =1.2.-.2n, (14)

j=1
where ai,bi,bl{ (i =1,2,---,2n) are real numbers, C = (c;;) is 2n x 2n real mat-
rix, we assume that
dni 20G =1,2,---,n), detC=p"p>0, CTOC=p0, (1.5)
/ /
o =| D Danrroi Lo i—12. (1.6)
bi bant1-i
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where Q is 2n x 2n real matrix as follows

Let
Cu(x) = (), (x),-- u® D (x)T. (1.7)
In order to investigate the problem (1.1)-(1.4), we define a new inner product in
L2(J) as

1 0 - 1 1 -
(el = [ Awzmdx+ - [ pwg@dn s ge L20). (8)
P1 /-1 PrpJo

where f1(x) = f(x)|[=1,0). f2(x) = f(x)|(0,1]- It is easy to verify that
Hy = (L?(J),{--)1) is a Hilbert space.

2. THE SELF-ADJOINTNESS OF OPERATOR A4

In this section, we introduce the special inner product in the Hilbert space H =
Hy; @ C", where H; = (L?(J),{-,-)1), C denotes the set of complex numbers. A
symmetric linear operator A is defined on this Hilbert space such that problem (1.1)-
(1.4) can be considered as the eigenvalue problem of this operator. Here, we prove
that the operator A is self-adjoint, not only symmetric.

We define an inner product in H by

(F.G) = (f.eh +%Z(—1)%hia,

Pt Q2.1
VfgeHyhi,kieC,i=1,2,---,n,
for
F=(fh1,ha,-- ,hy),G =(g.k1,ka,--- ,kp) € H.
In the Hilbert space H, we consider the operator A which is defined by
D(A) = {(fih1.has ) € HI /U7 € ACp0((=1,0),
A € AC1He((0.1)),i = 1,2, 2n.1f € Hy, 22

lif=0,j=12,--,n,Cr(0+)=C-Cr(0-),

hi = bl £V +bh, i FPO), i = 1,2, 1),
AF = (Lf,—(b1 f () +bop £ 7D (1)), = (b2 f (1) + ban—1 f @72 (1)),
ooy =(bp £V + b1 f (1)),
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F = (f,b} f(1) + Dy, £V (1), b, /(1) + by £ P72 (1),
e b fOTV b (1) € D(A).
For convenience, VF = (f,h1,hs,--- ,hy) € D(A), let
Mi(f)=bi fEVA) +bopg1—i f ()i = 1,2, ,m,

. . 23
MI(f)=blf VW) + b, £, = 1,2, 1, )

so by (1.1), (1.3) we have
AF = (If.=M(f),—Ma(f).-- . —Mu(f)) 04)

= ALAAM{(f), AM5(f ), ,AM,(f)) = AF.

Now we can rewrite the considered problem (1.1)-(1.4) in the operator form AF =
AF.

From (1.6), (2.3) and (2.4), by direct calculation we obtain the following Lemma.

Lemma 1. If the functions f(x) and g(x) are differential on the interval [0,1],

then
W(fg:1) = i(—l)"eil_Mi (/IM(Z) - i(—l)" GliMi/(f)Mi @)
where - -
W(f.g:x)

= f(x)g(zn_l)(x)—f’(x)g(z”_z)(X)+---+(—1)"_1f(”_1)(x)g(”)(x)
+ (—l)nf(n)(x)g(n—l)(x) et f(zn_Z)(X)g/(x) —f(zn_l)(X)g(x)

=Y )PP ) - P (0 TP () = CF () @ Cg (x).
i=1

Proof. By (1.6), (2.3) and (2.4), we have

z(-lngi (S IM/(2) —Z(—l)%M{(f)Mi ®)
i=1 ! i=1 !

=2 =1
i=1

1 - . i ny
o (i f W) 4 bogri f D )BTV W) + 55,4 (1)
14

— b D) + by L) Big V) + bonr1—g D (1))

=
i=1
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1 . (s . i
o (Bibh1; = bibon1-) (TP (M D) — 1D TP ()
4

n
=Y (=)D ) - e Mg V(1) = WL D.
i=1
0
Lemma 2. The eigenvalues of the problem (1.1)-(1.4) coincide with those of ope-

rator A, and its eigenfunctions are the first component of corresponding eigenfunc-
tions of the operator A.

