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1. INTRODUCTION

Initial and boundary value problems of fractional order have extensively been stud-
ied by several researchers in recent years. A variety of results ranging from the theor-
etical aspects of existence and uniqueness of solutions to the analytic and numerical
methods for finding solutions have appeared in the literature. Fractional differential
equations appear naturally in a number of fields such as physics, biophysics, blood
flow phenomena, aerodynamics, electro-dynamics of complex medium, viscoelasti-
city, electrical circuits, electron-analytical chemistry, biology, control theory, fitting
of experimental data, etc. An excellent account in the study of fractional differ-
ential equations can be found in [15, 22–24]. For more details and examples, see
[1–4, 6, 8–10, 12, 14, 17, 21, 25–27, 30] and references therein.

The concept of sequential fractional derivative is given, for example, on page 209
of the monograph [20]. There is a close connection between the sequential fractional
derivatives and the non sequential Riemann-Liouville derivatives [28, 29]. For some
recent work on sequential fractional differential equations, we refer the reader to
the papers [7, 11, 16]. In [5], the authors studied a sequential fractional differential
equation of order ˛C1; ˛ 2 .1;2� with three-point boundary conditions.

In this paper, motivated by [5], we extend the study of sequential fractional differ-
ential equations to an arbitrary order. Precisely, for � 2 .n�1;n�; n� 2; we consider
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a fractional boundary value problem of arbitrary order �C1 given by
cD�.DC�/x.t/D f .t;x.t//; 0 < t < 1; (1.1)

x.0/D 0; x0.0/D 0; x00.0/D 0; : : : ; x.n�1/.0/D 0;

x.1/D ˛x.�/; 0 < � < 1;
(1.2)

where cD is the Caputo fractional derivative,D is the ordinary derivative, f W Œ0;1��
R! R; � is a positive real number and ˛ is a real constant.

In Section 2, we present a basic result that lays the foundation for the sequel.
The main results, based on Banach’s contraction mapping principle, Krasnoselskii’s
fixed point theorem and nonlinear alternative of Leray-Schauder type, are presented
in Section 3.

2. BASIC RESULT

Let us recall some basic definitions of fractional calculus [15, 22].

Definition 1. For .n� 1/�times absolutely continuous function g W Œ0;1/! R;
the Caputo derivative of fractional order q is defined as

cDqg.t/D
1

� .n�q/

Z t

0

.t � s/n�q�1g.n/.s/ds; n�1 < q < n;nD Œq�C1;

where Œq� denotes the integer part of the real number q:

Definition 2. The Riemann-Liouville fractional integral of order q is defined as

I qg.t/D
1

� .q/

Z t

0

g.s/

.t � s/1�q
ds; q > 0;

provided the integral exists.

Definition 3. Sequential fractional derivative for a sufficiently smooth function
g.t/ due to Miller-Ross [20] is defined as

Dıg.t/DDı1Dı2 : : : Dıkg.t/; (2.1)

where ı D .ı1; : : : ; ık/ is a multi-index.

In general, the operator Dı in (2.1) can either be Riemann-Liouville or Caputo or
any other kind of integro-differential operator. For instance,

cDqg.t/DD�.n�q/
� d
dt

�n
g.t/; n�1 < q < n;

where D�.n�q/ is the fractional integral operator of order n�q: Here we emphasize
that D�pf .t/D Ipf .t/; p D n�qI for more details, see page 87 [22].

Before presenting an auxiliary lemma, we recall the following result [15].
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Lemma 1. For q > 0; the general solution of the fractional differential equation
cDqx.t/D 0; n�1 < q < n; is given by

x.t/D c0C c1tC c2t
2
C : : :C cn�1t

n�1;

where c0; c1; : : : ; cn�1 are arbitrary real constants.

