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Abstract. In this paper, we extend some spectral properties of regular Sturm-Liouville problems
to those which consist of a Sturm-Liouville equation with discontinuous weight at two interior
points together with spectral parameter-dependent boundary conditions. By modifying some
techniques of [C. T. Fulton, Two-point boundary value problems with eigenvalue parameter con-
tained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977) 293-308; O.
Sh. Mukhtarov and M. Kadakal, Some spectral properties of one Sturm-Liouville type prob-
lem with discontinuous weight, Siberian Mathematical Journal, 46 (2005) 681-694], we give an
operator-theoretic formulation for the considered problem and obtain asymptotic formulas for
the eigenvalues and eigenfunctions.
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1. INTRODUCTION

Sturmian theory is one of the most extensively developing fields in theoretical and

applied mathematics The literature is voluminous and we refer to [1-25]. Particu-

larly, there has been an increasing interest in the spectral analysis of boundary-value

problems with eigenvalue-dependent boundary conditions [1-3,5-10, 12-14,16, 17,
- ’ ) ]

In this paper following [12] we consider the boundary value problem for the dif-
ferential equation

tu:=—u"+q(x)u = Ao(x)u (1.1)
for x € [—1,h1) U (h1,h2) U (ha,1] (i.e., x belongs to [—1,1] but the two inner
points x = h; and x = hp), where g(x) is a real valued function, continuous in
[=1,h1), (h1,h2) and (h2, 1] with the finite limits g (£h1) = limy_, 15, g (£h2) =
limy_, 44,; @ (x) is a discontinuous weight function such that w (x) = a)f for x €
[—1,h1), 0 (x) = a)g for x € (h1,hz) and w (x) = w% for x € (hy,1], ® > 0 together
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with the standart boundary condition at x = —1
Liu :=cosau (—1) +sinau’ (—=1) =0, (1.2)
the spectral parameter dependent boundary condition at x = 1
Low = 2 (Byu (1) — By’ (1) + (Bru (1) — fou’ (1)) = 0, (13)
and the four transmission conditions at the points of discontinuity x = h; and x = hp
Lzu := yqu(h; —0)—81u(h1 +0) =0, (1.4)
Lau := you’ (h1 —0) —8u’ (h1 +0) =0, (1.5)
Lsu :=y3u(hp —0)—383u(hy +0) =0, (1.6)
Leu := yqu’ (hy —0) —84u’ (hy +0) = 0, (1.7)

in the Hilbert space Ly (—1,h1)® Ly (h1,h2) @ Ly (ha,1) where A € C is a complex
spectral parameter; and all coefficients of the boundary and transmission conditions
are real constants. We assume naturally that |o1| + |a2| # O, |,3’1‘ + |,3’2} # 0 and
|B1] + |B2| # 0. Moreover, we will assume that p := 182 — 18, > 0. A Sturm-
Liouville problem with eigenparameter contained in the boundary condition arise
upon separation of variables in the one-dimensional wave and heat equations for a
varied assortment of physical problems, e.g. in the diffusion of water vapour through
a porous membrane and several electric circuit problems involving long cables. (for
example, see [3, 13]), vibrating string problems when the string loaded additionally
with point masses (for example, see [18]), and a thermal conduction problem for a
thin laminated plate (for example, see [23]).

2. OPERATOR-THEORETIC FORMULATION OF THE PROBLEM

In this section, we introduce a special inner product in the Hilbert space
(L2 (=1,h1)&® Lo (h1,h3) & Lo (hy,1)) ® C and define a linear operator A in it so
that the problem (1.1)-(1.7) can be interpreted as the eigenvalue problem for A. To
this end, we define a new Hilbert space inner product on

H := (La(=1,h1)® Lz (h1.h2)® L (h2,1))®C
by
m 8162

- ha -
(F.G)y = o} B J”(X)g(ff)a’xer%m/hl S(x)g(x)dx

5162636 1 - 6162636
W3 2B p()g(W)dx + ——2 fig
Y1V2Y3Y4 Jhy PY1Y2V3Va

for F = ( f }x) ) and G = ( gésx) ) € H. For convenience we will use the nota-
1 1