Lemma 3. The domain D(A) of the operator A is dense in H.

Proof. Suppose that there is an element F = (f,hy,h2,---,hy) € H, which is
orthogonal to all U = (u, M{(u), Mj(u),---, M, (u)) € D(A) in Hilbert space H,
ie.

0 1
(F.0) == [ s+ — [ plommdrnt
P1J-1 pPrpJo 25)
1 - i 1 e .
;;(—1) g hiMi@).

Let 6‘0& be the set of all functions defined on [—1,0) U (0, 1] such that

p1(x), xe€[-1,0),

@2(x), x€(0,1],

for 1(x) € C5°[—1,0),¢2(x) € C5°(0,1]. As usual, from the well-known fact that
Cs°(a,b) is dense in the Hilbert space L?(a,b) [14, p96], it follows that the set
6‘3’5 is dense in the Hilbert space H;. Since 6}5 H0*" C D(A)(0eC)and U =
(u(x),0,---,0) € Cﬂ‘g’/o @ 0" is orthogonal to F, i.e.

o]

1 [° - 1 1 -
(F.0) =, [_ AT /0 fmamdx = (fu) =0. (2.6)

Therefore, (2.6) means that f(x) is orthogonal to the subspace 6:5’6 which is dense
everywhere in the Hilbert space H1, so f(x) is null element of Hy, putting f(x) =0
in (2.5),we have

1 - 1 .
=Y (=1 —h; M{ () =0,
e 0i

for all u € Hy, such that U € D(A). So for all Gy = (g(x), M{(g).0,---,0) € D(A),

(F.G1) = (f.g)1 + —

hiM!(g)=0,
o0 1M (2)
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since M{ (g) can be chosen arbitrarily, so &y = 0. Similarly iy = h3 =--- = hy, =
0. Hence F = (0,0,---,0) is the null element of the Hilbert space H. Thus, the
orthogonal complement of D(A) consists of only the null element, and therefore is
dense in the Hilbert space H . U

Theorem 1. The operator A is self-adjoint in H.

Proof. Let F and G be arbitrary elements of D(A), by partial integrations we
obtain

1
(AF.G) =(F.AG)+ W(f.g:0-)-W(fg:—D+ ;W(f,g; 1y

1 _ 1 o S _
— WE0+ Y =D g MM (@) 2.7

i=1
Y MM @),
i=1 !

Since f and g satisfy the boundary conditions (1.2), and a,+; #0( =1,2,--- ,n),
it follows that

W(f.g;—1)=0. (2.8)
From the transmission conditions (1.4) we get
W(£.2;0+) = C/ (0+)QCg(0+) = C[ (0-)CT QCCg(0-)
= pC/ (0-)QCg(0-) = pW(f,g:0-).

Further, putting (2.8) and (2.9) into (2.7), and applying Lemma 1, we get the re-
quired equality

2.9)

(AF,G) =(F,AG) (F,G € D(A)),

so A is symmetric.

It remains to show that if (AF, W) = (F,U) forall F = (f(x),M{(f).M;(f),
- M) (f)) € D(A) then W € D(A) and AW = U. Where W = (w(x),h1,h2,
co hy), U = (u(x), k1, ko, ky), ie.

M) w™ € AC1e((—1.0)).wi ™ € AC;He ((0.1)).i =1,2,-+-,2n,and
lw e Hl;

) hi = M} (w) = bjw V1) + b4, w=D(1),i =12, ,n;

3) liw=a;wV(=1) +azpp1—w? = (=1) = 0,i = 1,2, ,n;

(4) Cy(04) = C - Cy (0-);

5) u(x) =Ilw;

(©6) ki =—M;(w) = —(biw =D (1) +bop 1wV (1).i = 1.2 ..
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For an arbitrary F € (1/3\85 @® 0" C D(A), from (AF,W) = (F,U), we have
1[0 1! 1 [ 1 !
—2/ (lf)de—i—T/ (lf)deC:—z/ fﬁdx—i—T/ fudx,
PrJ-1 pPrpJo PrJ-1 pP3pJo

that is (/f,w); = (f,u)1. According to normal Sturm-Liouville theory, (1) and (5)
hold. By (5), the equation (AF, W) = (F,U),YF € D(A) becomes

