

Weakly Laskerian modules and weak cofiniteness

Bahram Vakili and Jafar Azami

HU e-ISSN 1787-2413

WEAKLY LASKERIAN MODULES AND WEAK COFINITENESS

BAHRAM VAKILI AND JAFAR AZAMI

Received 18 September, 2012

Abstract. Let R be a commutative Noetherian ring, \mathfrak{a} an ideal of R. It is shown that if $\mathfrak{a} = (x_1, \ldots, x_t)$, and M is an R-module, then $\operatorname{Ext}_R^i(R/\mathfrak{a}, M)$ is weakly Laskerian for all *i* iff $\operatorname{Tor}_i^R(R/\mathfrak{a}, M)$ is weakly Laskerian for all *i* iff the Koszul cohomology module $H^i(x_1, \ldots, x_t; M)$ is weakly Laskerian for all *i*. Furthermore, each of these coditions imply that $M/\mathfrak{a}^n M$ is weakly Laskerian for all $n \in \mathbb{N}$. In Section 3, we show that if M is an R-module with $\operatorname{Supp} M \subseteq V(\mathfrak{a})$, then M is a-weakly cofinite, in the following cases:

a) there exists $x \in \mathfrak{a}$ such that $0:_M x$ and M/xM are both \mathfrak{a} -weakly cofinite.

b) there exists $x \in \sqrt{\mathfrak{a}}$ such that $0:_M x$ and M/xM are both weakly Laskerian.

2010 Mathematics Subject Classification: 13D45; 13E05

Keywords: weakly Laskerian modules, a-weakly cofinite modules, local cohomology

1. INTRODUCTION

Throughout this paper, R will always be a commutative Noetherian ring with nonzero identity, and a will be an ideal of R. Let M be an R-module. The *a*-torsion submodule of M is defined as $\Gamma_{\mathfrak{a}}(M) = \bigcup_{n \ge 1} (0 :_M \mathfrak{a}^n)$. The *i*th local cohomology functor $H^i_{\mathfrak{a}}(.)$ is defined as the *i*th right derived functor $\Gamma_{\mathfrak{a}}(.)$. It is known that for each $i \ge 0$ there is a natural isomorphism of R-modules

$$\operatorname{H}^{i}_{\mathfrak{a}}(M) \cong \lim_{\substack{n \ge 1}} \operatorname{Ext}^{i}_{R}(R/\mathfrak{a}^{n}, M).$$

We refer the reader to [5] or [1] for the basic properties of local cohomology.

The notions of weakly Laskerian modules and \mathfrak{a} -weakly cofinite modules were introduced by Divaani-Aazar and Mafi in [3] and [4]. An *R* module *M* is said to be *weakly Laskerian* if the set of associated primes of any quotient module of *M* is finite. An *R* module *M* is said to be \mathfrak{a} -weakly cofinite if Supp $M \subseteq V(\mathfrak{a})$ and Ext $_{R}^{i}(R/\mathfrak{a}, M)$ is weakly Laskerian for all $i \geq 0$.

Divaani-Aazar and Mafi in [4, Theorem 2.10] have shown using change of rings principle and spectral sequence that if M is an \mathfrak{a} -weakly cofinite R-module, then

© 2014 Miskolc University Press

The research of the first author was supported in part by a grant from Islamic Azad University, Shabestar Branch.

 $M/\mathfrak{a}M$ is weakly Laskerian. In Section 2, without using change of rings principle and spectral sequence, we prove that if M is an R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M)$ is a weakly Laskerian R-module for all $i \ge 0$, then $M/\mathfrak{a}^{n}M$ is weakly Laskerian for all $n \in \mathbb{N}$. One of the main results of this article is to prove that if $\mathfrak{a} = (x_1, \ldots, x_t)$, and M is an R-module, then the following statements are equivalent:

(ii) $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M)$ is a weakly Laskerian *R*-module for all *i*.

(ii) $\operatorname{Tor}_{i}^{R}(R/\mathfrak{a}, M)$ is a weakly Laskerian *R*-module for all *i*.

(iii) The Koszul cohomology module $H^i(x_1, \ldots, x_t; M)$ is weakly Laskerian *R*-module for all *i*.

In Section 3, we obtain a sufficient condition for \mathfrak{a} -weakly cofinite modules. In fact, we prove that if M is an R-module with $\operatorname{Supp} M \subseteq V(\mathfrak{a})$, then M is \mathfrak{a} -weakly cofinite, in the following cases:

a) there exists $x \in \mathfrak{a}$ such that $0:_M x$ and M/xM are both \mathfrak{a} -weakly cofinite.

b) there exists $x \in \sqrt{\mathfrak{a}}$ such that $0:_M x$ and M/xM are both weakly Laskerian.