Ry (u) := Bru(1) — Bau'(1), Ry (u) := Bru(l)—pou’(1).

tions
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In this Hilbert space we construct the operator A : H — H with domain

D(A) = {F = ( f](,ic ) | £(x), f(x) are absolutely continuous in

[1,h1]U[hy, ha] U [h2,1];
has finite limits f(h1 £0), f(hy £0), f'(h1 £0), f'(hy £0);
tf € La(=1,h1) @ La(hy,h2) @ Lo (h2,1);
Lif=L3sf =Laf =Lsf =Lef =0, f1 = R{(f)} (2.1
which acts by the rule
AF =( o [__f;:(?‘;(x)f] ) with F =( RJZ(();)) )e D(4). (22

Thus we can pose the boundary-value-transmission problem (1.1)-(1.7) in H as

_ [ ux)
AU =AU, U := ( R0 ) e D(A). 2.3)

It is readily verified that the eigenvalues of A coincide with those of the problem

(1.1)-(1.7).

Theorem 1. The operator A is symmetric.

Proof. Let F = ( RJZ (();2) ) and G = ( 15,1(22) ) be arbitrary elements of D(A).

Twice integrating by parts we find

(AF.G)g —(F.AG)y =W (.1 =0) =W (f.g;=1)

516
+ 22 W (fg:ha—0) =W (f.3:h1 +0))
Y12
8162836
+ 200 (W (LD =W (f.8:ha+0)
Y1V2V3V4
51626368
+ 12BN (RI(IRI(Z) - Ri(f)R| (D)) (2.4)
PY1YV2V3V4

where, as usual, W ( f, g; x) denotes the Wronskian of f and g;i.e.,

W (f.g:x) = f(x)g'(x) = f(x)g(x).

Since F,G € D(A), the first components of these elements, i.e. f and g satisfy the
boundary condition (1.2). From this fact we easily see that

W(fg:—1)=0, (2.5)
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since cosa and sina are real. Further, as f and g also satisfy both transmission
conditions, we obtain

_ 516 _
W (f.g:h1—0) = ——=W (f.2:h1 +0) (2.6)
Y12
816,636
W (f.giha—0) = —— 22 W (f.g:h2 +0) @2.7)
Y1Y2V3Y4

Moreover, the direct calculations give
Ri(f)R1(8)— Ri(fIR|(8) = —pW (. 5: 1) (2.8)
Now, inserting (2.5)-(2.8) in (2.4), we have
(AF.G)yg =(F,AG)y (F,G e D(4)
and so A is symmetric. g

Recalling that the eigenvalues of (1.1)-(1.7) coincide with the eigenvalues of A,
we have the next corollary:

Corollary 1. All eigenvalues of (1.1)-(1.7) are real.

Since all eigenvalues are real it is enough to study only the real-valued eigen-
functions. Therefore we can now assume that all eigenfunctions of (1.1)-(1.7) are
real-valued.

3. ASYMPTOTIC FORMULAS FOR EIGENVALUES AND FUNDAMENTAL
SOLUTIONS

Let us define fundamental solutions

d1(x,A), xel[-1,h1),
P (x.A) =1 ¢2(x.4), x€(h1.ha),
¢3(X»A), XE(hz,l]
and
Xl(x’/\)’ xe[_l’hl)s
x(x,A) =19 x2(x,4), x€(h,h2),
X3(X,/\), XG(hz,l]
of (1.1) by the following procedure. We first consider the next initial-value problem:

—u"—i—q(x)u:ka)fu, x €[—1,hq] 3.D
u(—1) =sina, (3.2)
u'(=1) = —cosa (3.3)