1 0 o 1 1 _ 1 n - _
[ | @ 3 MO

[ | 1 o -
= p—%f_lf(lw)dwr@/0 f(lw)dx—i—;i;(—l) M (f)ki,
SO
1 & 1 -1 1 _
(o) = (flwh 2D (D e-Mi(Hhi 23 (1) oM (ki
i=1 ! i=1 ‘
However

(lf,w)r / (lf)wdx+—/ (I Hywdx

1
_ L ( P21 4 () fymdx + —— / (P21 4 g(x) fywmdx
Pl P3P Jo

_ 1 1 . . o
Zp—%/_lf(lw)dx+—p%p/0 Sw)ydx+W(f.w;0—)—W(f,w;—1)
F W)~ S W(T04)
p p

= {f.lw)1 +W(f,w;0-)—W(f,w;—1)+ %W(f,w; 1)—%W(f,ﬁ;0+).
Hence,
(lfiw)r = (filw)r + W(f,w,0-) = W(fw,—1)
—I—lW(f,E, 1)— lW(f,ﬁ,O%—),
p p

SO

—Z( D' Ml(f>h +- Z( D' M(f)k'
Piza (2.10)

=W(fw,0-)-W(f,w,—-1)+ ;W(f,w, 1)— ;W(f,w,O—l-).
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By Naimark Patching Lemma [10], there is an F' € D(A), such that
S = 00 = FD 0 =0 = 1.2, 2m,
) ==by,, fOM) =0,i = 1,2, 20 =2, FC"D(1) = b,

Forsuchan F, M/(f)=0,i =1,2,---,n,M{(f) =01, M;(f) =0,i =2,---,2n.
Then from (2.10) we have h; = M| (w). Similarly, we can prove h; = M/(w),i =
2,---,n. So the equalities (2) hold.

Similarly, we can prove (6).

Next choose F € D(A), such that

FEPO4) = £ 0-) = £970U) = 0,0 =1,2,-+-,2n, (1) = @z,
fODV) =00 =2, 20— 1, f@D (1) = —ay,
thus M; (f) = M/(f)=0,i =1,2,---,n. Then from (2.10) we have
W(f.w,—1) = a1w(—1) + azaw?"V(=1) =0,

that is [yw = 0, so /;w = 0. Similarly, we can prove [;w = 0,i = 2,---,n. So the
equalities (3) hold.
Next choose F € D(A), such that

FEVy = D) =0,i =1,2,--- .20, fODO4) = 0,i = 1,2,
2n—1, fE"DO4) = o, fUTVO0-) = (D crana1-iii = 1.2, 20,
thus M; (f) = M/(f)=0,i =1,2,---,n. Then from (2.10) we have
W(fw:0+) = pW(f w;0-).
2n .
However, C = (c;;) is 2n x 2n real matrix, then w(0+) = ) c1iw 1 (0-). Using

i=1
the same method, we can prove

2n
w® D 0+) =) e wiD(0-),k =2.3,+ 2,
i=1
that is Cy, (04+) = C - Cy (0—). So the equality (4) holds.
From the above synthesis proof, we can know A is a self-adjoint operator. 0

From the properties of self-adjoint operators, we have
Corollary 1. All the eigenvalues of the considered problem (1.1)-(1.4) are real.

Corollary 2. Let Ay and Ay be two different eigenvalues of the problem (1.1)-(1.4),
then the corresponding eigenfunctions f(x) and g(x) are orthogonal in the sense of

1/Of—d + : /1f_d +12n:( 1)"1
pi /1 p3p Jo P 6

i=1
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B! D)+ Dy L) BIETV ) + by 82D (1) = 0.

Consequently, the eigenfunctions of the problem (1.1)-(1.4) corresponding to the
different eigenvalues are not orthogonal in the usual sense in the Hilbert space H.

3. CONSTRUCTION OF BASIC SOLUTIONS

In terms of existence and uniqueness theorem in ordinary differential equation the-
ory, we shall define two group basic solutions ¢ (x, 1), ¢p2(x,1),---,
dn(x,A) and y1(x,A), y2(x,A),---, xn(x,A) of the equation (1.1) on whole J =
[—1,0)U(0,1].

