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Abstract. In this paper, the existence of solutions of some minimization problems for noncyclic
mappings in G —metric spaces is studied. Our results can be considered as an extension of Abkar
and Gabeleh’s result [Global Optimal Solutions of Noncyclic Mappings in Metric Spaces, J.
Optim. Theory. Appl. 153 (2011), 298-305] to the case of G —metric spaces.
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1. INTRODUCTION

In 2011, Abkar et al. [2] studied the existence of solutions of some specific min-
imization problems for noncyclic mappings in metric spaces. In 2006, Mustafa et al.
[11] introduced the G —metric spaces as a generalization of the notion of metric spa-
ces. Fixed point results and other results in G—metric spaces have been proved by a
number of authors, see, e.g., [1,3-5,12,14,15]. In this paper we investigate some mi-
nimization problems for noncyclic mappings in G —metric spaces. This work extends
results of Abkar et al. [2] to the case of G —metric spaces.

2. PRELIMINARIES

Throughout this paper, N is the set of all natural numbers and R is the set of all
real numbers. Generalizations of the notion of a metric space have been proposed by
Gabler [8,9] and by Dhage [6, 7]. Mustafa et al. [11] introduced a more appropriate
notion of a generalized metric space as following.

Definition 1. Let X be a nonempty set, and G : X x X x X — R™ be a function
satisfying the following conditions:
(1) G(x,y,2) =0ifx =y =z,
(2) 0 < G(x,x,y) forall x,y € X with x # y,
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3) G(x,x,y) <G(x,y,z)forall x,y,z € X with y # z,

4) G(x,y,2) =G(x,2,y) =G(y,2,x) = -,

5) G(x,y,2) <Gx,w,w)+G(w,y,z) forall x,y,z,w € X,
The function G is called a generalized metric, or, a G—metric on X, and the pair
(X, G) is called a G—metric space.

Example 1. ([11, Example 6.3]) Let (X,d) be a metric space and define the func-
tions Gy and Gy, with

Gs(x,y,2) =d(x,y)+d(y,z) +d(x,z), Vx,y,z€X

Gm(x,y,z) =max{d(x,y),d(y,z),d(x,z)}, Vx,y,z€X
Then (X, Gy) and (X, Gy,) are G—metric space.

Now, we recall some of the basic concepts for G—metric spaces from ([11]).

Definition 2. Let (X, G) be a G—metric space, and {x,} be a sequence of points
of X, we say that {x,} is G—convergent to x and write x,—>x if lim, ;n—00 G(X,
Xn,Xm) = 0, that is, for any € > 0, there exists ng € N such that G(x, x5, X) < €,
forall n,m > ny.

Proposition 1. Let (X, G) be a G—metric space, then the following are equivalent.
(1) {x,} is G—convergent to x.
(2) limp—00 G(x,Xp,xy) = 0.
(3) limy 00 G(x,x,x,) =0.

Definition 3. Let (X, G) be a G—metric space, a {x,} is called G—Cauchy for
any € > 0, there exists ng € N such that G(xp, xm,x;) < €, for all n,m,l > ng that
is limy, 1, 100 G(Xn. Xm,X1) =0

Proposition 2. Let (X, G) be a G—metric space, then the following are equivalent.
(1) {xn} is G—Cauchy.
(2) Forany ¢ > 0, there exists ng € N such that G(x,, Xy, Xpm) <€, foralln,m >
no

Definition 4. Let (X1,G;) and (X3, G,) be G—metric spaces. A function f :
(X1,G1) = (X2,G3) is G—continuous at a point @ € X if for any € > 0, there exists
8 > 0 such that x,y € X1, Gi(a,x,y) < § implies Ga(f(a), f(x), f(¥)) <e. A
function f is G—continuous on X if and only if it is G—continuous at all a € X.

Proposition 3. Let (X1,G1) and (X2,G2) be G—metric spaces. A function f :
(X1,G1) = (X3, Gy) is G—continuous at a point x € X if and only if whenever {x, }
is G—convergent to x, { f (x,)} is G—convergent to f(x).

