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ABSTRACT

Background. Atypical forms of haemolytic uraemic syndrome
(aHUS) include HUS caused by defects in the regulation of
alternative complement pathway and HUS linked to neuramini-
dase-producing pathogens, such as Streptococcus pneumoniae.
Increasing data support a pathogenic role of neuraminidase in
the development of S. pneumoniae-associated haemolytic
uraemic syndrome (SP-HUS), but the role of complement has
never been clarified in detail. Therefore, we aimed to investigate
whether the pathologic complement profile and genetic risk
factors of aHUS are present in patients with SP-HUS.

Methods. Enrolling five patients with SP-HUS classical and
alternative pathway activity, besides C3, C4, factors H, B, I and
anti-factor H autoantibody levels were determined. The
coding regions of CFH, CFI, CD46 (MCP), THBD, C3 and
CFB genes were sequenced and the copy number of CFI,
CD46, CFH and related genes were also analyzed.
Results. We found that in the acute phase samples of SP-HUS
patients, complement components C4, C3 and activity of the
classical and alternative pathways were decreased, indicating
severe activation and complement consumption, but most of
these alterations normalized later in remission. Three of the
patients carried mutations and risk haplotypes in comp-
lement-mediated aHUS associated genes. The identified
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mutations include a previously published CFI variant (P50A)
and two novel ones in CFH (R1149X) and THBD (T44I)
genes.
Conclusions. Our results suggest that severe complement dys-
regulation and consumption accompany the progress of inva-
sive pneumococcal disease (IPD)-associated SP-HUS and
genetic variations of complement genes may contribute to the
development of this complication in a proportion of the af-
fected patients.

INTRODUCTION

Haemolytic uraemic syndrome (HUS) belongs to thrombotic
microangiopathies (TMAs) and is defined by haemolytic
anemia, thrombocytopoenia and renal failure [1]. In its
typical, diarrhoea-associated form, HUS is caused by exotox-
ins of certain bacteria, most frequently enterohaemorrhagic
Escherichia coli [2]. In contrast, atypical forms of HUS
(aHUS) include HUS caused by defects in the regulation of the
alternative complement pathway on vascular endothelial cells
[3] and HUS linked to neuraminidase-producing pathogens,
such as Streptococcus pneumoniae [4] and influenza A [5]. In
addition, drug-mediated or disease-associated forms, collec-
tively classified as secondary HUS, have also been reported
(for classification of TMA forms see [6]).

Streptococcus pneumoniae (pneumococcus) is a Gram-
positive, encapsulated bacterium and a leading cause of pneu-
monia, meningitis and septicaemia in children and the elderly.
Its asymptomatic nasopharyngeal colonization is common;
nevertheless, it may cause severe illnesses and in cases, with
life-threatening diseases such as septicaemia, pneumonia with
pulmonary abscess or meningitis, it is referred to as invasive
pneumococcal disease (IPD).

HUS is an uncommon complication of IPD, its prevalence
is highest in children under 2 years of age, and this association
is extremely rare in adults. The pathogenesis of S. pneumo-
niae-associated HUS (SP-HUS) has recently been reviewed by
Copelovitch and Kaplan [7]. There is evidence of a role for
neuraminidase of S. pneumoniae cleaving n-acetyl neuraminic
acid from cell surfaces and exposing the Thomsen-Frieden-
reich (T) cryptantigen. Naturally occurring IgM anti-T anti-
bodies bind to the exposed T antigen leading to red blood cell
(RBC) agglutination, haemolysis, microvascular thrombosis,
thrombocytopoenia and the clinical picture of HUS [8]. There
are several recent observations supporting the pathogenic role
of neuraminidase in the development of SP-HUS, including
development of HUS after infections with other neuramini-
dase-producing microbes such as influenza A virus [5] and
Capnocytophaga canimorsus [9, 10].

As presented by Huang et al. [11], neuraminidase activity
may be present in ∼50% of patients with IPD, but only a min-
ority of IPD patients progress to SP-HUS. The mechanism of
SP-HUS development, particularly the host-related risk
factors, is only scarcely known. Although an increasing
number of genetic variants of certain complement genes are
linked to the development of aHUS, a detailed investigation of
the complement profile with the analysis of different variants

of the complement genes has never been published in the
context of SP-HUS. We hypothesized that in some cases, a
pathologic complement profile may be present in the acute
phase of SP-HUS and some of the previously identified
genetic risk factors of aHUS (such as mutations, risk haplo-
types and copy-number variations of alternative pathway regu-
lators) leading to complement alternative pathway
dysregulation may contribute to the development of SP-HUS.
Accordingly, a detailed investigation of the complement
system was accomplished in a series of five patients with SP-
HUS.