For the forthcoming analysis, we define

P.t/D Po.t/D
tn�1

�
�
.n�1/tn�2

�2
C
.n�1/.n�2/tn�3

�3

� : : :�
.n�1/Št

�n�1
C
.n�1/Š

�n
.1� e��t /; n is odd; (2.2)

P.t/D Pe.t/D
tn�1

�
�
.n�1/tn�2

�2
C
.n�1/.n�2/tn�3

�3

� : : :C
.n�1/Št

�n�1
�
.n�1/Š

�n
.1� e��t /; n is even: (2.3)

Furthermore, we assume the non-resonance condition, that is, for P D Po and P D
Pe; we choose ˛ such that

P.1/�˛P.�/¤ 0; for 0 < � < 1: (2.4)

Lemma 2. Assume that the non-resonance condition (2.4) holds. Then, for � 2
C Œ0;1�; the unique solution of the equation

cD�.DC�/x.t/D �.t/; 0 < t < 1; n�1 < � � n; n� 2; (2.5)

subject to the boundary conditions (1:2/ is given by

x.t/D

Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds

C
P.t/

P.1/�˛P.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds (2.6)

�

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds

#
;

where P.t/D Po.t/ and P.t/D Pe.t/ are given by (2.2) and (2.3) respectively.

Proof. In view of the well known property: cD�I �x.t/D x.t/ [16,19] and Lemma
1, observe that any solution of the equation

.DC�/x.t/D c0C c1tC c2t
2
C : : :C cn�1t

n�1
CI ��.t/ (2.7)

will satisfy (2.5), where c0; c1; : : : ; cn�1 are arbitrary unknown constants. Rewriting
(2.7), we have

D.e�tx.t//D Œc0C c1tC c2t
2
C : : :C cn�1t

n�1
CI ��.t/�e�t :
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Integrating from 0 to t and using x.0/ D 0; x0.0/ D 0; x00.0/ D 0; : : : ; x.n�1/.0/
D 0; we get c0 D 0; c1 D 0; c2 D 0; cn�2 D 0 and

x.t/D cn�1Po.t/C

Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds; n is odd; (2.8)

and

x.t/D Ocn�1Pe.t/C

Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds; n is even; (2.9)

where Po.t/ and Pe.t/ are given by (2.2) and (2.3) respectively. Using the condition
x.1/D ˛x.�/ in (2.8), we find that

cn�1 D
1

Po.1/�˛Po.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds

�

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds

#
;

where Po is given by .2:2/: Similarly, using the condition x.1/D ˛x.�/ in (2.9), we
get

Ocn�1 D
1

Pe.1/�˛Pe.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds

�

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
�.u/du

!
ds

#
;

where Pe is given by .2:3/: Substituting the values of cn�1; Ocn�1 respectively in
(2:8/ and .2:9/; we obtain (2:6/: This completes the proof. �

3. EXISTENCE OF SOLUTIONS

Let C D C.Œ0;1�;R/ denotes the Banach space of all continuous functions from
Œ0;1�! R endowed with the sup norm defined by kxk D supfjx.t/j; t 2 Œ0;1�g<1:

For the sake of convenience, we set

P1 D max
t2Œ0;1�

ˇ̌̌ P.t/

P.1/�˛P.�/

ˇ̌̌
; �D

ˇ̌̌.1CP1/.1� e��/CP1˛��
�� .�C1/

ˇ̌̌
; (3.1)

where P.t/ is given by (2.2), (2.3).
In view of Lemma 2, we transform problem (1:1/� .1.2) as

x D ±.x/; (3.2)
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where ± W C ! C is defined by

.±x/.t/D

Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

C
P.t/

P.1/�˛P.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

�

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

#
:

Observe that problem (1:1/� .1.2) has solutions if the operator equation .3:2/ has
fixed points.

Theorem 1. Let f W Œ0;1��R! R be a jointly continuous function satisfying the
condition

jf .t;x/�f .t;y/j � Ljx�yj; 8t 2 Œ0;1�; x;y 2 R;

where L is the Lipschitz constant. Further, the non-resonance condition (2.4) holds.
Then the boundary value problem (1:1/� .1.2) has a unique solution if � < 1=L,
where � is given by (3:1).

Proof. As a first step, we show that the operator ± given by .3:2/ maps C into
itself. For that, we set supt2Œ0;1� jf .t;0/j DM <1: Then, for x 2 C ; we have

k.±x/k

D sup
t2Œ0;1�

ˇ̌̌̌
ˇ
Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

C
P.t/

P.1/�˛P.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

C

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

#ˇ̌̌̌
ˇ

� sup
t2Œ0;1�

 Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
.jf .u;x.u//�f .u;0/j

C jf .u;0/j/du/ds

!