Definition 5. A G—metric space (X, G) is said to be G—complete if every G-
Cauchy sequence in (X, G) is G—convergent in (X, G).
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Definition 6. Let (X,G) be a G—metric space. A G—Ball with center x¢ and
radius r is
Bg(x0,7r) ={x € X : G(x¢,y,y) <r}.

Definition 7. Let (X,G) be a G—metric space and € > 0 be given, then a set
A C X is called e—net of (X, G) if given any x there is at last one point a € A such
that x € Bg(a,¢). If the A is finite then A is called a finite e—net of (X, G). Note
that if A is an e—net then X = J,c4 Bg(a.€).

Definition 8. A G —metric space (X, G) is called G—totally bounded if for every
€ > 0 there exists a finite e—net.

Definition 9. A G—metric space (X, G) is called G—compact space if it is
G —complete and G —totally bounded.

Proposition 4. Let (X, G) be a G—metric space, then the following are equivalent.
(1) (X,G) is a G—compact space.
(2) (X,G) is G—sequentially compact, that is, if the sequence {x,} C X is such
that sup{G (xn,Xm,x;) :n,m,l € N} < o0, then {x,} has a G—convergent
subsequence.

Theorem 1 ([12], Theorem 2.1). Let (X, G) be a G—metric spaceand T : X — X
be a mapping which satisfies the following condition, for all x,y,z € X,
G(T(x).T(y).T(z)) = kmax{G(x,y.2),G(x,T(x),T(x)).G(y.T(y).T(y)).
G(z,T(2).T(2).G(x.T(y).T(y)).
G(y.T(2).T(2)).G(z,T(x),T(x))},
2.1
where k € [0,1/2). Then T has a unique fixed point (say u) and T is G-continuous
atu.

Definition 10. Let A, B, C be subsets of a G—metric space (X,G). A mapping
T:AUBUC — AU BUC is called relatively G —nonexpansive if

G(T(x),T(¥).T(z)) <G(x,y.z), V(x,y,z)€ AxBxC.
Definition 11. Let (X, G) be a G—metric space and 4, B,C C X, then
dist(A,B,C) =inf{G(a,b,c):a€ A, be B, ceC}.
Example 2. Let R be equipped with the usual metric, and A = [—1,0] and B =
N, and C = N, where N, and N, are the set of odd natural numbers and even

natural numbers, respectively. Let G, (x, y,z) = max{|x — y|,|x — z|,|y — z|}, then
dist(A,B,C)=2.

Definition 12. Let (X,G) be a G—metric space and A,B,C C X, T: AUBU
C — AU B UC is said noncyclic mapping, if

T(A)cA, T(B)ycB, T(C)cC.
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We consider the following minimization problem: Find

min{G(a, T(a),T(@))}, ?leiE{G(b’ T().T))},

min{G(e. 7@, TN}y omin - {Gla.b.o)} 2.2)

We say that (x*, y*,z*) € A x B x C is a solution of above problem, if

and
G(x*,y*,z*)=dist(A,B,C).
Definition 13. Let (X, G) be a G—metric space and A, B,C C X, we set
Ao=4{ae€A:G(a,b,c)=dist(A,B,C), for some be B,ceC}
Bo=4{be B:G(a,b,c)=dist(A,B,C), for some ac A,ceC}

Co={ceC:G(a,b,c)=dist(A,B,C), forsome ac A,be B}

Definition 14. Let (X, G) be a G—metric space and A, B, C be nonempty subsets
of X, with Ag # @. We say that A, B, C have P —property iff

G(x1.y1.21) =dist(A,B,C)
G(x2,y2,22) =dist(A,B,C)
G(x3,y3,23) =dist(A,B,C)

then
G(x1,x2,x3) = G(y1,y2,¥3) = G(21,22,23).

where x1,x2,x3 € Ag and y1,y2,y3 € Bp and z1,22.23 € Co.
The above definition were found in the case of metric space in ([13]).

Example 3. Let A, B,C be nonempty subsets of a G—metric space (X, G) such
that Ag # @ and dist(A, B,C) =0, then A, B, C have P—property.