In Section 4, we prove that if b is a second ideal of R with $b \supseteq a$ and cd(b) = 1and M is a weakly Laskerian R-module, then for every finitely generated R-module L with Supp $L \subseteq V(b)$, the R-module $\operatorname{Ext}^{j}_{\mathfrak{a}}(L, \operatorname{H}^{i}_{\mathfrak{a}}(M))$ is weakly Laskerian for all i and j. In particular, the R-module $H^{i}_{\mathfrak{a}}(M)/\mathfrak{b}^{n}H^{i}_{\mathfrak{a}}(M)$ is weakly Laskerian for all i and n.

2. WEAKLY LASKERIAN MODULES AND **a**-weakly cofinite modules

To prove the main results of this paper, we need to the following two lemmas.

Lemma 1. Let M be an R-module such that $0:_M \mathfrak{a}$ is a weakly Laskerian R-module. Then $0:_M \mathfrak{a}^n$ is weakly Laskerian for all $n \in \mathbb{N}$.

Proof. Consider the exact sequence

 $0 \to 0 :_{M} \mathfrak{a} \to 0 :_{M} \mathfrak{a}^{n} \xrightarrow{f} a_{1}(0 :_{M} \mathfrak{a}^{n}) \oplus \cdots \oplus a_{t}(0 :_{M} \mathfrak{a}^{n}),$

where $\mathfrak{a} = (a_1, \dots, a_t)$ and f is defined by $f(x) = (a_1x, \dots, a_tx)$. The result is followed by induction on n and [3, Lemma 2.3 (i)]. Note that $a_i(0:_M \mathfrak{a}^n)$ is a submodule of $0:_M \mathfrak{a}^{n-1}$ for all $i = 1, 2, \dots, t$.

Lemma 2. Let M be an R-module such that $M/\mathfrak{a}M$ is a weakly Laskerian R-module. Then $M/\mathfrak{a}^n M$ is weakly Laskerian for all $n \in \mathbb{N}$.

Proof. Consider the exact sequence

$$(M/\mathfrak{a}^{n-1}M)^t \xrightarrow{f} M/\mathfrak{a}^n M \xrightarrow{g} M/\mathfrak{a}M \to 0,$$

where $a = (a_1, \dots, a_t)$, g is the canonical map, and f is defined by

$$f(m_1 + \mathfrak{a}^{n-1}M, \cdots, m_t + \mathfrak{a}^{n-1}M) = a_1m_1 + \cdots + a_tm_t + \mathfrak{a}^nM.$$

WEAK COFINITENESS

Now, the result is followed by induction on *n* and [3, Lemma 2.3 (i)].

Divaani-Aazar and Mafi in [4, Theorem 2.10] have shown using change of rings principle and spectral sequence that if M is an a-weakly cofinite R-module, then $M/\mathfrak{a}M$ is weakly Laskerian. We generalize this result and give a direct proof without using change of rings principle and spectral sequence.

Theorem 1. Let M be an R-module such that $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, M)$ is a weakly Laskerian R-module for all $i \geq 0$. Then $M/\mathfrak{a}^{n}M$ is weakly Laskerian for all $n \in \mathbb{N}$.

Proof. By Lemma 2, it is enough to prove that $M/\mathfrak{a}M$ is weakly Laskerian. To do this, let $\mathfrak{a} = (x_1, \ldots, x_n)$. Then $M/\mathfrak{a}M \simeq H^n(x_1, \ldots, x_n; M)$, where $H^n(x_1, \ldots, x_n; M)$ denotes the n^{th} Koszul cohomology module. Consider the co-

 $H^n(x_1, \ldots, x_n; M)$ denotes the n^{nn} Koszul conomology module. Consider the co-Koszul complex

$$K^{\bullet}(\mathbf{x}, M) : 0 \to \operatorname{Hom}(K_0(\mathbf{x}), M) \to \operatorname{Hom}(K_1(\mathbf{x}), M) \to \cdots$$