By virtue of ([19], Theorem 1.5) the problem (3.1)-(3.3) has a unique solution u =
@1 (x,A) which is an entire function of A € C for each fixed x € [—1,/41]. Similarly,
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—u” +q(x)u = Awlu, x €[hy, hs] (3.4)
umn=§¢umxx (3.5)
Mm=?¢mmx (3.6)

2

has a unique solution ¥ = ¢, (x,A) which is an entire function of A € C for each
fixed x € [hy, h;]. Continuing in this manner

—u"+q(xX)u = Aotu, x € [hy,1] 3.7)
u(hy) = g—z@ (h2,1), (3.8)
u%ﬁ=§%%i% (3.9)

has a unique solution ¥ = ¢3 (x,A) which is an entire function of A € C for each
fixed x € [h3, 1]. Slightly modifying the method of ([1°9], Theorem 1.5) we can prove
that the initial-value problem

—u" +q(xX)u = Aw3u, x € [hy, 1] (3.10)
u(l) = BLA + Ba, 3.11)
u'(1) = B1A+ B (3.12)

(3.10)-(3.13) has a unique solution ¥ = y3 (x,A) which is an entire function of spec-
tral parameter A € C for each fixed x € [h3, 1]. Similarly,

—u"+q(x)u = Ao3u, x € [hy,ha] (3.13)
8
u(ha) = = y3(ha, M), (3.14)
V3
/ 84 /
u'(hy) = EX3(/’12,/\), (3.15)

has a unique solution ¥ = y, (x,A) which is an entire function of A € C for each
fixed x € [hy, h2]. Continuing in this manner

—u"-l—q(x)u:/\a)%u, x €[—1,h] (3.16)
)
u(hy) = y_iXZ(hls/\), (3.17)

) §
u'(h1) = = x5 (h1, 1), (3.18)
Y2
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has a unique solution ¥ = yj (x,A) which is an entire function of A € C for each
fixed x € [—1,h].

By virtue of (3.2) and (3.3) the solution ¢ (x,A) satisfies the first boundary con-
dition (1.2). Moreover, by (3.5), (3.6), (3.8) and (3.9), ¢ (x, L) satisfies also trans-
mission conditions (1.4)-(1.7). Similarly, by (3.11), (3.12), (3.14), (3.15), (3.17) and
(3.18) the other solution y (x,A) satisfies the second boundary condition (1.3) and
transmission conditions (1.4)-(1.7). It is well-known from the theory of ordinary
differential equations that each of the Wronskians A (1) = W (¢ (x,4), x1 (x,1)),
A2 (M) =W (2(x,1), x2(x,A)) and A3 () = W (¢3(x,A4), x3(x, 1)) are independ-
ent of x in [—1,h1], [h1,h2] and [h2, 1] respectively.

Lemma 1. The equality A1 (1) = %Az A) = %A3 (A) holds for each
AeC.

Proof. Since the above Wronskians are independent of x, using (3.8), (3.9), (3.11),
(3.12), (3.14), (3.15), (3.17) and (3.18) we find

AL () = 1 (h1,2) xy (h1, ) = ¢ (h1.4) x1 (h1.2)

~(Zaamn) (s 0nn) - (2e000) (Srahnn)
Y1 V2 V2 71

516 516 oY)
=12 A0 = (¥¢3 (hz,)t)) (ﬂxg (hz,x))
Y1Y2 Y17V3 Y2V4
oY) 816 8167636
_ (ﬂ% (. A)) (L 3. A)) _ 81888 oy
Y2Y4 Y1Y3 Y1Y2V3V4

Corollary 2. The zeros of A1 (1), Az (L) and Az (L) coincide.

In view of Lemma 3.1 we denote Ay (4), %Az (A) and %Ag(k) by

A (A). Recalling the definitions of ¢; (x,A) and y; (x,A), we can state the next co-
rollary.

Corollary 3. The function A (L) is an entire function.
Theorem 2. The eigenvalues of (1.1)-(1.7) are the roots of A(A) = 0.