MATERIALS AND METHODS

Patients and samples

Five consecutive patients with SP-HUS were prospectively
enrolled in this single-research laboratory-based investigation
since August 2007, providing diagnostic services (ADAMTS13
and complement measurements) for patients suspected to
have TMA in Hungary. The patient enrollment was closed in
March, 2012.

Inclusion criteria: presence of HUS, according to the
Center for Disease Control’s definition: evidence of microan-
giopathic haemolytic anaemia; renal injury was defined if the
following were present with acute onset: proteinuria (>0.5 g/
24 h) and elevated creatinine (>88.4 µmol/L or >50% increase
above baseline); and thrombocytopoenia (<150 G/L) at pres-
entation, or within 7 days of onset; and presence of invasive S.
pneumoniae infection. Exclusion criteria: presence of dissemi-
nated intravascular coagulation or presence of severe comor-
bidities. Detailed description of enrolled cases is provided in
Supplementary Material and in Table 1. As control, DNA
samples of 100 healthy blood donors (aged 27–58, 60%
female) were analysed.

Blood samples (EDTA-anticoagulated blood, sodium-
citrate anticoagulated plasma and native serum) were taken by
venipuncture or from central catheter before the initiation of
plasma therapy (except for case 1). Cells and supernatant were
separated by centrifugation, aliquots were made and stored at
≤70°C until determinations. An acute phase blood sample in
this study refers to the first available blood sample of the
patient, taken at the time when SP-HUS developed and the
patient was transferred to the tertiary care centre.

Determination of complement parameters, ADAMTS13
and neuraminidase activity

Functional assessment of the alternative pathway was done
with the Wieslab AP ELISA kit [12], total classical pathway
activity by a sheep-erythrocyte haemolytic test, C3 was
measured with immunoturbidimetry, factor H antigen by
sandwich-ELISA, factors C4, B and I with radial immune dif-
fusion, IgG anti-factor H autoantibodies by direct ELISA.
ADAMTS13 activity levels were determined using the fluori-
genic substrate FRET-VWF73 (Peptides International).
Details of the above laboratory determinations have been de-
scribed elsewhere [13].
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Table 1. Admission laboratory results and disease course in patients with SP-HUS

Variable Case 1 Case 2 Case 3 Case 4 Case 5

Registry code HUN49 HUN67 HUN129 HUN156 HUN274

Age (months) 12 11 37 18 29

Gender Female Female Female Female Female

Vaccination Prevenar Pneumovax Prevenar Pneumovax Prevenar

Pneumococcus-
related disease

Pneumonia,
empyema

Pneumonia,
empyema

Pneumonia,
empyema

Pneumonia,
empyema

Pneumonia,
pulmonary
abscess

Evidence of
Streptococcus
infection

Pleural
effusion,
culture

Pleural effusion,
culture

Pleural effusion,
antigenic test

Pleural effusion,
antigenic test

Pleural effusion,
antigenic test

Length of anamnesis
(days)a

5 14 7 10 8

Pneumococcus HUS
case definition

Definite Definite Definite Definite Definite

Haemoglobin (g/L)b 67 (110–140) 83 (108–128) 96 (100–600) 41 (100–600) 39 (108–156)

Platelet count (G/L)b 65 (169–358) 73 (120–350) 33 (130–450) 33 (130–450) 25 (286–509)

Fragmentocytes Yes Yes Yes Yes Yes

Direct Coombs’ test Positive Positive Positive Positive Positive

Serum
neuraminidase
activity

Positive Positive Positive Positive Positive

LDH (U/L)b 4313 (<850) 1729 (150–850) 7610 (200–600) 8004 (200–600) 6843 (310–790)

Creatinine (µmol/L)b 84 (27–62) 47 (18–36) 207 (70–90) 273 (70–90) 301 (21–36)