C sup
t2Œ0;1�

ˇ̌̌ P.t/

P.1/�˛P.�/

ˇ̌̌"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
.jf .u;x.u//
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�f .u;0/jC jf .u;0/j/du

!
ds

C

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
.jf .u;x.u//�f .u;0/j

C jf .u;0/j/du

!
ds

#

� sup
t2Œ0;1�

 Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
.Ljx.u/jC jf .u;0/j/du

!
ds

!

C sup
t2Œ0;1�

ˇ̌̌ P.t/

P.1/�˛P.�/

ˇ̌̌"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
.Ljx.u/j

C jf .u;0/j/du

!
ds

C

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
.Ljx.u/jC jf .u;0/j/du

!
ds

#

� .LkxkCM/

"
sup
t2Œ0;1�

 Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
du

!
ds

!

C sup
t2Œ0;1�

ˇ̌̌ P.t/

P.1/�˛P.�/

ˇ̌̌(
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
du

!
ds

C

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
du

!
ds

)#

� .LkxkCM/

 
.1CP1/.1� e

��/CP1˛�
�

�� .�C1/

!
D .LkxkCM/� <1:

This shows that ± maps C into itself. Now, for x;y 2 C and for each t 2 Œ0;1�; we
obtain

k.±x/� .±y/k D sup
t2Œ0;1�

j.±x/.t/� .±y/.t/j

� sup
t2Œ0;1�

"Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
jf .u;x.u//�f .u;y.u//jdu

!
ds
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C

ˇ̌̌ P.t/

P.1/�˛P.�/

ˇ̌̌(
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
jf .u;x.u//

�f .u;y.u//jdu

!
ds

C

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
jf .u;x.u//�f .u;y.u//jdu

!
ds

)#

� Lkx�yk

"
sup
t2Œ0;1�

 Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
du

!
ds

!

C sup
t2Œ0;1�

ˇ̌̌ P.t/

P.1/�˛P.�/

ˇ̌̌(
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
du

!
ds

C

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
du

!
ds

)#

� L

ˇ̌̌̌
ˇ.1CP1/.1� e��/CP1˛���� .�C1/

ˇ̌̌̌
ˇkx�yk

D �Lkx�yk;

where � is given by (3:1). As � < 1=L, therefore, ± is a contraction. Thus, the con-
clusion of the theorem follows by the contraction mapping principle. This completes
the proof. �

Now, we state a known result due to Krasnoselskii [18] which is needed to prove
the existence of at least one solution of (1:1/� .1.2).

Theorem 2. Let M be a closed, convex, bounded and nonempty subset of a
Banach spaceX: Let G1;G2 be the operators such that: (i) G1xCG2y 2M whenever
x;y 2M I (ii) G1 is compact and continuous; (iii) G2 is a contraction mapping. Then
there exists ´ 2M such that ´D G1´CG2´:

Theorem 3. Assume that f W Œ0;1��R! R is a jointly continuous function and
the following assumptions hold:
.H1/ jf .t;x/�f .t;y/j � Ljx�yj; 8t 2 Œ0;1�; x;y 2 R;
.H2/ jf .t;x/j � �.t/; 8.t;x/ 2 Œ0;1��R with � 2 C.Œ0;1�;R/:

Further, the non-resonance condition (2.4) holds. Then the boundary value problem
(1.1)-(1.2) has at least one solution on Œ0;1� ifˇ̌̌̌

ˇP1.1� e��C˛��/�� .�C1/

ˇ̌̌̌
ˇ< 1: (3.3)
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Proof. Letting supt2Œ0;1� j�.t/j D k�k; we fix

r �

ˇ̌̌̌
ˇ.1CP1/.1� e��/CP1˛���� .�C1/

ˇ̌̌̌
ˇk�k; (3.4)

and consider Br D fx 2 C W kxk � rg: Define the operators ±1 and ±2 on Br as

.±1x/.t/D

Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds;

.±2x/.t/D
P.t/

P.1/�˛P.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

�

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

#
:

For x;y 2Br ; it follows from (3.4) that

k±1xC±2yk �

ˇ̌̌̌
ˇ.1CP1/.1� e��/CP1˛���� .�C1/

ˇ̌̌̌
ˇk�k � r:

Thus, ±1xC±2y 2 Br : In view of the condition (3.3), it can easily be shown that
±2 is a contraction mapping. The continuity of f implies that the operator ±1 is
continuous. Also, ±1 is uniformly bounded on Br as

k±1xk �
j1� e��jk�k

�� .�C1/
:

Now we prove the compactness of the operator ±1: Setting˝ D Œ0;1��Br ;we define
sup.t;x/2˝ jf .t;x/j DMr ; and consequently we have

k.±1x/.t1/� .±1x/.t2/k

D


Z t1

0

e��.t1�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

�

Z t2

0

e��.t2�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds


�

Mr

�� .�C1/

 
jt
�
1 � t

�
2 jC jt

�
1e
��t1 � t

�
2e
��t2 j

!
;

which is independent of x and tends to zero as t2! t1. Thus, ±1 is relatively compact
on Br : Hence, by the Arzelá-Ascoli Theorem, ±1 is compact on Br : Thus all the
assumptions of Theorem 2 are satisfied and the conclusion of Theorem 2 implies
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that the boundary value problem (1:1/� .1.2) has at least one solution on Œ0;1�: This
completes the proof. �

In the next theorem we prove the existence of a solution for the boundary value
problem (1:1/� .1.2) via Leray-Schauder nonlinear alternative.

Lemma 3 (Nonlinear alternative for single valued maps [13]). Let E be a Banach
space, C a closed, convex subset of E, U an open subset of C and 0 2 U . Suppose
that F W U ! C is a continuous, compact (that is, F.U / is a relatively compact
subset of C ) map. Then either

(i) F has a fixed point in U , or
(ii) there is a u 2 @U (the boundary of U in C ) and � 2 .0;1/ with uD �F.u/.

Theorem 4. Suppose that f W Œ0;1��R! R is a jointly continuous function and
the non-resonance condition (2.4) is satisfied. Further, it is assumed that the follow-
ing conditions hold:

.H3/ There exist a function � 2 L1.Œ0;1�;RC/, and a nondecreasing function  W
RC! RC such that jf .t;x/j � �.t/ .kxk/, for all .t;x/ 2 Œ0;1��R.

.H4/ There exists a constant M > 0 such that

kxk

 .kxk/

� .�/

(
.1CP1/

Z 1

0

e��.1�s/�.s/dsC˛P1

Z �

0

e��.��s/�.s/ds

) > 1:
Then the boundary value problem (1:1)-(1:2) has at least one solution on Œ0;1�.

Proof. Consider the operator ± W C ! C where

.±x/.t/D

Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

C
P.t/

P.1/�˛P.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

�

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

#
:

We show that ± maps bounded sets into bounded sets in C.Œ0;1�;R/. For a positive
number r , let Br Dfx 2C.Œ0;1�;R/ W kxk� rg be a bounded set in C.Œ0;1�;R/. Then

j.F x/.t/j

�

ˇ̌̌̌
ˇ
Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds
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C
P.t/

P.1/�˛P.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

C

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

#ˇ̌̌̌
ˇ

�

Z t

0

e��.t�s/

 Z s

0

.s�u/��1

� .�/
�.s/ .kxk/du

!
ds

C

ˇ̌̌ P.t/

P.1/�˛P.�/

ˇ̌̌"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
�.s/ .kxk/du

!
ds

C

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
�.s/ .kxk/du

!
ds

#

�
 .kxk/

� .�/

(Z 1

0

e��.1�s/�.s/dsC˛P1

Z �

0

e��.��s/�.s/ds

CP1

Z 1

0

e��.1�s/�.s/ds

)

D
 .kxk/

� .�/

(
.1CP1/

Z 1

0

e��.1�s/�.s/dsC˛P1

Z �

0

e��.��s/�.s/ds

)
:

Consequently,

k±xk �
 .r/

� .�/

(
.1CP1/

Z 1

0

e��.1�s/p.s/dsC˛P1

Z �

0

e��.��s/p.s/ds

)
:

Next we show that ± maps bounded sets into equicontinuous sets of C.Œ0;1�; R/.
Let t1; t2 2 Œ0;1� with t1 < t2 and x 2Br ; where Br is a bounded set of C.Œ0;1�;R/.
Then we obtain

j.±x/.t2/� .±x/.t1/j

D

ˇ̌̌̌
ˇ
Z t1

0

�
e��.t2�s/� e��.t1�s/

� Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

C

Z t2

t1

e��.t2�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

C
.P.t2/�P.t1//

P.1/�˛P.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds
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�

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
f .u;x.u//du

!
ds

#ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇ
Z t1

0

�
e��.t2�s/� e��.t1�s/

� Z s

0

.s�u/��1

� .�/
 .r/�.u/du

!
ds

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇ
Z t2

t1

e��.t2�s/

 Z s

0

.s�u/��1

� .�/
 .r/�.u/du

!
ds

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇ.P.t2/�P.t1//P.1/�˛P.�/

"
˛

Z �

0

e��.��s/

 Z s

0

.s�u/��1

� .�/
 .r/�.u/du

!
ds

�

Z 1

0

e��.1�s/

 Z s

0

.s�u/��1

� .�/
 .r/�.u/du

!
ds

#ˇ̌̌̌
ˇ

Obviously the right hand side of the above inequality tends to zero independently of
x 2Br as t2� t1! 0. As ± satisfies the above assumptions, therefore it follows by
the Arzelá-Ascoli theorem that ± W C.Œ0;1�;R/! C.Œ0;1�;R/ is completely continu-
ous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma 3)
once we have proved the boundendness of the set of all solutions to equations x D
�±x for � 2 Œ0;1�.

Let x be a solution. Then, for t 2 Œ0;1�, and using the computations in proving that
± is bounded, we have

jx.t/j D j�.±x/.t/j

�
 .kxk/

� .�/

(
.1CP1/

Z 1

0

e��.1�s/p.s/dsC˛P1

Z �

0

e��.��s/p.s/ds

)
:

Consequently, we have

kxk

 .kxk/

� .�/

(
.1CP1/

Z 1

0

e��.1�s/p.s/dsC˛P1

Z �

0

e��.��s/p.s/ds

) � 1:
In view of .H4/, there exists M such that kxk ¤M . Let us set

U D fx 2 C.Œ0;1�;R/ W kxk<M g:

Note that the operator ± WU !C.Œ0;1�;R/ is continuous and completely continuous.
From the choice of U , there is no x 2 @U such that x D �±.x/ for some � 2 .0;1/.
Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma 3), we
deduce that ± has a fixed point x 2 U which is a solution of the problem (1:1)-(1:2).
This completes the proof. �
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Example 1. Consider the problem8<: cD7=2.DC2/x.t/D
L

2

�
t2C cos tC1Cx.t/C tan�1x.t/

�
; 0� t � 1;

x.0/D 0; x0.0/D 0; x00.0/D 0; x000.0/D 0;x.1/D x.1=2/:
(3.5)

Here, � D 7=2; nD 4; f .t;x.t//D
L

2

�
t2C cos tC1Cx.t/C tan�1x.t/

�
; �D

2; ˛ D 1; � D 1=2: Clearly

jf .t;x/�f .t;y/j � Ljx�yC tan�1x� tan�1yj=2� Ljx�yj;

P.t/ D Pe.t/ D t
3=2� 3t.t � 1/=4� 3.1� e�2t /=8; P1 � 6:214821; � D Œ.1C

P1/.1� e
�2/C2�7=2P1�=2� .9=2/� 0:2917760234:

For L < 1=� � 3:42728641; it follows by Theorem 1 that problem (3.5) has a
unique solution.

4. CONCLUSIONS

In this paper, we have obtained some existence results for a nonlocal three-point
boundary value problem of sequential fractional differential equations of arbitrary
order �C 1; � 2 .n� 1;n�; n � 2: Our results are new and generalize some earlier
results. For instance, by taking nD 2; Theorems 3.1 and 3.3 correspond to Theorems
4.1 and 4.3 of [5]. Letting � D n; we get the new existence results for the following
nonlinear problem of ordinary differential equations:

Dn.DC�/x.t/D f .t;x.t//; 0 < t < 1;

x.0/D 0; x0.0/D 0; x00.0/D 0; : : : ; x.n�1/.0/D 0;

x.1/D ˛x.�/; 0 < � < 1:
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