 $\to \operatorname{Hom}(K_n(\mathbf{x}), M) \to 0.$

Then $H^i(x_1, \dots, x_n; M) = Z^i/B^i$, where B^i and Z^i are the modules of coboundaries and cocycles of the complex $K^{\bullet}(\mathbf{x}, M)$, respectively. Let \mathcal{W} be the class of all R modules N such that $\operatorname{Ext}^i_R(R/\mathfrak{a}, N)$ is weakly Laskerian for all $i \ge 0$. By induction we claim that $B^j \in \mathcal{W}$ for all j. We have $B^0 = 0 \in \mathcal{W}$. Now, let $B^t \in$ \mathcal{W} . Put $C^i = \operatorname{Hom}(K_i(\mathbf{x}), M)/B^i$. Since $K_t(\mathbf{x})$ is a finitely generated free Rmodule, it follows that $\operatorname{Hom}(K_t(\mathbf{x}), M)$ is a direct sum of finitely many copies of M. Therefore, $\operatorname{Hom}(K_t(\mathbf{x}), M) \in \mathcal{W}$ by [3, Lemma 2.3 (i)]. Now, since $B^t \in \mathcal{W}$ and $\operatorname{Hom}(K_t(\mathbf{x}), M) \in \mathcal{W}$, we have $C^t \in \mathcal{W}$ by [3, Lemma 2.3 (i)]. Hence $0:_{C^t} \mathfrak{a} \simeq$ $\operatorname{Hom}_R(R/\mathfrak{a}, C^t)$ is weakly Laskerian. But since $\mathfrak{a}H^t(x_1, \dots, x_n; M) = 0$, it follows that $H^t(x_1, \dots, x_n; M) \subseteq 0:_{C^t} \mathfrak{a}$, and so $H^t(x_1, \dots, x_n; M)$ is weakly Laskerian. Next, from the short exact sequence

$$0 \to H^t(x_1, \dots, x_n; M) \to C^t \to B^{t+1} \to 0$$

and [3, Lemma 2.3 (i)] we deduce that $B^{t+1} \in W$. Hence, by induction we have proved that $B^j \in W$ for all j. Now, since $B^n \in W$ and $\text{Hom}(K_n(\mathbf{x}), M) \in W$, we obtain that $C^n \in W$. Hence $0:_{C^n} \mathfrak{a} \simeq \text{Hom}_R(R/\mathfrak{a}, C^n)$ is weakly Laskerian. Thus $H^n(x_1, \ldots, x_n; M) \subseteq 0:_{C^n} \mathfrak{a}$ implies that $H^n(x_1, \ldots, x_n; M)$ is weakly Laskerian. Since $M/\mathfrak{a}M = H^n(x_1, \ldots, x_n; M)$, it follows that $M/\mathfrak{a}M$ is weakly Laskerian. \Box

Corollary 1. Let M be a \mathfrak{a} -weakly cofinite R-module. Then $M/\mathfrak{a}^n M$ is weakly Laskerian for all $n \in \mathbb{N}$.

Proof. The assertion follows from the definition and Theorem 1.

763

Corollary 2. Let \mathfrak{a} be an ideal of R, and let M be an R-module such that $\mathrm{H}^{i}_{\mathfrak{a}}(M)$ is \mathfrak{a} -weakly cofinite for all i. Then $\mathrm{Ext}^{i}_{R}(R/\mathfrak{a}, M)$ is weakly Laskerian for all i, and $M/\mathfrak{a}^{n}M$ is weakly Laskerian for all $n \in \mathbb{N}$.

Proof. By Theorem 1, it is sufficient to prove that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M)$ is weakly Laskerian for all *i*. The case i = 0 is clear, so let i > 0 and we do induction on *i*. We first reduce to the case $\Gamma_{\mathfrak{a}}(M) = 0$. To do this, let $\overline{M} = M/\Gamma_{\mathfrak{a}}(M)$, then we have the exact sequence

$$\dots \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M)) \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, M) \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, \bar{M})$$
$$\to \operatorname{Ext}^{i+1}_{R}(R/\mathfrak{a}, \Gamma_{\mathfrak{a}}(M)) \to \dots$$

and isomorphism $\operatorname{H}^{i}_{\mathfrak{a}}(M) \cong \operatorname{H}^{i}_{\mathfrak{a}}(\overline{M})$ for all i > 0. Since $\Gamma_{\mathfrak{a}}(M)$ is a-weakly cofinite, so in view of [3, Lemma 2.3 (i)], we may assume that M is a-torsion free. Let E be the injective envelope of M and put L = E/M. Then $\operatorname{H}^{i}_{\mathfrak{a}}(E) = 0$, and we therefore get the isomorphisms $\operatorname{H}^{i}_{\mathfrak{a}}(L) \cong \operatorname{H}^{i+1}_{\mathfrak{a}}(M)$ and $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, L) \cong \operatorname{Ext}^{i+1}_{R}(R/\mathfrak{a}, M)$ for all $i \geq 0$. Now the assertion follows by induction.

Theorem 2. Let $a = (x_1, ..., x_t)$ be an ideal of R, and let M be an R-module. Then the following statements are equivalent:

(i) $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M)$ is a weakly Laskerian R-module for all *i*.