Fibrinogen (g/L)b 5.0 (2.0–4.5) 1.9 (2.0–4.0) 6.2 (1.5–4.0) 2.6 (1.5–4.0) 3.5 (2.4–5.0)

D-dimer (µg/mL)b >4 (<0.5) nd >20 (<0.5) nd nd

RBC transfusion
(unit)

22 4 6 4 2

Platelet transfusion
(unit)

– 2 – 8 –

Plasma therapy
(number of sessions)

PE (6) FFP infusion (3) PE (4) – –

Dialysis (days) 23 HF (3 sessions)
HD (2 sessions)

PD (2) – PD(4)

Comorbidities – – – – –

Duration of hospital
stay (days)

101 11 25 15 30

Outcome (follow-up
months)

Severe
intracranial
haemorrhage
on hospital day
30, exitus on
day 101

Fatal
intracranial
haemorrhage on
hospital day 11
with exitus
letalis

No sequelae
(24)

No sequelae
(18)

No sequelae (8)

FFP, fresh frozen plasma; HD, haemodialysis; HF, haemofiltration; nd, not determined; PD, peritoneal dialysis; PE, plasma exchange.
aLength of anamnesis was defined as the number of days from the first signs of infection until hospitalization due to HUS.
bReference ranges are indicated in parentheses.
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Neuraminidase activity was kinetically determined in
serum samples using a 20-(4-methylumbelliferyl)-α-D-N-acet-
ylneuraminic acid fluorigenic substrate [14] in phosphate-buf-
fered saline, pH 5.5, 2 mM CaCl2 in white 384-well
microplates with a Hidex Chameleon II microplate reader.
Fluorescence (λex 360 nm/λem 445 nm) over time was plotted
and patient curves were compared with healthy control
samples and mixed normal human serum. Serum neuramini-
dase activity was considered semiquantitatively positive if the
reaction slope (patient sample) was at least double that ob-
tained in the control samples.

Molecular genetic analysis

Screening for mutations was carried out by DNA sequen-
cing following PCR amplification of coding exons and flanking
regions. The whole coding region of genes encoding comp-
lement factor H (CFH; MIM# 134370), factor I (CFI; MIM#
217030), membrane cofactor protein (CD46; MIM# 120920),
thrombomodulin (THBD; MIM# 188040), factor B (CFB,
MIM# 138470) and C3 (C3, MIM#120700) was analysed.
Primer sequences and PCR conditions are available upon
request. Following treatment with exonuclease I and alkaline
phosphatase amplification products were processed for se-
quencing applying BigDye v3.1 sequencing chemistry
(Applied Biosystems, Foster City, CA) and sequenced using an
ABI 3130xl Genetic Analyser (Applied Biosystems). Sequen-
cing chromatograms were evaluated applying CLC DNA
Workbench 6.5 (CLC Bio, Aarhus, Denmark). Polymorphic
variants were numbered from the A of the ATG translation
initiation site as +1. Previously identified and nonsense
mutations were accepted as pathogenetically relevant vari-
ations, while novel missense variants were regarded as
mutations if they were not found in 100 healthy Hungarian
controls (200 chromosomes) and international databases
(dbSNP (www.ncbi.nlm.nih.gov/snp); Exome Variant Server
[NHLBI GO Exome Sequencing Project (ESP), Seattle, WA
(URL: http://evs.gs.washington.edu/EVS/) (Nov 2012 ac-
cessed)]. A possible functional effect of novel missense vari-
ations was predicted in silico using PolyPhen [15], PROVEAN
[16] and MutationTaster [17].

In order to study copy-number alterations of selected
complement genes, multiplex ligation-dependent probe ampli-
fication (MLPA) was performed with SALSA MLPA probe-
mixes P236-A3 and P296-A1 (MRC-Holland, Amsterdam, the
Netherlands) following the manufacturer’s instructions. The
P236-A3 mix is designed to detect deletions or duplications in
the chromosomal region of complement factor H (CFH) and
related genes (CFHR1, CFHR2, CFHR3, CFHR5), while the
P296-A1 probemix contains probes specific for the genes en-
coding complement factor I (CFI) and MCP (CD46).

Statistical analysis

Pair-wise linkage disequilibrium of CD46 polymorphisms
was calculated using Haploview 4.2 [18] based on genotype
data of the CEU population (Caucasians of Northern and
Western European descent) from the International HapMap
Project (www.hapmap.org).