Let ¢11(x,A),¢12(x,A), -+ .10 (x,A) and y11(x,A), x12(x,4),-+, x1n(x,A) be
solutions of the equation (1.1) in the interval [—1,0) satisfying the following initial
conditions

(C¢11,C¢12,--- ’C¢1n’CX11’CX12"" »me)(_l’)‘)

apm 0 =+ 0 0 - 0 0
0 amg =+ 0O 0 - 0 0
e 3.1)
= 0 0 Ap+1 0 0 0
o 0 - —a 1 0 0
0 —ap - 0 0 10
\ a1 0 - 0 0 0 1

As same as above, we let ¢21(x,A), P22(x,A), -+, a2, (x,A) and y21(x, 1),
x22(x,A),--+, x2n(x,A) be solutions of the equation (1.1) satisfying the following
initial conditions

C451:Crs . Ciys Crat s Cxn oo+ Cp2,) (0, A)

(3.2)
:C'(C¢11’C¢12"" ’C¢lnvCX11’CX12"" ’CXIn)(O’)L)-

The Wronskian w(¢i1, -+, Pin, Xi1> - » Xin)(x,A)(@ = 1,2) are independent of the
variable x, and are entire functions of parameter A.
Let

w;i (A) = w(Pit, -, din, Xits Xin) (X, A) (@ = 1,2).
Since w; (A) are independent of the variable x, by (3.1), (3.2), we have
wi1(A) = w(d11.b12, P, X115 X12,+ 5 X1n) (X, A)
:det(c¢11vc¢12"”’C¢1n’CX11’CX12""’CXIn)(x’A)
:det(c¢11’c¢12""’C¢1n»CX11’CX12""’CX1n)(_1»/\)

=dapy1an42--+a2n 70,

(3.3)
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and
w2 (A) = w(g21, P22, . P2n. X21, 22,7, X2n) (X, 4)
=det(Cgy;.Cpna++Cs Cra1s Craas . Crpa ) (X, 1)
= det(C¢21 ) C¢22"" ’C¢2n’CX21 ) CX22"" ’CX2n)(0’A) 3.4
=det(C - (Cgy1.Cprav  Cp1s Cyi1: Cizn o+ Cy)(0.4))
= (detC)w1 (1) = p"w1(R) # 0.

So the functions ¢21(x, 1), ¢22(x,A), -+ .2, (x,A) and y21(x, 1), x22(x, 1),
-+, x2n(x,A) are linearly independent in the interval (0, 1].

Let
_ ¢11(x7)")7 X e [_1v0)7 _ ¢12(X7A')7 X € [_170)7
¢1(x’/\) B {(le(ka)? X e (0, 1]’ ’¢2(X’A) B §¢22(X,/\), X € (O’ 1]» ,
_ ¢1n(x’)‘)’ X € [_170)7
...... L Pn(x,A) = {qﬁzn(x,)t), Y e @1
and
(xA) = x11(x,A), xe€[-1,0), (. A) = x12(x,A), xe€[-1,0),
’ y21(x,1), xe(,1]; ° ' x22(x,4), xe€(0,1]; °

Xln(x»/\), X € [_1’0)5
x2n(x,4), x€(0,1].
MoreOVCr, ¢1(xak)’¢2(x9k)"" ’¢n(xak) anXm(x’k)9X2(x?A)’“' ’Xn(x’)’) SatiSfy

the boundary conditions (1.2) and transmission conditions (1.4). They are indepen-
dent of x, and are entire functions of parameter A.

...... ,xn(x,l)={

Lemma 4. The following determinant is equal to wi(A), or —wy (1), i.e.

hiyn hypyiz - lixm
Lyn bz - bym =wi(A), or =—w;(A)
Inxir Inyiz - Ilnxin

ifn=1,4,5,8,9,---, then the determinant is equal to wy(1);
ifn=2,3,6,7,---, then it is equal to —w1(1).
Where

I x1i :a1)(1i(—1,)t)+a2n)(g”_1)(—1,/\),i =1,2,--- .1,
Ly = az )y (=1, A) +azn—1 22 (=1,4),i = 1,2, 1,