Proof. Let A(Ag) = 0. Then W (¢p1 (x,A0), x1(x,A0)) =0 for all x € [—1,h4].
Consequently, the functions ¢ (x,A¢) and y; (x,A¢) are linearly dependent, i.e.
x1(x, o) = ko1 (x,X0), x € [—1,h1], for some k # 0. By (3.2) and (3.3), from this
equality, we have

cosay (—1,40) +sinay’ (—1,10) = cosay1 (—1,A9) + sinay) (—1,10)
=k (cosaqbl (—1,A0) + sina¢] (—l,ko)) =k (cosasina + sina (—cosa)) =0,
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and so y (x,Ap) satisfies the first boundary condition (1.2). Recalling that the solu-
tion y (x,Ag) also satisfies the other boundary condition (1.3) and transmission con-
ditions (1.4)-(1.7). We conclude that y (x,A¢) is an eigenfunction of (1.1)-(1.7); i.e.,
Ao is an eigenvalue. Thus, each zero of A (1) is an eigenvalue. Now let Ao be an
eigenvalue and let ug (x) be an eigenfunction with this eigenvalue. Suppose that
A(Xo) # 0. Whence W (¢1 (x,40), x1(x,40)) # 0, W (2 (x,20), x2(x,40)) # 0
and W (¢3 (x,40), x3(x,A0)) # 0. From this, by virtue of the well-known proper-
ties of Wronskians, it follows that each of the pairs ¢; (x,A¢), x1 (x,A0); ¢2 (x,10),
x2 (x,A0) and ¢3 (x,A0), x3(x,Ao) is linearly independent. Therefore, the solution
uo(x) of (1.1) may be represented as

c1¢1(x,Ao) +c2x1(x,A0), x €[~1,h1),
ug(x) =13 c3¢2(x,A0) +cay2(x,ro), x € (h1,h2),
C5¢3(va0)+C6X3 (kao)v X e(h291]’

where at least one of the coefficients c; (i = 1_6) is not zero. Considering the true
equalities

Ly (ug(x)) =0, v=1,6, (3.19)
as the homogenous system of linear equations in the variables c; (i = ﬁ) and taking

(3.5), (3.6), (3.8), (3.9), (3.14), (3.15), (3.17) and (3.18) into account, we see that the

2
determinant of this system is equal to —%A“ (X0) and so it does not vanish

by assumption. Consequently the system (3.19) has the only trivial solution ¢; = 0
(i =1, 6). This is a contradiction. And the proof is complete. g

Theorem 3. Let A = u? and Imju = t. Then the following asymptotic equalities
hold as || — oo :
(1) In case sina # 0

d* 1
gk) (x,A) =sina——-cos[pwi (x +1)]+ O | ——exp(|t| w1 (x + 1))
dxk '

(3.20)
*) a*
¢y (x,A) = —smadx cos [ (wax + wi1h1 + w1)]
1
+0 (—| = exp (|t (w2x + w1 hy —|—a)1))) . (3.21)
n
d*

¢ (x.2) = ”? sinar—— os [ (3 + w2hz + 1)

(i

exp(|t| (w3x + w2hs ~|—a)1))) (3.22)
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(2) In case sina = 0

—1 dk 1
39 (x.1) = ——cosa——sin[uw; (x + D]+ 0 | —— exp(|r]w; (x + 1)
dx ||

Hw1
(3.23)
dk
(k)( A) = M cosa 2 7 sin [ (@2x +wihy +w1)]
pL(Sl d
1
+0 (IIﬂ exp (|| (w2x +w1hy +a)1))) ; (3.24)
n
dk
¢(k)( A)=— Y1vs cosa—— sin [p (w3x + waha + w1)]
,u8183 dx
1
+0 (Hﬂ%(ltl (03x + w2hy +w1))) : (3.25)
n

for k =0 and k = 1. Moreover, each of these asymptotic equalities holds uniformly
for x.