(ii) $\operatorname{Tor}_{i}^{R}(R/\mathfrak{a}, M)$ is a weakly Laskerian R-module for all *i*.

(iii) The Koszul cohomology module $H^i(x_1,...,x_t;M)$ is weakly Laskerian *R*-module for all *i*.

Furthermore, each of these coditions imply that $M/\mathfrak{a}^n M$ is weakly Laskerian for all $n \in \mathbb{N}$.

Proof. (i) \Rightarrow (ii) Let

$$F_{\bullet}: \dots \to F_2 \to F_1 \to F_0 \to 0$$

be a free resolution of finitely generated *R*-modules for R/\mathfrak{a} . We have

Tor_{*i*}^{*R*}(*R*/ \mathfrak{a} , *M*) = *Z_i*/*B_i*, where *B_i* and *Z_i* are the modules of boundaries and cycles of the complex $\mathbb{F}_{\bullet} \otimes_R M$, respectively. Let *W* be the class of all *R* modules *N* such that $\operatorname{Ext}_R^i(R/\mathfrak{a}, N)$ is weakly Laskerian for all $i \ge 0$. By induction we claim that $Z_j \in W$ for all *j*. We have $Z_0 = F_0 \otimes_R M \in W$. Now, let $Z_t \in W$. Consider the exact sequence

(†)
$$0 \to C_{i+1} \to Z_i \to \operatorname{Tor}_i^R(R/\mathfrak{a}, M) \to 0,$$

where $C_i = F_i \otimes_R M/Z_i$. Hence we obtain the exact sequence

$$Z_i/\mathfrak{a}Z_i \to \operatorname{Tor}_i^R(R/\mathfrak{a}, M) \to 0.$$

Therefore, $\operatorname{Tor}_t^R(R/\mathfrak{a}, M)$ is a homomorphic image of $Z_t/\mathfrak{a}Z_t$. Since $Z_t \in W$, it follows from Theorem 1 that $Z_t/\mathfrak{a}Z_t$ is weakly Laskerian, and so $\operatorname{Tor}_t^R(R/\mathfrak{a}, M)$

is weakly Laskerian. Hence, we deduce by (†) that $C_{t+1} \in W$, and so $Z_{t+1} \in W$. Hence by induction we have proved that $Z_j \in W$ for all j. It follows from Theorem 1 that $Z_i/\mathfrak{a}Z_i$ is weakly Laskerian for all i, and so $\operatorname{Tor}_i^R(R/\mathfrak{a}, M)$ is weakly Laskerian for all i.

To prove the implication (ii) \Rightarrow (iii), since

$$H^{\iota}(x_1,\ldots,x_t;M) \simeq H_{t-i}(x_1,\ldots,x_t;M),$$

so it is sufficient to show that $H_i(x_1, ..., x_t; M)$ is weakly Laskerian for all *i*. Let $\mathbf{x} = x_1, ..., x_t$. Consider the Koszul complex

$$K_{\bullet}(\mathbf{x}): 0 \to K_t(\mathbf{x}) \to K_{t-1}(\mathbf{x}) \to \dots \to K_1(\mathbf{x}) \to K_0(\mathbf{x}) \to 0,$$

We have $H_i(x_1, ..., x_t; M) = Z_i/B_i$, where B_i and Z_i are the modules of boundaries and cycles of the complex $K_{\bullet}(\mathbf{x}) \otimes_R M$, respectively. Let W be the class of all Rmodules N such that $\operatorname{Tor}_i^R(R/\mathfrak{a}, N)$ is weakly Laskerian for all $i \ge 0$. Consider the exact sequence

$$0 \to C_{i+1} \to Z_i \to H_i(x_1, \dots, x_t; M) \to 0,$$

where $C_i = K_i(\mathbf{x}) \otimes_R M/Z_i$. Hence we obtain the exact sequence

$$Z_i/\mathfrak{a}Z_i \to H_i(x_1,\ldots,x_t;M) \to 0.$$

By using a similar proof as in the proof of the implication (i) \Rightarrow (ii), $Z_i \in W$ for all *i*. It follows that $Z_i/\mathfrak{a}Z_i = \operatorname{Tor}_0^R(R/\mathfrak{a}, Z_i)$ is weakly Laskerian for all *i*, and so $H_i(x_1, \ldots, x_t; M)$ is weakly Laskerian for all *i*.

