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Abstract. For the generalized-Euler-constant function y(a),

oy a+n—1
y(a):= lim_ kza_’_k—ln a (a > 0),

and for any positive integer ¢ > 2, using the Bernoulli numbers Bj;,, the sequences n +—
An(a,q), n — By(a,q) and n — &€, (a,q), having the properties

Bpgy—
. 2q—2 _ _ Db2g-2
im 7 [v(@)—2An(a,q)] = 2q-2"
lim n2972 [v(a)—Bn(a.q)]=— (1 —23_2‘1) Bag—2
n—o00 nye 2g—-2

and
1
. 2g—1
nli)rnoon q [y(a) - (a,q)] =3 Bzg—2,
are determined.
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1. INTRODUCTION
The gamma-sequence

Gl a+n—1
yn(a)zl;)a+k—ln ; (neN), (1.1)

considered in [2,3] is convergent for @ > 0 and defines the generalized-Euler-constant
function y(a),

y(@):= lim yn(a) (12)
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The name generalized-Euler-constant function has its origin in the identity y(1) =
C, where C is the Euler-Mascheroni constant. Several results on the rate of conver-
gence of the sequence (1.1) have been established in the literature.

Recently, A. Sintdmdrian [4] accelerated the convergence (1.2) using the Stolz-
Cesaro limit theorem. In this reference the sequences

n—1

1 1 1
on,2(@) '_Iga—i—k_Z(a +n—1) + 12(a+n—1)2

I a+n—1+ 1
—In
a 120a(a +n—1)3

1
252(a+n—1)°%

and

Bnp2(a) :=an2(a)+

were considered and in Theorem 2 the equalities

1
Jim n°[y (@) —ana(@)] = 7= (1.3)
and
121
Jim n8[Bn2(a) = y(@)] = oo (1.4)

were derived. Similarly, in Theorem 3, were considered some sequences oy 3(a),
Bn,3(a) and 8, 3(a) such that the following limits hold:

Jim %o 5(@) ~7(@)] = 3,5 (15

Jim [y (@) i s()] = (16
and

lim 1125 500) v @)] = S0 a7

In [4] the equalities above were demonstrated using rather tedious calculations.

The goal of this article is to complement/improve the results and the method of
derivation as presented in [4]. In our paper we present an approach of incessant
acceleration of the convergence (1.1) to any degree. We will present three classes of
sequences converging to y(a) much faster than the original sequence y,(a) does.
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2. PRELIMINARIES

Referring to (1.1), (1.2) and [1, Theorems 1-3], we have the following equalitiesI

y(a) = Sn(a.q) + Ru(a,q) (n,g €N) 2.1)
=on(a,q)+pnla,q) (n,q € N) (2.2)
= S, (a,q)+ Ry (a.q) (n,q € N) (2.3)
with?
S, (a.q) S 1 la+n+ 1 +qi1 B>; 2.4)
a,q) = —In — = .
nid-q k=0a+k a 2(a+n) /_:12j(a—|—n)21
n—1 g1 1-2i
1 a 1-2 B
on(a,q) = —tIn| —— | — - . -1 2.5)
wwn=5 () ()
and
n—1
1 a+n
Sp(@q) =) ——r—In—
k=0

1 a+n+1 | 1 |
—1-In{1-— ———-In|(1
n( a+n+1) +2(a—|—n) 2n( +a+n)

“ Byj 1 1 2j—1
_;;(ZUQJ—I)&a+nVF4_Ka+n+1yf4_Xa+npj]

(2.6)
The remainders are estimated as
| B24|
IRn(a,q)|<—q(a+n)zq, 2.7)
B
|on(@,q)| < [B24| (2.8)

gla+n—13)24

IThe sequence oy (a,q) in the expression (2.5) is given in the corrected form appearing in the proof
of [1, Theorem 2], where in the first sum the start “k4 = 1” should be replaced by “k = 0” and where
the summands in the third sum of o, (a, ¢) are written incorrectly.