RESULTS

Case definitions, diagnosis and follow-up

Five girls aged <38 months who met the Centre for Disease
Control’s definition of HUS [19] were included in our study
(for detailed description of cases, see Supplementary
Material). Furthermore, the patients were classified as having
definite SP-HUS, based on the modified criteria presented by
Copelovitch and Kaplan [4], in detail, evidence of HUS, evi-
dence of invasive S. pneumoniae infection and exclusion of
disseminated intravascular coagulation (Table 1). All of them
had pneumonia with effusion, empyema or pulmonary
abscess, none of them had meningeal signs or meningitis and
no comorbidities were present. Serum neuraminidase activity
was positive in all cases and accordingly, the direct Coombs
test was also positive in all cases (Table 1).

Two of the five patients died during hospital stay due to in-
tracranial haemorrhage, whereas the other three patients were
released without sequelae and had no disease recurrence
during follow-up (Table 1).

Complement profile

Table 2 shows the results of the complement testing in the
acute admission, and in the remission (at least 2 months after
hospital discharge) samples of the patients. Consumption of
components C3 and C4 with decreased total classical (except
case 1) and alternative pathway (AP) activity was the most
characteristic alteration observed in all of the samples in the
acute phase. Case 3 had strikingly low (deficient) alternative
pathway activity. Complement factors B and H were within
the reference range in acute samples, whereas cases 2 and 4
had moderately decreased factor I levels. In those cases with
available remission samples, all of the above complement al-
terations seen in the acute phase returned to the reference
range, except the slightly decreased C3 and factor H levels as
well as AP activity of case 3 and decreased factor I levels of
case 4. All of the patients were negative for anti-factor H
autoantibodies and had moderately decreased ADAMTS13
activity in the acute phase (19–44%) that normalized later in
remission.

Molecular genetic analysis

To investigate genetic alterations in our cases, coding
regions of CFH, CFI, CD46 (MCP), THBD, C3 and CFB
genes were sequenced. As presented in Table 3, mutations
were identified in three cases. Case 3 carried a heterozygous
transition (c.3445C>T) that leads to the creation of a stop
codon in SCR 19 at position 1149 (Arg1149X) expectedly
causing premature termination of complement factor H
translation. In accordance with this assumption, the comp-
lement factor H level of this patient was below lower refer-
ence limit in remission (Table 2). Case 4 presented a
heterozygous transversion (c.148C>G) causing a proline-to-
alanine change (Pro50Ala) in complement factor I. This
mutation was previously described in two aHUS patients
and was shown to result in reduced intracellular and
secreted IF levels in vitro [20]. Accordingly, complement
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factor I level of case 4 was below the normal range in acute
and remission phase as well (Table 2). Case 5 was found to
be heterozygous for a cytosine-to-thymine substitution
(c.131C>T), causing threonine to isoleucine change at
codon 44 of thrombomodulin. This variation was not found
in 100 healthy Hungarian controls and not reported by
dbSNP or Exome Variant Server release ESP6500SI contain-
ing data from 6503 samples. The effect of this mutation was
in silico predicted to be possibly damaging by PolyPhen
(score 0.524), deleterious by PROVEAN (score −4.070) but
polymorphism by MutationTaster.

Sequencing of complement genes revealed the presence of
many polymorphic variants of which those, causing amino
acid change or reported previously as risk or protective factors
for developing aHUS, are presented in Table 3. As deduced
from genotype data, one patient (case 3) carried the H3 risk
haplotype of CFH gene that consists of among others the T
allele of −331C/T, G allele of c.2016A/G (Q672Q) and T allele
of c.2808G/T (E936D) polymorphisms, reported as risk alleles
for aHUS in several studies [21, 22]. Three patients carried
risk alleles of MCP polymorphisms previously described to be
associated with aHUS that are −547G, −261G, IVS823G, IVS9
−78A and IVS1243C [21, 23]. Two constituents (rs859705
(IVS12638A/G) and rs7144 (c.2232C/T)) of the so-called
MCPggaac haplotype were not determined in our patients;
however, linkage analysis—applying data of the International
HapMap Project—showed that these are strongly linked to
rs1962149 (IVS9−78G/A), hence cases 3, 4 and 5 carrying risk
alleles are strongly supposed to bear the MCPggaac aHUS risk
haplotype in heterozygous form.