To prove the implication (iii) \Rightarrow (i), let

$$\mathbb{F}_{\bullet}: \cdots \to F_2 \to F_1 \to F_0 \to 0$$

be a free resolution of finitely generated *R*-modules for R/\mathfrak{a} . We have $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M) = Z^{i}/B^{i}$, where B^{i} and Z^{i} are the modules of coboundaries and cocycles of the complex $\operatorname{Hom}_{R}(\mathbb{F}_{\bullet}, M)$, respectively. Let W be the class of all R modules N such that $H^{i}(x_{1}, \ldots, x_{t}; N)$ is weakly Laskerian for all $i \geq 0$. Consider the short exact sequence

$$0 \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, M) \to C^{i} \to B^{i+1} \to 0,$$

where $C^i = \text{Hom}_R(F_i, M)/B^i$. By using a similar proof as in the proof of the Theorem 1, $B^i \in W$ for all *i*. Thus $C^i \in W$ for all *i*. Now, since

$$\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, M) \subseteq 0:_{C^{i}} \mathfrak{a} \simeq \operatorname{Hom}_{R}(R/\mathfrak{a}, C^{i}) \simeq H^{0}(x_{1}, \dots, x_{t}; C^{i})$$

and $H^0(x_1, \ldots, x_t; C^i)$ is weakly Laskerian, so $\operatorname{Ext}^i_R(R/\mathfrak{a}, M)$ is weakly Laskerian for all *i*.

Finally, the end part is followed by Theorem 1.

BAHRAM VAKILI AND JAFAR AZAMI

The first part of the next result has been proved using Gruson's Theorem by Divaani-Aazar and Mafi [4, Theorem 2.8] by using the same proof as that used in Delfino and Marley [2, Proposition 1]. We give a direct proof for this.

Theorem 3. Let M be an R-module such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M)$ is a weakly Laskerian R-module for all $i \geq 0$. Then for any finitely generated R-module L with $\operatorname{Supp} L \subseteq V(\mathfrak{a})$, the R-modules $\operatorname{Ext}_{R}^{i}(L, M)$ and $\operatorname{Tor}_{i}^{R}(L, M)$ are weakly Laskerian for all $i \geq 0$.

Proof. We have $V(\operatorname{Ann}_R L) = \operatorname{Supp} L \subseteq V(\mathfrak{a})$. Hence there exists $n \in \mathbb{N}$ such that $\mathfrak{a}^n L = 0$. It follows that $\mathfrak{a}^n \operatorname{Ext}^i_R(L, M) = 0$ and $\mathfrak{a}^n \operatorname{Tor}^R_i(L, M) = 0$ for all *i*. Let

$$\mathbb{F}_{\bullet}: \cdots \to F_2 \to F_1 \to F_0 \to 0$$

be a free resolution of finitely generated *R*-modules for L. Then $\operatorname{Ext}_{R}^{i}(L, M) = Z^{i}/B^{i}$, where B^{i} and Z^{i} are the modules of coboundaries and cocycles of the complex $\operatorname{Hom}_{R}(\mathbb{F}_{\bullet}, M)$, respectively. Let \mathcal{C} be the class of all *R* modules *N* such that $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, N)$ is weakly Laskerian for all $i \geq 0$. Consider the short exact sequence

$$0 \to \operatorname{Ext}^{i}_{R}(L, M) \to C^{i} \to B^{i+1} \to 0,$$

where $C^i = \operatorname{Hom}_R(F_i, M)/B^i$. By using a similar proof as in the proof of the Theorem 1 and using Lemma 1, we have that $B^i \in \mathcal{C}$ for all *i*. (Note that $\operatorname{Ext}^i_R(L, M) \subseteq 0$: $_{C^i} \mathfrak{a}^n$.) Thus $C^i \in \mathcal{C}$ for all *i*. Hence $0:_{C^i} \mathfrak{a}$ is weakly Laskerian for all *i*, and so it follows from Lemma 1 that $0:_{C^i} \mathfrak{a}^n$ is weakly Laskerian for all *i*. Now, since $\operatorname{Ext}^i_R(L, M) \subseteq 0:_{C^i} \mathfrak{a}^n$, $\operatorname{Ext}^i_R(L, M)$ is weakly Laskerian for all *i*.

Also, we have $\operatorname{Tor}_{i}^{R}(L, M) = Z_{i}/B_{i}$, where B_{i} and Z_{i} are the modules of boundaries and cycles of the complex $\mathbb{F}_{\bullet} \otimes_{R} M$, respectively. Let \mathcal{C}' be the class of all Rmodules N such that $\operatorname{Tor}_{i}^{R}(R/\mathfrak{a}, N)$ is weakly Laskerian for all $i \geq 0$. In view of Theorem 2 and our assumption, $M \in C'$. Consider the exact sequence

$$0 \to C_{i+1} \to Z_i \to \operatorname{Tor}_i^R(L, M) \to 0,$$

where $C_i = F_i \otimes_R M/Z_i$. As $\mathfrak{a}^n \operatorname{Tor}_i^R(L, M) = 0$ for all *i*, we obtain the exact sequence

$$Z_i/\mathfrak{a}^n Z_i \to \operatorname{Tor}_i^R(L, M) \to 0.$$

Now, by using a similar proof as in the proof of the Theorem 2((i) \Rightarrow (ii)) and using Lemma 2, we have $Z_i \in \mathcal{C}$ for all *i*. Therefore, it follows from Lemma 2 that $Z_i/\mathfrak{a}^n Z_i$ is weakly Laskerian for all *i*, and $\operatorname{Tor}_i^R(L, M)$ is weakly Laskerian for all *i*.