Inx1i =anxg';_l)(—l,/\)+an+1x(1’lf)(—1,/\),i = 1.2, .1,
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Proof. By (3.1), we have

liyin hixiz - Ly
Ly bz - by | _
ln)(ll lnXlZ lnXln
a1)(11+a2n)(§21n a1X12+a2nX§22” D 01X1n+02n)(81n 1
02X11+02n 1X§1 =2 a2X12+02n 1)(522" 2 .. a2X1n +azn— 1)(%1’1 2)
1 1
an)(gl )+an+1X§1) anX12 )+an+1)(() anXY:l )+an+1X()
0 - 0 amm
0 cen azn_l 0
= . | =an+1an42---azn, O = —Ap41dn42-+-A2p,
an+1 - 0 0

ifn=1,4,5,8,9,---, thenitisequal to ay +1an+2 a2, ie. w1 (A);ifn =2,3,6,7,---,
then it is equal to —a, +1dn+2 - a2y, i.e. —w1 (). We complete the proof. Il
Lemma 5. Let
ui(x), xel[-1,0),
u(x) =
uz(x), xe€(0,1];

be any solution of the equation ly = Ay, then it can be represented as

El

u(x) = d1¢11 +"'+dn¢1n +dn+1X11 +"'+d2nX1n, X € [_1,0),
dont1$21 + -+ d3npon +dapr1x21 + -+ danyon, x€(0,1];

where di € C(i = 1,2,---,4n). If u(x) satisfies the transmission conditions (1.4),
then dy = dap+1,d2 = dap+y2,++ ,dan = dan.

Proof. Let u(x) is represented in the form

dipi1+--+dppin+dus1xi1+--+don)in, x € [-1,0),

u(x) =
§d2n+1¢21 + -+ dandon +danr1x21 + -+ danyon, x €(0,1];

Apply the transmission conditions (1.4) to this representation of u(x). Since

2n
u(i_l)(0+) = Zc,‘ju(j_l)(()—),i =1,2,---,2n
j=1
i.e.
Cy(0+) = C-Cy(0-),
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dont1921+ -+ d3ndon +dant1 )21+ +dan)xon
d2n+1¢£1 +"‘+d3n¢én +d3n+1)(/21 + "'+d4nX/2n

(0,2)
dont 105" 4o dan SV dag 1 xS o dan g SV
digi1+ -+ dndin +dnr1x11+ -+ danxin
_c digy, + - +dudy, +.C.i.n+1)(/11+"'+d2n)(/1n 0.2,
A1 4o b da D b i g2V o dp 2
we rewrite it in the following form
dan+1
(C¢21 ’C¢22»"' ’C¢2n’CX21 »CX22"" ’CX2n)(O?A’) d2n+2
dan
dq
=C(C411.C12:+:C41,1 Cx11: Cxinsoe €y, )0, 1) d2 ’
dan
taking into account the initial conditions (3.2) for ¢21(x,A), -, P2, (x,A) and
x21(x,A), -+, yan(x, 1), we have
dan+1
C(Cor-CorsCoun-Crap» Crizorss Cap) 0.2 | 2742
dan
dy
=C(Cp11:Cp1z 5 Cp1s Crar s Crazo e Gy, ) (0, 4) d2
dan
So
dan+1—dn
C-(Cpy1Corns s Coins Corrs Cyins o Cyryn ) (0, 1) dz”f?__dz =0. (3.5)
dan —dan
Since

det(c(c¢11 ,C¢12"" ’C¢1H’CX11 ’CXIZ’“. ’CXIH)(O’A)) = pnwl(k) 7é O’

the above equation (3.5) has only zero solution, d1 = dap+1,d2 = don+2,
oo, dap = dan. 0
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For convenience, we let

Ay +by - 0 0 oo Ab), 4 bap
R R I
0 o Ab4by A tbayr O
and
Ins1921 lnv1d22 - lnr1don
der(1,2) = | 20 dnzdez e dneadan
lond21  lngpoa - london
SO
det®(1,1) = det(B, -(C¢21 ,C¢22,--~ ,C¢2n)(1,k)),
where

Ln1i = Wb +b1)hai (1,A) + (Abhy, + ban) e D (1,2),i = 1,2, m,

Inyagai = (Aby + b2)d5;(1,A) + (Aby, +bzn—1)¢5n_2)(1,/\),i =1,2,---,n,

Lanai = Abj +ba)p5i "V (1LA) + (Abjypy +bag )5 (1LA) 6 = 1,2,00m.