To reveal deletions or duplications that may influence
disease development, CFI, CD46 (MCP), CFH and its related
genes were studied applying MLPA probemixes of MRC-

Holland. None of the patients showed copy-number altera-
tions in CFI, CD46 and CFH genes, while three (cases 2–4)
were heterozygous carriers of a common deletion of CFHR1
and CFHR3 genes.

DISCUSSION

To the best of our knowledge, this is the first study thoroughly
investigating the complement system in patients with SP-HUS.
In the acute phase of SP-HUS components and activity of the
classical and alternative pathways were decreased, indicating
severe activation and consumption of complement, while most
of these alterations normalized later in remission. In addition,
three of the five SP-HUS patients carried mutations and/or
risk haplotypes in genes previously reported to associate with
complement-mediated aHUS. Two of the identified mutations
(the known factor I variation and the new factor H mutation
causing stop codon) can be considered as functionally rel-
evant, whereas the functional effect of the third novel mutation
in the thrombomodulin gene is unknown. Based on these
observations, we conclude that severe complement dysregula-
tion and consumption, in addition to neuraminidase action,
accompany the progress of IPD-associated SP-HUS and
genetic variations of complement genes may contribute to the
development of this complication in a proportion of the af-
fected patients.

Neuraminidase A, a major determinant of pneumococcal
adherence to epithelial cells [24], is produced by virtually all
strains of S. pneumoniae [25]. The T-antigen is a disaccharide
that forms the core structure of O-linked mucin-type glycans
and is a cryptic antigen normally hidden by terminal sialic
acid residues [26]. It was only recently proven that T-antigen

Table 2. Acute admission/remission (at least 2 months after hospital discharge) complement and
ADAMTS13 values of patients with SP-HUS

Variable (reference range)* Case 1 Case 2 Case 3 Case 4 Case 5

Classical pathway activity (48–103
CH50/mL)

61/na 27/na 40/55 19/67 29/50

Alternative pathway functional activity
(70–105%)

46/na 34/na 1/60 61/80 37/69

Complement C3 (0.9–1.8 g/L) 0.54/na 0.33/na 0.45/0.78 0.54/1.34 0.66/1.04

Complement C4 (0.15–0.55 g/L) 0.14/na 0.05/na 0.06/0.37 0.05/0.34 0.08/0.19

Complement factor B (70–130%) 99/na 97/na 89/87 76/125 87/90

Complement factor I (70–130%) 87/na 62/na 88/103 63/59 96/83

Complement factor H (127–447 mg/L) 340/na 131/na 139/106 315/303 372/245

Anti-factor H IgG autoantibody Negative/
na

Negative/
na

Negative/
negative

Negative/
negative

Negative/
negative

ADAMTS13 activity (67–151%) 44/na 24/na 19/81 19/111 32/86

na, not available.
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exposure in S. pneumoniae infection is due to pneumococcal
neuraminidase A [27]. However, the presentation of neurami-
nidase activity in S. pneumoniae infection is suggestive but not
specific for HUS, as presented by Huang et al. [11]. In that
study, neuraminidase activity was demonstrated in 100% of
SP-HUS patients, but also in 67 and 43% of patients with
pneumococcus-associated anemia and uncomplicated IPD,
respectively. It is important to note that serum neuraminidase
activity and direct Coombs positivity were present in all of our
five patients. These observations indicate that in the setting of
IPD, neuraminidase activity is required but not sufficient to
initiate HUS and additional, as yet unidentified factors are also
present.

Atypical HUS (i.e. HUS in the absence of associating
disease, Shiga-like toxin or pneumococcus) appears to have a
genetic basis with identified mutations in ∼60–65% of cases.
Loss-of-function mutations in genes encoding complement
regulatory proteins like factor H, MCP, factor I or thrombo-
modulin have been demonstrated in 20–30%, 5–15%, 4–10%