The change of ring principle for weak cofiniteness has been proved by using a spectral sequence argument by Divaani-Aazar and Mafi [4, Theorem 2.9]. We give a direct proof for it.

WEAK COFINITENESS

Theorem 4. Let the ring T be a homomorphic image of R, and let M be a T-module. Then M is an $\mathfrak{a}T$ -weakly cofinite as a T-module if and only if M is an \mathfrak{a} -weakly cofinite as an R-module.

Proof. Assume that T = R/I for some ideal I of R and let N be a T-module. Then $\mathfrak{p} \in \operatorname{Ass}_R N$ if and only if $\mathfrak{p}/I \in \operatorname{Ass}_T N$, and so N is weakly Laskerian as a T-module if and only if N is weakly Laskerian as an R-module. Also, since $\mathfrak{p} \in \operatorname{Supp}_R N$ if and only if $\mathfrak{p}/I \in \operatorname{Supp}_T N$, it follows that $\operatorname{Supp}_T M \subseteq V(\mathfrak{a}T)$ if and only if $\operatorname{Supp}_R M \subseteq V(\mathfrak{a})$.

Now, let $\mathfrak{a} = (x_1, \dots, x_t)$ and let $\varphi : R \to T$ be the natural epimorphism. As $\mathfrak{a}T = (\varphi(x_1), \dots, \varphi(x_t))$, it follows from Theorem 2 that $\operatorname{Ext}^i_T(T/\mathfrak{a}T, M)$ is weakly Laskerian *T*-module for all *i* if and only if the Koszul cohomology modules $H^i(\varphi(x_1), \dots, \varphi(x_t); M)$ are weakly Laskerian *T*-modules for all *i*. But, by above $H^i(\varphi(x_1), \dots, \varphi(x_t); M)$ is a weakly Laskerian *T*-module if and only if $H^i(\varphi(x_1), \dots, \varphi(x_t); M)$ is a weakly Laskerian *R*-module. On the other hand,

$$H^i(\varphi(x_1),\ldots,\varphi(x_t);M) \cong H^i(x_1,\ldots,x_t;M).$$

Now, the result follows from Theorem 2.

3. A sufficient condition for \mathfrak{a} -weakly cofinite modules

Theorem 5. Let $f : M \to N$ be an *R*-homomorphism such that the modules $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, \operatorname{Ker} f)$ and $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, \operatorname{Coker} f)$ are both weakly Laskerian for all *i*. Then $\operatorname{Ker}\operatorname{Ext}_{R}^{i}(\operatorname{id}_{R/\mathfrak{a}}, f)$ and $\operatorname{Coker}\operatorname{Ext}_{R}^{i}(\operatorname{id}_{R/\mathfrak{a}}, f)$ are also weakly Laskerian for all *i*.

Proof. Consider the exact sequences

$$0 \to \operatorname{Ker} f \to M \xrightarrow{g} \operatorname{Im} f \to 0 \text{ and } 0 \to \operatorname{Im} f \xrightarrow{l} N \to \operatorname{Coker} f \to 0,$$

where $\iota \circ g = f$. Hence we obtain the following two exact sequences

$$\cdots \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a},\operatorname{Ker} f) \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a},M) \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a},\operatorname{Im} f) \to \cdots$$

and

$$\cdots \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a},\operatorname{Im} f) \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a},N) \to \operatorname{Ext}^{i}_{R}(R/\mathfrak{a},\operatorname{Coker} f) \to \cdots$$