Proof. Asymptotic formulas for ¢p; (x,A) and ¢, (x, A) are found in ([19], Lemma
1.7) and ([12], Theorem 3.2) respectively. But the formulas for ¢3 (x,A) need indi-
vidual considerations, since this solution is defined by the initial condition with some
special nonstandart form. The initial-value problem (3.7)-(3.9) can be transformed
into the equivalent integral equation

() = P (. Wyeospons + 24 g3 (2 sinpons
L9 / sin[iws (= 1)]q () () dy (3.26)
M Jhy

Let sina # 0. Inserting (3.21) in (3.26) we have

¢3(x,A) = j/ y3 sina cos [ (w3x + wahy + w1)]
33

] / sin[1ws (x — )¢ () ¢3 (. 2) dy
M Jhy

+ 0 (“1—| exp (|t] (w3x + wahs + wl))) . (3.27)

Multiplying this by exp (— || (w3x + w2h2 + w1)) and denoting
F(x,A) =exp(—|t|(w3x + w2h2 +w1)) ¢3 (x. 1),
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we have the following integral equation

Y1V3
3103

+93/ ﬂﬂuwﬂx—yﬂwPG%st@—quOOFOuMdy+0(l)-
w I, n

F(x,A) = sinaexp (—|t| (w3x + w2hz + w1)) cos [ (w3x + wahy + w1)]

Putting M(A) = maxye[s,,17|F (x,A)|, from the last equation we derive that
V1Y3

13| 1 )
8163 1
for some My > 0. Consequently, M(A) = O (1) as |[A| — oo, and so ¢3(x,A) =
O (exp (|t|(w3x + wahy +w1))) as |A| — oo. Inserting the integral term of (3.27)
yields (3.22) for k = 0. The case k = 1 of (3.22) follows at once on differentiating
(3.21) and making the same procedure as in the case k = 0. The proof of (3.25) is
similar to that of (3.22). ]

Mmsm(

Theorem 4. Let A = u?, = o +it. Then the following asymptotic formulas
hold for the eigenvalues of the boundary-value-transmission problem(1.1)-(1.7):
Case 1: B3 # 0, sina # 0

fn = —— =D Lo (1) , (3.28)

w3 + wahy + wq n

Case 2: B4 #0, sina =0

_1
= T 1=3) +w>(1), (3.29)

w3 + wahy + w1

Case 3: p5 =0, sina # 0

_1
= T 0=3) +0(1) (3.30)

w3 + wahy + wq n

Case 4: B, =0, sina =0

fn = i 40 (1) , (3.31)

w3 + wahy + w1 n

Proof. Let us consider only the case 1. Putting x = 1 in

A3 (D) =3 (x. 1) x5 (x, 1) =3 (x.4) x3(x. 1)

and inserting y3(1,A) = LA + B2, x5(1,1) = B1A + B1 we have the following
representation for A3 (1):

A3(A) = (B1A+ B1) ¢3 (LA) = (BoA + B2) $3 (L, 4). (3.32)
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Putting x = 1 in (3.22) and inserting the result in (3.32), we derive now that

826
Az (M) = ﬁwsﬂz(sma)u sin 1L (@3 + w2k + w1))]

+0(|u| exp(2|t|(a)+w2h2+w1))). (3.33)

By applying the Rouché Theorem, it follows that A3 (A1) has the same number of
zeros inside the contour as the leading term in (3.33). Hence, if A9 < A1 < A5... are
the zeros of A3 (1) and u2 = A,, we have

T(n—1)

+6 3.34
w3 +wrhy+wp 34

for sufficiently large n, where [§,| < for sufficiently large n. By

b1
4(w3+wrha+wr)
putting in (3.33) we have §, = O (%) and the proof is completed in Case 1. The
proofs for the other cases are similar. O