and 3–5% of patients, respectively, whereas gain-of-function
mutations in genes of C3 convertase proteins, C3 and factor B,
in 2–10% and 1–4% [3]. In addition, 6–25% of patients have
anti-factor H antibodies [3, 28]. We have identified three
mutations in five SP-HUS patients in our series in genes pre-
viously linked to aHUS (1 in factor H, 1 in factor I and 1 in
thrombomodulin gene). The functional role of two identified
mutations is apparent, since one is a nonsense substitution in
CFH and another is a missense variation in CFI previously
linked to decreased factor I level in vitro and reported to be
present in aHUS patients but not in healthy controls [20]. The
thrombomodulin variation (considered as a novel mutation,
since it was not present in databases and has not occurred in
healthy controls in our study) was not reported previously,
and its functional consequences was not yet analyzed.
However, it should be noted that in silico prediction provided
possible functional consequences. Furthermore, this variation
is located in the lectin-like domain of thrombomodulin, where
two aHUS-associated mutations (Ala43Thr and Asp53Gly)

Table 3. Genetic analysis of patients with SP-HUS

Case 1 Case 2 Case 3 Case 4 Case 5

Affected gene None None CFH CFI THBD

Mutationsa Numbering
from Met1

– – Arg1149X Pro50Ala Thr44Ile

Numbering
based on the
mature protein

– – Arg1131X Pro32Ala Thr26Ile

Reference – – Novel Bienaime
et al. [20]

Novel

Missense
variationsa,b

CFB R32W
(rs12614)

R32W
(rs12614)

R32W
(rs12614)

G252S
(rs4151651)

–

CFH Y402H
(rs1061170)

– E936D
(rs1065489)

– Y402H
(rs1061170)

aHUS risk
haplotypesa,c

CFH – – CFH H3 – –

CD46 – – MCPggaac MCPggaac MCPggaac

Copy-number
variationsa

CFI – – – – –

CD46 (MCP) – – – – –

CFH – – – – –

CFHR1 – Deletion Deletion Deletion –

CFHR2 – – – – –

CFHR3 – Deletion Deletion Deletion –

CFHR5 – – – – –
aEach of the denoted genetic alterations was carried in heterozygous form.
bPolymorphisms (revealed by sequencing of CFH, CFB, CFI, CD46, THBD and C3 genes) causing amino acid changes are listed. No other
non-synonymous variant occurred in patients.
cPresence of previously reported aHUS risk haplotypes was based on the simultaneous carriage of their constituents [CFH: −331T
(rs3753394), c.184G (rs800292), c.1204T (rs1061170), c.2016G (rs3753396), c.2808T (rs1065489); CD46: c.−547G (rs2796267), c.−261G
(rs2796268), IVS1–156G (rs2724384), IVS4249delA (rs34743953), IVS823G (rs2724374), IVS9−78A (rs1962149), IVS1243C (rs11118580)].
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have already been reported which are less effective in enhan-
cing factor I-mediated conversion of C3b to iC3b on the cell
surface after complement activation in vitro [29]. Therefore, it
is tempting to hypothesize that this novel mutation causing
threonine to isoleucine change at codon 44 may also disturb
this function of the protein, but functional studies are needed
to confirm this hypothesis.

The most prominent pathological sign in the complement
profile of SP-HUS patients was the strong activation and con-
sumption of classical and alternative pathways, as reflected
by low levels of CH50, C3, C4 and total alternative pathway
activity. Whether these alterations can be utilized for diag-
nostic, prognostic or even therapeutic purposes in IPD or
acute SP-HUS requires further studies; however, we strongly
encourage the rapid testing of the complement profile in all
forms of acute TMAs, including SP-HUS [30]. This comp-
lement profile agrees with the initial observations on de-
creased C3 and C4 levels in acute phase of SP-HUS by
Johnson and Waters [31].