Definition 15. Let (X, G) be a G—metric space and 7 : X — X be a mapping. T
is called expansive if for all x,y,z € X,

G(T(x).T(y).T(z)) =z G(x.y,2).

Definition 16. Let (X, G) be a G—metric space and 7 : X — X be a mapping. T
is said to be asymptotically regular iff lim, oo G(T"x, T"T1x, T"*1x) = 0, for all
x e X.
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3. MAIN RESULTS

We start this section with the following theorem.

Theorem 2. Let A, B, C be nonempty and closed subsets of a G—complete space
(X, G) such that Ag # @ and A, B, C satisfies the P—property. Let T : AUBUC —
AU BUC be a noncyclic mapping. Suppose that

(1) T|4 be a mapping which satisfies in (2.1).
(2) T is relatively G—nonexpansive.

Then the minimization problem (2.2) has a solution.

Proof. 1f x € Ay, then there exist y € B and z € C such that G(x, y,z)
=dist(A, B,C). Since T is relatively G —nonexpansive then

G(T(x), T(»),T(z)) < G(x,y,z) =dist(A,B,C)

Hence T'x € Ay.

Let xg € Ag by Theorem 1 if x,, = T"(xo) then Xn—>x* where x* is unique
fixed point of T in A. Since x¢ € Ag there exist yo € B and z¢ € C such that
G(x9,v0,20) =dist(A,B,C).Since x1 = Txg € Ag, thereexist y; € Bandz; € C
such that G(x1,y1,21) = dist(A, B,C). Using this process, we have a sequence
{yn}in B and {z,} in C such that

G(Xn,Vn.2n) =dist(A,B,C) VYn e N U{0}.
Since A, B, C have the P—property, we have for all m,n,l € N U{0}
G(Xn, Xm.X1) = G(Vn.Ym.¥1) = G(Zn.2Zm,21).

This implies that {y,} and {z,} are G—Cauchy sequences, and there exist y* € B
and z* € C such that yni>y* and z,~2>z* Thus

G(x*,y*,z") = nli?;oG(xn*y"’Z") =dist(A,B,C)
Since
G(T(x*).T(y*).T(z*)) < G(x*,y*,z*) =dist(A,B,C)
Therefore by the P —property, we have
GO T(x").T(x") =G TO").TH") =G T(").T(")
Thus (x*,y*,z*) € AU B UC is a solution of the minimization problem (2.2). [0

Example 4. Let R be equipped with the usual metric, and G, (x, y,z) = max{|x —
yl,|x—=2z|,|y—2z|}. Let A =[-2,0] and B = {1} and C = [2,3]. It is obvious that
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Ao =1{0}, Bo ={1},Co = {2}. Define T : AUBUC — AU B UC with
xed

A%

Tx)=14 1 xe€eB
x+2
2

It is easy to check that all the conditions of Theorem 2 hold. Therefore, the minimi-
zation problem (2.2) has a solution (x*, y*,z*) = (0, 1,2).

xeC

Theorem 3. Let A, B, C be nonempty subsets of a G—complete space (X, G) such
that A is G-compact and B and C are G—closed. Let Ag # @ and A, B,C satisfy
the P—property. Let T : AUBUC — AU B UC be a noncyclic mapping. Then the
minimization problem (2.2) has a solution provided that the following conditions are
satisfied:

(1) T is relatively G—nonexpansive.
(2) T|4 is a G—expansive.
(3) T|p and T|c be mappings which satisfy in (2.1).