2By definition Y7, xz = 0 for m < 1.
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and

| B2 |
(a+n)2a+1’

Here, the symbol By means the k-th Bernoulli number,

|Ry(a.q)| < (2.9)

te¥t & 1/
1= 2 B eR il <2m),
k=0 )

By = By (0), Br(x) is k-th Bernoulli polynomial.

3. AN ACCELERATION OF CONVERGENCE

Referring to (2.4)—(2.6) we make the following definition.

Definition 1. For any @ > 0 and any integer ¢ > 2 we consider the following
sequences:

n—Ay(a,q):=Sy(a,qg—1), 3.1

ntB,(a,q) =o,(a,q—1) (3.2)
and

nCu(a,q) =S, (a,q—1). (3.3)

Now, we are in the position to formulate the following result.

Theorem 1. For any positive a and any integer q¢ > 2 we have the following limits:

Bog—
: 2q—2 _ _ DP2g—2 .
dim =y (@) = Anla.g)] = 5 =:La(q). (34
. _ _2g\ B2g—2
2¢—2 3-2 q .
Jlim n T2[y(a) = Bn(a,q)] = — (1-2°"9) 20—2 =:Lu(q) (3.5
and
1
. 2g—1 _ _ .
Jim 7 [v(@)—Cnla.q)] = 3 Bag—2 =:L¢(q).  (3.6)
Note that the limits are independent of a.
Proof. According to (2.1), (2.4) and (3.1), we have
By,—
y(@) = An(a.q) + 2+ Ra(a,q),

(2q—2)(a+n)*a~2
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forn > 1, a > 0 and ¢ > 2. Consequently, using (2.7), the equality (3.4) follows.
Similarly, referring to (2.2), (2.5) and (3.2), we get
1—-23724 Bag—
2q—2 (a+n—1)2a—2
forn > 1, a > 0 and ¢ > 2. Thus, considering (2.8), we confirm (3.5). Finally,
referring to (2.3), (2.6) and (3.3) we obtain
y(a) =€(a.q) + Ry (a.q)
Byy—> |: 1 B 1 4 2q—3 ]
2¢9—-2)2q¢—3) | (a+n+1)2473 (a+n)?9=3  (a+n)?972 (3’ .

forn >1,a >0 and g > 2. Denoting a +n = b, 2¢ —3 = m and using Taylor’s
formula of order 1 around b for the function f(x) =x=", (b+1)™ =b7" —
mb~m+1) 4 %m(m +1)(b + )12 we obtain the equality

1 1 2¢ -3 (g —3)(2g —2)

y(a) =By(a.q)— + pn(a,q),

= — , 3.8
(@+n+12473  (a+n)243 (a+n)242 2a+n+19)24-1 (38)
for some ¥ = ¥, (a,q) € (0,1). From (3.7) and (3.8) we get the expression
Byg—2 (29 —-3)(29—2) *
- Q ) = : R ) ’
y(a@)—Cu(a,q) 27-2)2q—3) 2@int ot n(a.q)
which, recalling (2.9), demonstrates the relation (3.6). O

Example 1. Referring to (3.4)—(3.6) and using [5] we obtain the following tables:

g 27 3 4] 5 6] 7
1 T 1 T T 591
La(q@) || 15 | 120 | 353 | 240 | T3 | 32760

TABLE 1. The type 2-limits; Theorem 1, Eq. (3.4).

q 2 3 4 5 6 7
Lo(@) | =% [ oL [ =21 127 | _ 511 T414477
B4 24 | 960 8064 | 30720 67584 | 67092480

TABLE 2. The type ®8-limits; Theorem 1, Eq. (3.5).
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q 2 3 4 5 6 7
T T 1 T 3 69T
Le(@) | 15| —%0 | 33 | —o0 | ~132 | ~ 35460

TABLE 3. The type ¢-limits; Theorem 1, Eq. (3.6).
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