Now, since $\operatorname{Ext}_{R}^{i+1}(R/\mathfrak{a}, \operatorname{Ker} f)$ is weakly Laskerian, it follows from the first exact sequence that $\operatorname{CokerExt}_{R}^{i}(id_{R/\mathfrak{a}},g)$ and $\operatorname{KerExt}_{R}^{i+1}(id_{R/\mathfrak{a}},g)$ are both weakly Laskerian for all *i*. Also, as $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, \operatorname{Coker} f)$ is weakly Laskerian, the second exact sequence implies that the *R*-modules $\operatorname{CokerExt}_{R}^{i}(id_{R/\mathfrak{a}},\iota)$ and $\operatorname{KerExt}_{R}^{i+1}(id_{R/\mathfrak{a}},\iota)$ are weakly Laskerian for all *i*. Therefore, the assertion follows from the exact sequences

$$0 \to \operatorname{Ker}\operatorname{Ext}^{l}_{R}(id_{R/\mathfrak{a}},g) \to \operatorname{Ker}\operatorname{Ext}^{l}_{R}(id_{R/\mathfrak{a}},f) \to \operatorname{Ker}\operatorname{Ext}^{l}_{R}(id_{R/\mathfrak{a}},\iota)$$

and

 $\operatorname{Coker}\operatorname{Ext}^{i}_{R}(id_{R/\mathfrak{a}},g) \to \operatorname{Coker}\operatorname{Ext}^{i}_{R}(id_{R/\mathfrak{a}},f) \to \operatorname{Coker}\operatorname{Ext}^{i}_{R}(id_{R/\mathfrak{a}},\iota) \to 0. \quad \Box$

Corollary 3. Let M be an R-module with $\text{Supp } M \subseteq V(\mathfrak{a})$. Suppose that $x \in \mathfrak{a}$ is such that $0:_M x$ and M/xM are both \mathfrak{a} -weakly cofinite. Then M is also \mathfrak{a} -weakly cofinite.

Proof. Put $f = x1_M$. Then Ker $f = 0 :_M x$ and Coker f = M/xM. Hence in view of Theorem 5, the *R*-module Ker $\operatorname{Ext}_R^i(1_{R/\mathfrak{a}}, f)$ is weakly Laskerian. But since $\operatorname{Ext}_R^i(1_{R/\mathfrak{a}}, f) = 0$, so $\operatorname{Ker}\operatorname{Ext}_R^i(1_{R/\mathfrak{a}}, f) = \operatorname{Ext}_R^i(R/\mathfrak{a}, M)$. This completes the proof.

Corollary 4. Let M be an R-module. Suppose that $x \in \sqrt{\mathfrak{a}}$ is such that $0:_M x$ and M/xM are both weakly Laskerian. Then $\operatorname{Ext}_R^i(R/\mathfrak{a}, \Gamma_x(M))$ is also weakly Laskerian for all i.

Proof. We have $x^n \in \mathfrak{a}$ for some $n \in \mathbb{N}$. Put $f = x^n \mathbf{1}_{\Gamma_x(M)}$. Then, Ker f = 0: $\Gamma_x(M) = 0$: M = 0 and Coker $f = \Gamma_x(M)/x^n \Gamma_x(M)$. Consider the exact sequence

$$0 \rightarrow \operatorname{Coker} f \rightarrow M/x^n M.$$

As M/xM is weakly Laskerian, it follows from Lemma 2 that $M/x^n M$ is weakly Laskerian, and so Coker f is weakly Laskerian. Therefore, in view of [3, Lemma 2.3 (i)] and Theorem 5, Ker Extⁱ_R($1_{R/\mathfrak{a}}, f$) is weakly Laskerian. But $x^n \in \mathfrak{a}$ implies that Extⁱ_R($1_{R/\mathfrak{a}}, f$) = 0, and so Ker Extⁱ_R($1_{R/\mathfrak{a}}, f$) = Extⁱ_R($R/\mathfrak{a}, \Gamma_x(M)$). This completes the proof.

Corollary 5. Let M be an R-module with $\operatorname{Supp} M \subseteq V(\mathfrak{a})$. Suppose that $x \in \sqrt{\mathfrak{a}}$ is such that $0:_M x$ and M/xM are both weakly Laskerian. Then M is \mathfrak{a} -weakly cofinite.

Proof. The result follows from Corollary 4.

4. COHOMOLOGICAL DIMENSION AND WEAKLY LASKERIAN MODULES

Before bringing the next result we recall that, for an R-module M, the *cohomolo*gical dimension of M with respect to an ideal \mathfrak{a} of R is defined as

$$\operatorname{cd}(\mathfrak{a}, M) = \sup\{i \in \mathbb{Z} \mid H^{1}_{\mathfrak{a}}(M) \neq 0\}.$$

Proposition 1. Let cd(a) = 1, and let M be a weakly Laskerian R-module. Then $H^{j}_{a}(M)$ is a-weakly cofinite for all i.

Proof. Since $H^0_{\mathfrak{a}}(M)$ is a submodule of M, it follows that $H^0_{\mathfrak{a}}(M)$ is a-weakly cofinite. Also, $cd(\mathfrak{a}) = 1$ implies that $H^i_{\mathfrak{a}}(M) = 0$ for all i > 1. Therefore, the result follows from [4, Theorem 3.1].