Proof. If x € Ag, and x,4+1 = Txp,(n € N U{0}). By argument similar in the
proof of Theorem 2 we obtain that 7(A4g) C Ag and there exist y, in B and z, in C
such that

G(xXn,Vn,2n) =dist(A,B,C) Yne N U{0}.
Since A is G—compact, by Proposition 4 there exist a subsequence {x, } of the {x,}
such that x,, —“,x* € A. Since A4, B,C satisfy the P —property,
G(‘xnk"xns’xnl) = G(ynk ,ynS,J’n,) - G(an ,ZnS,an), (k,S,l (S N)

This implies that {y, } and {z, } are G—Cauchy sequences and there exist y* € B and
z* € C such that y,, —y* and znki>z*. Thus

G(x*,y*,z") = nliygoG(xnk’J’nkank) =dist(A,B,C)

Now we prove that x*, y*,z* € F(T). Since T is relatively G —nonexpansive,
G(T?(x*), T*(y*), T*(z*)) = G(T(x*), T(y*), T(z*)) = dist(4,B,C).
Since A4, B, C satisfy the P —property, we have
G(x*.T(x™).T(x*)=GOH* TH").T(Y") =G T, TE"),
and
G(T(x*), T?*(x*), T>(x*) = G(T(y*), T>(y*).T*(»*))
= G(T(z*),T?*(z*),T?*(z*)).
Now let Ty* # T?y*, since T |p satisfies in (2.1),

G(Ty*).T(THY*).T(T(»y*) <kGH*.T(»*).T(H™*))
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Thus since T'|4 is a G—expansive, we have

G(T(Y*). T*(y*).T*(y*) = GT(*),T(T(y*). T(T(H*)))
kG(y*.T(y*).T(y*))

kG(x*,T(x*), T(x*))
kG(T(x*),T?(x*),T?(x*))

kG(T(y*), T>(y*), T*(»*)),

which is a contraction. Therefore Ty* = T2y*. A similar argument implies that
Tz* =T?z*. Thus x* = T(x*) and y* = T'(y*) and z* = T(z*). O

Example 5. Let X = R3 and

G((x1,y1,21). (x2,¥2,22).(x3,¥3,23)) = max{Gp(x1,x2,x3),
Gm(¥1,2,¥3).Gm(21,22,23)},
where G, (x,y,z) = max{|x — y|,[x —z|,|y —z|}. Let A = {(x,0,0) : =1 <x <
0} and B ={(0,y,0): 0 <x <1} and C = {(0,0,2) : —1 <z < 1}. It is obvious
that Ag = Bg = Co = {(0,0,0)} and dist(A, B,C) = 0, therefore A, B, C have the
P —property. Define T: AUBUC — AU BUC with

T(x,0,0) = (—x,0,0), T(o,y,0)=(o,§,0) and T(0,0,z)z(0,0,%).

A 1 IA

It is easy to check that all the conditions of Theorm 3 hold. Therefore the minimiza-
tion problem (2.2) has a solution x* = y* = z* = (0,0,0).

Theorem 4. Let A, B, C be nonempty subsets of a G—complete space (X, G) such
that A is G —compact and B and C are G—closed.Let Ay # @ and A, B, C satisfy
the P—property. Let T : AUBUC — AU BUC be a noncyclic mapping. Then the
minimization problem (2.2) has a solution provided that the following conditions are
satisfied:

(1) T is relatively G—nonexpansive.
(2) T|4 is G—continuous and asymptotically regular.

Proof. Let {xn}G, {vu}, {2n}, {xn&}, Dneys {an},éc*, y* and z* be as in Theorem
3. We have x,, —x* € A, yy,—y* € B, zp,—2z* € C and G(x*,y*,z*) =
dist(A, B,C). From Proposition 3, since T |4 is G—continuous, we have

Xnpt1 =T (tn )~ T (x*).
Also by the asymptotic regularly of 7|4, we obtain

G . T(*).T(x*) = 1imgsog G TCin ). T (xn, )
= limgosoo G(T™ (x0). T+ (x0). T"+! (x0))
= 0.
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This implies that 7'(x*) = x*. Since T is relatively G—nonexpansive, we have
G(T(x*),T(y*).T(z*)) <G(x*,y*,z*) =dist(A,B,C)
Therefore by the P —property, we have
GO T(x").T(x")=GO".TH").T(Y") =GE" T, T)

Hence T(y*) = y*and T(z*) = z*. U

QUESTION: In 2011, Karapinar [10] obtain some common fixed point results in
partial metric spaces. Can one study the minimization problem (2.2) for two mapp-
ings in partial metric spaces?
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