Theorem 2. The eigenvalues of the problem (1.1)-(1.4) coincide with the zeros of
the entire function det®(1, ).

Proof. Let Ag be an eigenvalue and ug(x) be any corresponding eigenfunction.
Show that det®(1,19) = 0. If not, det®(1,1¢) # 0. From (3.3) and (3.4) we
know that w;(Ag) # 0 and wy(Ag) # 0. Consequently, each group of functions
$11(x,20), -, P1n(x, A0), x11(x,A0),-*+, x1n(x, o) and ¢21(x,Ag), -+,
P2n(x,40), x21(x,X0),*+, Xx2n(x,A9) would be linearly independent on [—1,0) and
(0, 1], respectively. Therefore eigenfunction u¢(x) might be represented in the form

(dipi1+-+dnbtn +dnt1 )11

volx) = + -+ d2n x1n)(x, A0), x € [-1,0);
(dan+1921 + -+ + dandon + dzn+1x11
+-+danx2n)(x,Ao), x € (0,1];
where at least one of the constants dy,d»,--,d4, is not zero. By substituting this
representation in the conditions (1.2)-(1.4), we obtain a system of linear, homoge-
neous equations for the variables of the constants dy,d>,---,dsn. The considered

equations are
lr(up(x)) =0, k=1,2,--- ,4n. (3.6)
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In fact

n
ling = Zdn+k(ai)(§lk_1)(_1) +a2n+1—i)(g€n_l)(—1)) =0,i=12,---,n,
k=1

n
Intitto =Y dopyic(hob) +bi)Sh V(1) + (Aobhyyy1—i +banp1-)Sy (1)
k=1

n
+ 2 dan((hobj +50) x5 (1) + (Robly 1 +ban1-0) 25 (1) = 0,
k=1
i=1.2,.n,

n n n
bansitto =—Y_ didSe V(O =Y dusicxy VO + Y daniidsy P (0)
k=1 k=1 k=1

n
—1 .
+ 3 danakxy D(0). = 1.2, 20,
k=1

By Lemma 4, we obtain that the determinant of this system is equal to
(=1)" w1 (Ao)w2 (Ro) det @(1, 20) # 0,
or is equal to
(—1)" Ty (ho)wa (o) det @ (1, Lo) # 0,

where

Lnt1)2i = b} +b1) gai (1,A) + Wby, +ban) xSV (1L4),0 = 1,2, 1,

In42x2i = (AbG +b2) x5 (1,A) + (Ab,_, +b2n—1))(gn_2)(1,)t),i =1,2,---,n,
Lany2i = Wbl + b)) x BV (LA + Ably b )P (LAY, i = 1,2, 1,

pI=D = U= (0), 307D = YUV 0) k = 1,2, ,n,i = 1,2, 2.

Therefore, the system (3.6) has the only trivial solution di = dp = --- = d4n = 0.
Thus, we get the contradiction.

On the contrary, if det@(1,A¢) = 0, the homogeneous equations for the variables
of the constants c1,¢2,++,Con,

€1

oLy 2 |=o0
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has nonzero solution (cj,c5, - ,cén)T. By Lemma 5, let

(cip11+-+cpdin+cp i x11++ch,xn)(x. A1), x €(=1,0),
(ciga1 4+ cpdan +cp g x21 +-+ o xan)(x,A), x €(0,1];
then y(x) is the nonzero solution of equation /(y) = Ay, which satisfy conditions

(1.3)-(1.4). so A is the eigenvalue of the problem (1.1)-(1.4). Which completes the
proof. O

y(x) =

’

Corollary 3. The eigenvalues of the problem (1.1)-(1.4) are real and form a finite
or infinite sequence without finite accumulation point.

4. COMPLETENESS OF EIGENFUNCTIONS

In this section, in terms of new Hilbert space H and new operator A, we investigate
the problem (1.1)-(1.4), and obtain the following conclusion.