Proposition 2. Let $\mathfrak{b} \supseteq \mathfrak{a}$ be two ideals of R with $cd(\mathfrak{b}) = 1$, and let M be an R-module with $\Gamma_{\mathfrak{a}}(M) = 0$. Then

$$H^{j}_{\mathfrak{b}}(H^{i}_{\mathfrak{a}}(M)) \cong \begin{cases} H^{1}_{\mathfrak{b}}(M), & \text{if } j = 0, i = 1\\ 0, & \text{otherwise.} \end{cases}$$

Proof. See the proof of [6, Proposition 3.15].

Corollary 6. Let $\mathfrak{b} \supseteq \mathfrak{a}$ be two ideals of R with $cd(\mathfrak{b}) = 1$, and let M be a weakly Laskerian R-module. Then $H^j_{\mathfrak{b}}(H^i_{\mathfrak{a}}(M))$ is \mathfrak{b} -weakly cofinite for all i and j.

Proof. Since $cd(\mathfrak{b}) = 1$, it follows from Proposition 1 that $H^j_{\mathfrak{b}}(\Gamma_{\mathfrak{a}}(M))$ is \mathfrak{b} -weakly cofinite for all j. Now, let i > 0. As $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{a}}(M/\Gamma_{\mathfrak{a}}(M))$, we may therefore assume that $\Gamma_{\mathfrak{a}}(M) = 0$. Thus, the result follows from Propositions 1 and 2.

Corollary 7. Let $\mathfrak{b} \supseteq \mathfrak{a}$ be two ideals of R with $\mathrm{cd}(\mathfrak{b}) = 1$, and let M be a weakly Laskerian R-module. Then for every finitely generated R-module L with $\mathrm{Supp} L \subseteq V(\mathfrak{b})$, the R-modules $\mathrm{Ext}^{j}_{R}(L, \mathrm{H}^{i}_{\mathfrak{a}}(M))$ and $\mathrm{Tor}^{R}_{j}(L, \mathrm{H}^{i}_{\mathfrak{a}}(M))$ are weakly Laskerian for all i and j. In particular, the R-modules $H^{i}_{\mathfrak{a}}(M)/\mathfrak{b}^{n}H^{i}_{\mathfrak{a}}(M)$ are weakly Laskerian for all i and n.

Proof. By Corollary 6, $H_{\mathfrak{b}}^{j}(H_{\mathfrak{a}}^{i}(M))$ is \mathfrak{b} -weakly cofinite for all i and j. Therefore, it follows from Corollary 2 that the *R*-modules $\operatorname{Ext}_{R}^{j}(R/\mathfrak{b}, H_{\mathfrak{a}}^{i}(M))$ are weakly Laskerian for all i and j. Thus, the result follows from Theorem 3.

ACKNOWLEDGEMENT

The authors are deeply grateful to the referee for careful reading of the original manuscript and valuable suggestions. The research of the first author was supported in part by a grant from Islamic Azad University, Shabestar Branch.

REFERENCES

M. P. Brodmann and R. Y. Sharp, *Local cohomology. An algebraic introduction with geometric applications*, ser. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 1998, vol. 60.

^[2] D. Delfino and T. Marley, "Cofinite modules and local cohomology," J. Pure Appl. Algebra, vol. 121, no. 1, pp. 45–52, 1997.

BAHRAM VAKILI AND JAFAR AZAMI

- [3] K. Divaani-Aazar and A. Mafi, "Associated primes of local cohomology modules," Proc. Am. Math. Soc., vol. 133, no. 3, pp. 655–660, 2005.
- [4] K. Divaani-Aazar and A. Mafi, "Associated primes of local cohomology modules of weakly Laskerian modules," *Commun. Algebra*, vol. 34, no. 2, pp. 681–690, 2006.
- [5] A. Grothendieck, Local cohomology. A seminar given by A. Grothendieck, Harvard University, Fall 1961. Notes by R. Hartshorne, ser. Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer-Verlag, 1967, vol. 41.
- [6] L. Melkersson, "Modules cofinite with respect to an ideal," J. Algebra, vol. 285, no. 2, pp. 649–668, 2005.

Authors' addresses

Bahram Vakili

Department of Mathematics, Islamic Azad University, Shabestar Branch, Shabestar, Iran *E-mail address:* bvakil2004@yahoo.com and bvakil@iaushab.ac.ir

Jafar Azami

Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran *E-mail address:* jafar.azami@gmail.com and azami@uma.ac.ir