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Abstract. We present an existence theorem for at least one continuous solution for a nonlinear
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1. INTRODUCTION

Itis well known that integral equations have many useful applications in describing
numerous events and problems of real world. Moreover the theory of integral equa-
tions is rapidly developing using the tools of functional analysis, topology and fixed
point theory. In particular, quadratic integral equations have many useful applica-
tions in the real world. For example, quadratic integral equations are often applicable
in the theory of radiative transfer, the kinetic theory of gases, the theory of neutron
transport, queuing theory and traffic theory. Many authors studied the existence of
solutions for several classes of nonlinear quadratic integral equations (see e.g. [1-11]
and [8-17,19] . However, in most of the above literature, the main results are reali-
zed with the help of the technique associated with the measure of noncompactness.
Instead of using the technique of measure of noncompactness we use Schauder fixed
point theorem.

Let R be the set of real numbers whereas [ = [0,1], L1 = L1][0, 1] be the space
of Lebesgue integrable functions on /.
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Here, we prove the existence of at least one continuous solution of the quadratic
functional integral equation of fractional order

x(t) = a() + g, X(W(t)))/ (FT fls,x(p(s))ds, t€l, a>0
(1.1)

and the existence of a continuous solution of the nonlinear functional differential
equation of fractional-order

rD%x(t) = f(t,x(¢p())), t € I and x(0) = 0, a€(0,1) (1.2)

(where grD% is the Riemann-Liouville fractional order derivative) will be given as
an application. Also the results concerning the existence of continuous solution of
the initial value problem
dx(t
" fex@). x0 = (13)

will be given as another application. Finally, the existence of maximal and minimal
solutions of (1.1) will be proved.

For v (f) = ¢(t) = ¢, J. Banas and B. Rzepka( see [8]) proved the existence of
a nondecreasing continuous solution of (1.1) by using the technique of measure of
noncompactness. The existence of continuous solutions for some quadratic integral
equations was proved by using Schauder-Tychonoff fixed point theorem [25].

2. PRELIMINARIES AND DEFINITIONS

The existence results will be based on the following fixed-point theorems and de-
finitions.

Theorem 1 (Schauder Fixed Point Theorem in [9]). Let Q be a nonempty, convex,
compact subset of a Banach space X, and T : Q — Q be a continuous map.
Then T has at least one fixed pointin Q.

We shall collect the definitions of the fractional-order integral and differential ope-
rators. Let § be a positive real number

Definition 1. The fractional-order integral of order 8 of the function f is defined
on [a,b] by (see [20], [23], [22] and [26])

B—1
18 £ty = / ¢ F“ZL) £(s) ds. @.1)

and when a = 0, we have I8 f(r) = I(f}f(t).

Definition 2. The Riemann-Liouville fractional-order derivative of order 8 € (0, 1)
of the function f is given by (see [20], [ ] [22] and [26])

rDP (1) = 11 Pr).
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For the properties of fractional calculus see [20], [23], [22] and [26] for example.

3. EXISTENCE OF CONTINUOUS SOLUTIONS

Now, equation (1.1) will be investigated under the assumptions:

(1) a: I — R iscontinuous and bound with k; = sup |a(?)|.
tel
(i) g: I x R — R iscontinuous and bounded with k, = sup |g(z,x)].
(¢,x)el xR
(iii) There exist two constants /;, i = 1,2 respectively satisfying

lgt.x)—g(s. ) <l [t =s[+ 12 |x=y|

forall ¢, sel and x, y €R.

@iv) f: I x R — R satisfies Caratheodory condition (i.e. measurable in #
forall x : I — R and continuous in x forallt € I).

(v) There exist a function m € L; and a constant b such that
| f(t.x)| <m(t) + b|x| (¥ (t.x)elxR)and k3 =supIP m(r) for any

tel
B <a.
(vi) ¥, ¢: I — [ arecontinuous .
(vii) The inequality k» b < I'(1 + o) is satisfied.

Theorem 2. Let the assumptions (i)-(vii) be satisfied. Then the quadratic functio-
nal integral equation (1.1) has at least one solution in the space x € C(I).

Proof. Let C = C(I) be the Banach space of all real functions defined and
continuous on the interval 1.
Fix a number r > 0 and consider the ball S, in the space C(/) defined as

S,={xeC):|x@)| <rfortel}.
Let T be the operator defined on S, by the formula

_ S)ot—l

t (l
T = a) + gexw®) [

o I'(w)
Then, in view of our assumptions, for x € S, and r € I we get

(t — 5)* 1
I'(@)

f(s,x(p(s)) ds, xeS,, tel.