Theorem 3. The operator A has only point spectrum, i.e. 0(A) = 0, (A).

Proof. Let y€o,(A). We only show y € p(A). Since A4 is self-adjoint, we only
consider a real y. We investigate the equation (4 —y)Y = F, where F =
(fih1,--- . hy) e H,y € R.

Consider the following problem

ly—yy= fix e[-1,00U(0,1],
liy=a;iy " D(=1) +azns1-iy " (=1)=0,i = 1,2,-- ,n,

. o . 4.1)
Layiy =y DO = X ¢y D(0-) =0,i =1,2,-+- ,.2n;
j=1
and equations
M;i(y)+yM(y) = —hi,i =1,2,--- ,n. 4.2)

Let u(x) be the solution of the equation /u — yu = 0, satisfying

ul=D(=1) = azpq1- u® (=) = —a;.i = 1,2, n,
. 2n .
uDO+) = Y eyul =D (O-)i = 1.2, 2.
=1

In fact

ui(x), xe[-1,0),

uz(x), x € (0,1

where u (x) is the unique solution of the initial-value problem
—p{u®? () +q(u(x) = yu(x).x € [~1.0),
ul=D(=1) = azpy1-,u®" (1) = —a;,i = 1,2,--- ,n;

u(x) =

El
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and u5(x) is the unique solution of the initial-value problem
—p3uCm (x) +g()u(x) = yu(x),x € (0,1],

. 2n .
ul=D04) = 3 ¢;juV=D(0-),i =1,2,---,2n;
j=1
Let
wi(x), xe[-1,0),
wa(x), xe€(0,1];
be a special solution of /w —yw = f satisfying

aiwl=D(=1) + azp41-wC=D(~1) =0,

w(x) =

. 2n .
w=DO+) = Y c;wlV=D(0-),i =1,2,---,2n;
j=1

By Lemma 5, Equation (4.1) has the general solution in the form

(digr1 + -+ dnd1n +dnr1x11

+--4d x,yY)+wq, x €[-1,0),

Y(x) = 20 X1n) (X, Y) + w1 [ ) ’ 4.3)
(digo1 4+ dntpon +dny1 )21
+tdonyan)(x,y) + wa, x € (0,1];

where d; e C(i = 1,2,---,2n).
Since y is not eigenvalue of the problem (1.1)-(1.4), at least one of the following
expressions is not zero

y (B0 (1) + by, u® D))+ bu D (1) + bapp—u @O (1), )
i=1,2,-,n. ’

The second, third, --- , nth components of the equation (4 —y)Y = F involves the
equation (4.2), i.e.

iy D)+ ban 11y P W) +y 0}y P (1)
+Don1-iy P W) = —hisi = 1,2, .
Substituting (4.3) into (4.5), we get

(4.5)

Bi ¢ () + bonr1—1¢S" (1) + y (LS (1) + by i3 (D))
+ b gV (D) + bang1-i 052 +y iS04 by 1 62D (1)) da

oot BTV W) 4 bong 1 2 (D) +y (Bl () by i 02 (1)))dy

—1 2n—i i—1 2n—i
+ b xSV W) 4 bon 1= xS + y BTV W) 4 by 2 (1))

+ it W) + ban1—i xS O+ yGLa TV ) b1 2T T (1))) g
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oot Bix D W) 4 bans 1 )2 W) 4y ) 15TV W) Dy i xS (1))) 2

= —h; —(Biwd V(1) + ban1—wE" (1) =y (Brwa (1) + by w7 (1)),
i=1,2,---,n.

We rewrite the above equations in following form, i.e.

dq

By (Coan (1.7), Copmy (1,15 Co (L)) | %2

don
—hy w2 (1)
= _hz — By wfz.(.l)
~hn w V(1)

The coefficient determinant of the equations about dy,d3, -+, d, is det@(1,y). Since
y is not an eigenvalue, det®(1,y) # 0, we know that dy,d>,---,ds, is uniquely
solvable. So the general solution of the boundary value problem (4.1) is uniquely
determined.

The above argument shows that (4 —yI)~! is defined on all of H. We obtain
that (A —yI)~! is bounded by Theorem 1 and by the closed Graph Theorem. Thus
y € p(A). Hence, 0(A) = 0,(A). O
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