Theorem 5. The following asymptotic formulas hold for the eigenfunctions

¢1(X’An)’ XG[—I,hl),
¢, (x) =3 $2(x,An), x€(hy,h2),
$3(x,An),  x € (ha,1]

of (1.1)-(1.7):
Case 1: B4 #0, sina # 0

sina cos [M] +0(1). xel[-1.hy),

w2+w1
_ e (@2 x+wih+o)r(n—1) 1
o, (x) = Esmacos[ or T i Tor ]+O(ﬁ)’ x € (h1,h2),
3/1(13/ sino cos [(w3xj0;uil;z;};;ujr)gl(n—l)] +0 (%), x € (ha,1].
Case 2: B3 #0, sina =0
P2, (X)
w1ty _coso  : wlﬂ(n—%)(x+1) 1
7wl JT(n— ) Il|: w2 +wi n2 E -1, hl)
_ ) —rioitwr cosa (02x+w1hi+o1)7(n—1)
= 81 o1 n(n— ) |: wrto hto; + 0 , X € (hl,hz),
—Y1V3 @w1+w2  cosa i (w3x+w2h2+w1)n(n_j) L
8183 @1 n'(n— ) |: w3+wrhr+w 2 » X € (h27 1] .




SPECTRAL PROPERTIES OF A STURM-LIOUVILLE PROBLEM 207

Case 3: B}, =0, sina # 0

w2 +w1

_1
sino cos [M + 0(%), xe[-1,hy),

. (w2x+w1h1+o)r(n—1
b2, (X) = g—;smacos[ = wilcllh?lgl(n 2)} +0(3). x € (h1.ha),

Y1V3 o (w3x+wrhoto))w(n—1) 1
85103 sSin o Cos |: w3+wrhr+w + 0 (n) , X € (hz’ 1] .

Case 4: B, =0, sina =0

_o1+w) coser o M]+O lz) x e€[-1,h1)
n2 )’ ’ ’

w1 n w2t w]
— —yY1 w1+ws cosa x| (Wax+wihi+w)rn 1
(ibln (X) — 1 o1 wn Sln|: wrtwih+wp + 0 22 ) X € (hlahZ)y
—Y1Y3 w1+w2 cosa : (w3x+wrhr+wi)wn 1
5163 w1 wn Sln|: w3twrhatw; + 0 nZ ) X € (l’lz, 1] .

All these asymptotic formulas hold uniformly for x.

Proof. Let us consider only the Case 1. Inserting (3.22) in the integral term of
(3.27), we easily see that

f sin[uws (x —y)1q (y) ¢3 (v, A)dy = O (exp (1] (w3x + w2h2 + w1))).

ho

Inserting in (3.20) yields

¢3(x,A) = )(;13;3 sina cos [ (w3x + wahy + w1)]
103
1
+0 (mexp|t|(a)3x+a)2h2+w1)). (3.35)
We already know that all eigenvalues are real. Furthermore, putting A = —H, H >0

in (3.33) we infer that w (—H) — oo as H — 400, and so w (—H) # 0 for suffi-
ciently large R > 0. Consequently, the set of eigenvalues is bounded below. Letting
VAn = Uy in (3.35) we now obtain

1
d3(x,Ap) = Yivs sino cos [y (w3x + wahy + w1)] + O (—)
8103 j

n

since t, = Imu, for sufficiently large n. After some calculation, we easily see that

(w3x+w2h2+w1)n(n—l)] (1)
+0|(-).
w3 + wahy + wp

cos [y (w3x + waha + w1)] = cos [

Consequently,

Y1V3
5163

$3(x,Ap) = i S[(w3x+w2h2+w1)n(n—1)]+0(1).
n

Sino Co
w3 +wahy +wq
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In a similar method, we can deduce that

Y1 . (w2x +wrh1 +w1) 7w (n—1) 1
1A' = o 0 - ’
d2 (X, An) 5 smozcos[ o+ o o + "
and
—1 1 1
¢1 (x,A,) = sinacos [wln (r=Dxr+ )i| + 0 (—) .
wo + w1 n
Thus the proof of the theorem completed in Case 1. The proofs for the other cases
are similar. U
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