t
[ Tx(@) | = la@)] + |g(t.x(¥(1)))] /0 | f(s.x(@(s))]ds  (3.1)

t _ a—1
<ki+ kI PIPm@t) + ka b / =97 Ix(¢(s))| ds (3.2)
o I
t (l _ s)(x—ﬂ—l t (Z _ S)a—l
fk] +k2k3/(; 1"(a—_ﬁ)ds+k2br/0 st (33)
< k1 n k2 k3 kz br (3.4)

Foa—-B+1) TI'(l+a)
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Hence, in view of assumption (vii) we have that T transforms the ball S, into itself

for ks k ks b
_ 2R3 _ 2 -1
=kt e e s o)
Now, for #; and t, € [ (without loss of generality assume that #; < f, ), we have
(Tx)(t2) — (Tx)(t1) = a(t2) — a(ty)

+ g(t2, x (Y (12))) 1% f(t2,x($(12))) — g(t1,x (Y (1)) 1% f(t1,x($(11)))

+ g x (W) 1% [t x(@(12)) — g1, x(W (1)) 1% f(t2,x((12)))

< a(ty) — a(ty) + [g(t2, x(Y(22))) — g(t1, x(WY t))] I¥ f(t2,x(p(12)))

+ gt x(W (1) [ 1% f(t2.x(p(12))) — I f(t1.x(p(t1))) ].

but

1% f(t2.x($(t2))) — 1% f(t1.x(¢(11))) = /0

ot —s)*!

[ Gx@6 ds

2 (ty — 5)%! _ oy — 5!
+ /n Ty [6x @) ds /0 T ex@@) ds

ot — s)%! 2ty —5)*!
5/0 Tf(s,x(qs(s))) ds + /tl Ta)f(s,x(qﬁ(s))) ds

t a1 (5] — g)o-l
_/0 %f(s,x@p(s))) ds :/; &f(s,x(cb(s») ds.

I'(a) | I'(a)
Then
1% f(t2,x($(t2))) — 1% f(t1,x(p(t))] = 7| f(t2,x(p(12)))]
< I¢m(t) + b IEx(@@)] < 5P 10 m(z) + b 12 |x($(12))]
(tp—11)% P (ta—11)*
S Ta—p+) T Tar
Then we get
[(Tx)(t2) — (Tx)(t1) | (3.5
< |a(tz) —a(t1) | + [Lhlt2—t1] + L2lx (W (t2)) —x (¥ (t1))]]
I%] f(t2,x(¢(12))) |
(tp—11)*# (ta—11)%
+|g(11,X(W(11)))|(k3m r F(a—i—l))
i.e.,

[(Tx)(t2) — (Tx)(t1) |
< |a(tz) — a(t1) | + [Llta—t1] + L2fx(t2) —x(11)]] (3.6)
1% (m(t2) + b |x(¢(12))])
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(tp—11)*# (2 —11)*
TRk mo Ty TR et
< la(ty) —a(ty) | + 1“(01——?3—%1) [l1lt2 —t1] + L2]|x(t2) —x(t1)]]

br ko k3 _
— [lh|ta—t ) 1) —x(t — 22— 1) P
+F(oe+1) [z —t1] + L2fx(r2) —x(t1)]] + F(a—ﬂ+1)(2 1)
kzbr a
m(lz— t]) —0 as tr, — 1.

This means that the functions of 7'S; are equi-continuous on /. Then by the Arzela-
Ascoli Theorem [9] the closure of 7S}, is compact .

It is clear that the set S, is nonempty, bounded, closed and convex.

Assumptions (i) and (iv) imply that 7 : S, — C([I) is a continuous operator in
X.

Since all conditions of the Schauder fixed-point theorem hold, then 7 has a fixed
pointin S,. U

4. SPECIAL CASES

Corollary 1. Let the assumptions of Theorem 2 be satisfied (with W (t) = ¢ (t) = t),
then the fractional-order quadratic integral equation

t _ a1
£(0) = a) + glexe) [ L fxto ds

has at least one solution x € C.

Corollary 2. Let the assumptions of Theorem 2 be satisfied (with g(t,x) =1 ),
then the fractional-order integral equation

t (t _ S)ot—l
x() =a) + | —F—— f(s.x(¢(s5)) ds
o I'(o)

has at least one solution x € C.

Letting b =0 and ¢(¢) = ¢ in Corollary 2, we obtain the same result as was
proved in [18].
Now letting «, B — 1, we obtain

Corollary 3. Let the assumptions of Theorem 2 be satisfied (with g(t,x) =1, a(t) =
xo and letting «, B — 1), then the integral equation

t
x0) =50+ [ fGx@o) ds
0
has at least one solution x € C which is equivalent to the initial value problem (1.3).

Letting b =0 and ¢(¢) =t in Corollary 3 we obtain the Carathéodory Theorem
(proved in [9]).
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5. FRACTIONAL ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

For the initial value problem of the nonlinear fractional-order differential equation
(1.2) we have the following theorem.