The severe IPD infection and consequential septicaemia
and bacteraemia may have contributed to the pathological
complement profile in our patients. The activation and con-
sumption of the alternative pathway during acute pneumococ-
cal infections including pneumonia have been described [32,
33], but in these studies severe pneumococcal infection was
not accompanied by consumption of classical pathway com-
ponents. It was also suggested that in vivo depletion of AP
factors is more pronounced in patients with complicated than
with less severe pneumococcal disease [34]. However, the
uniform alteration in classical pathway component C4 during
acute pneumococcal infection is a novel finding in SP-HUS
and has not been observed previously. Therefore, our obser-
vation on the consistently decreased C4 levels, indicating con-
sumption of the classical pathway, seems to be indicative of
the T-exposure and development of IPD-associated HUS.
Exposure of T-antigen in the context of S. pneumoniae infec-
tion may enhance complement activation and consumption
via multiple pathways. First, preformed anti-T IgM antibodies
may bind to structures exposing T-antigens on different cells
including RBCs, epithelial and endothelial cells resulting in
the activation of the classical pathway (consumption of C4
and C3). In addition, loss of terminal sialic acids from glycans
in response to neuraminidase action may lead to amplification
of complement activation via the AP, since the major soluble
regulator of the AP, factor H, binds to sialic acids [35] and
functions as a cofactor for the factor I-mediated C3b cleavage
(consumption of C3 and decrease in AP activity). Taken to-
gether, infection by S. pneumoniae as a trigger, subsequent
loss of terminal sialic acids from host glycans together with
genetic variants of complement regulators may collectively
lead to dysregulated complement activation with consumption
and development of SP-HUS in patients with IPD. The transi-
ent decrease of ADAMTS13 activity during the acute phase of
SP-HUS was reported in a patient previously [36]. Here, we
further strengthen this observation, since in all of our five
patients decreased ADAMTS13 activity was detected during
the acute phase of the disease, reflecting the ongoing microan-
giopathic process.

An interesting aspect of our results is related to the poten-
tial disease recurrence in SP-HUS. Since disease recurrence is
a characteristic feature of complement-mediated aHUS, it is
tempting to speculate that there is a risk of recurrence in SP-
HUS as well, if the complement-related predisposition is sig-
nificant in this disease. The number of reported SP-HUS cases
with outcome and follow-up data in the literature is low
(∼100). It seems that the mortality during the first episode is
high (∼10%), furthermore, chronic kidney disease or end-
stage renal disease affects other 20% of patients [7, 37–40].
However, for those reported with follow-up data, disease re-
currence has not been reported until now. Further studies with
aggregate analysis of published clinical data and reporting of
long-term outcomes are necessary to estimate the risk of
disease recurrence in SP-HUS.

It is important to note that all of our patients received vac-
cinations against pneumococcus (three patients conjugate,
whereas two polysaccharide vaccines, Table 1). It has been
suggested that the introduction of conjugate vaccines might
have caused a dramatic decline in the incidence of vaccine-
strain-linked diseases; however, an increase of non-vaccine
strains was also observed, for example the emergence of strain
19A in the context of SP-HUS is well documented [4]. It is
therefore tempting to speculate that non-vaccine strains with
increased neuraminidase activity will more frequently cause
severe invasive pneumococcal diseases, for example SP-HUS.
Unfortunately, we do not have information on the serotype of
the five strains causing SP-HUS in our patients. Furthermore,
it is interesting to note that all of our patients were girls, but
this is in contrast to the published literature where ∼1:1
female-to-male ratio has been reported for SP-HUS patients;
therefore, this predominance of females may be due to chance
only.

There are particular strengths and limitations of our
study. In the time period of patient recruitment for this
study determination of the Thomsen–Friedenreich cryptanti-
gen was unavailable in Hungary; therefore; we could not
present such data. We were able to include only five patients
into our series precluding to design a case–control analysis
with statistical tests or to make group comparisons. However,
all cases during a fixed time period were consecutively in-
cluded in a prospective manner, and determinations of
complement parameters and genetic analysis were completely
done for them. Furthermore, all clinical and laboratory data
to provide a precise diagnosis and classification of SP-HUS
were available. Notwithstanding, at this moment our obser-
vations are to be considered as preliminary and hypothesis
generating only.

CONCLUSION

In conclusion, here we described a series of five patients with
definitive SP-HUS and provided descriptive data of their
complement profile and underlying genetic variations. All
patients presented with detectable serum neuraminidase
activity, severely activated and consumed classical and alterna-
tive pathways in the acute phase of disease. Two among the
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five patients carried pathogenic mutations, while one carried a
yet uncharacterized new mutation, besides, three had risk hap-
lotypes in genes (complement factor H and membrane-cofac-
tor protein) which have previously been reported in
association with complement-mediated aHUS. These results
strongly suggest that in a proportion of the affected patients,
the same genetic variants predisposing to complement-
mediated aHUS may contribute to the development of SP-
HUS in the context of IPD as well.

SUPPLEMENTARY DATA

Supplementary data are available online at http://ndt.
oxfordjournals.org
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