Theorem 3. Let the assumptions of Theorem 2 be satisfied (with a(t) =0 and
g(t,x(t)) = 1), then the Cauchy type problem (1.2) has at least one solution x € C.

Proof. Integrating (1.2) we obtain the integral equation

t (l . S)(x—l
x() = | ——=— fls.x(@6))ds, el (6.D
o '
which by Theorem 2 has the desired solution.
Operating with gD% on (5.1) we obtain the initial value problem (1.2). So the
equivalence between the initial value problem(1.2) and the integral equation (5.1) is

proved and then the results follow from Theorem 2. O

6. MAXIMAL AND MINIMAL SOLUTIONS

Definition 3 (see [21]). Let ¢g(¢) be a solution of (1.1) Then ¢(¢) is said to be
a maximal solution of (1.1) if every solution of (1.1) on [ satisfies the inequality
x(t) < q(t), t €l . A minimal solution s(¢#) can be defined in a similar way by
reversing the above inequality i.e. x(t) > s(¢), t € 1.

We need the following lemma to prove the existence of maximal and minimal so-
lutions of (1.1).

Lemma 1. Let g(t,x), f(t,x) satisfy the assumptions in Theorem 2 and let
x(t), y(t) be continuous functions on I satisfying

x(1) = a() + gt.x@ @) 1% f(1.x($(1)))
y(0) = a@) + gty ) 1% 1t y(¢(1)))

where one of them is strict.
Suppose f(t,x) is nondecreasing function in x. Then

x(t) < y(@). (6.1)
Proof. Let the conclusion (6.1) be false; then there exists #; such that
x(ty) = y(t1), 1t >0

and
x(t) < y(), 0 <t <t.
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From the monotonicity of the function f in x, we get

x(t1) = a(n) + gl x (W) 1% f(t1.x((11)))

131 _ a—1
= a) + g [T @ ds
5] _ o —1
< att) + gtywe) [T f6e) ds
< y(t).
This contradicts the fact that x(¢1) = y(¢1); then

x(t) < y().
O
Theorem 4. Let the assumptions of Theorem 2 be satisfied. Furthermore, if

f(t,x) is nondecreasing functions in x, then there exist maximal and minimal
solutions of (1.1).

Proof. Firstly, we shall prove the existence of maximal solution of (1.1). Let € >
0 be given. Now consider the fractional-order quadratic functional integral equation

Xe(t) = a(t) + ge(t, xe(Y (1)) 1% fe(t,xe(p(2))), (6.2)
where

Je(t.xe(p (1)) = [f(t.x(d(1))) + €

and
ge(t, xe(Y (1)) = gt xe(Y (1)) + €.

Clearly the functions fe(z,x¢) and ge(z,xe) satisfy assumptions (ii), (iv) and
|ge(t.x)| = M + e =M.
| fe(t.xe) | < m(t) + € + blx|= m'(t) + b |x].

Therefore, equation (6.2) has a continuous solution x(¢) according to Theorem 2.
Let €; and €5 be such that 0 < €3 < €7 < €. Then

Xe (1) = a(t) + ge, (1.5, (Y (1)) I fe, (1. x¢,(9(1))),
Xe (1) = a(t) + (8(t.xe; (V(1)) + €1) I* (f(1.x¢ (1)) + €1),

> a(t) + (8(t.xe (Y (1) + €2) 1% (f(1.x6,(¢(1) + €2),  (6.3)
Xe (1) = a(t) + (8(t.x6, (Y (1) + €2) I* (f(1.x,(¢(1))) + €2).  (6.4)
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Applying Lemma 1, then (6.3) and (6.4) imply
Xey (1) < X, (1) forte I.

As shown before in the proof of Theorem 2, the family of functions x(¢) defined by
(6.2) is uniformly bounded and of equi-continuous functions. Hence by the Arzela-
Ascoli Theorem, there exists a decreasing sequence €, suchthat €, —0 as n —
oo, and nll)ngo Xe, (t) exists uniformly in /. We denote this limit by ¢(z). From

the continuity of the functions f¢, and g, in the second argument, we get
q() = Tim xe,()) = a(t) + gt.gW ) I* f(t.q(@ 1))

which proves that ¢(¢) is a solution of (1.1).
Finally, we shall show that ¢(¢) is maximal solution of (1.1). To do this, let x(#)
be any solution of (1.1). Then

xe(t) = a(t) + ge(t, xe(V (NI fe(t.xe(p(1)))
> a(t) + gt xe(Y () I ft.xe(@(1))).
and
x(1) = a(t) + gt,.x(¥ @) I* f(t,x($())).
Applying Lemma 1, we get

xe(t) > x(t) fort e I.

from the uniqueness of the maximal solution (see [21], [24]), itis clear that x.(¢) tends
to ¢(¢t) uniformlyin t € I as € — 0.
In a similar way we can prove that there exists a minimal solution of (1.1). g
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