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Abstract. In this paper, we use the order relation on uniform spaces defined by [5] to introduce
the notion of compatibility of mappings in an ordered uniform space and use this notion to
establish coupled coincidence point theorems to ordered uniform space. An example is also
given.
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1. INTRODUCTION

There exists considerable literature of fixed point theory dealing with results on
fixed or common fixed points in uniform space (e.g. [1-3,5, 16,21]). But the ma-
jority of these results are proved for contractive or contractive type mapping (notice
from the cited references). Recently, Aamri and El Moutawakil [1] have introduced
the concept of E-distance function on uniform spaces and utilize it to improve some
well known results of the existing literature involving both E-contractive or E- ex-
pansive mappings. Lately, I. Altun and M. Imdad [5] have introduced a partial order-
ing on uniform spaces utilizing E- distance function and have used the same to prove
a fixed point theorem for single-valued non-decreasing mappings on ordered uniform
spaces. The Banach contraction principle is the most celebrated fixed point theorem.
Boyd and Wong [7] extended the Banach contraction principle to the case of non-
linear contraction mappings. Afterward Ciric and Lakshmikantham [9, 13] obtained
important fixed point theorems. Recently Bhaskar and Lakshmikantham [6], B. S.
Choudhury and A. Kundu [8], Nieto and Lopez [14, 5], Ran and Reurings [20] and
Agarwal, El-Gebeily and O’Regan [4] presented some new results for contractions
in partially ordered metric spaces. Common fixed point results for commuting map-
pings in metric spaces were first deduced by Jungck [ 10]. The concept of commuting
has been weakened in various directions and in several ways over the years. One such
notion which is weaker than commuting is the concept of compatibility introduced by
Jungck [11]. Lately, Petre and Péles [ 18, 19] gived fixed point theorems in E-Banach
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spaces and E-metric spaces. In common fixed point problems, this concept and its
generalizations have been used extensively [12, 17].

In this paper, we use the partial ordering on uniform spaces which is defined by [5],
so we proved some coupled coincidence and coupled common fixed point theorems
for a pair of mappings. We also discuss an example.

Now, we mention some relevant definitions and properties from the foundation
of uniform spaces. We call a pair (X,?) to be a uniform space which consists of a
non-empty set X together with a uniformity ¢ wherein the latter begins with a special
kind of filter on X x X whose all elements contain the diagonal A = {(x,x):x € X}.
If Ved and (x,y) €V, (y,x) € V then x and y are said to be V-close. Also a
sequence {x,} in X, is said to be a Cauchy sequence with regard to uniformity 9 if
for any V € 9, there exists N > 1 such that x, and x,, are V-close for m,n > N. A
uniformity ¥ defines a unique topology 7 (%) on X for which the neighborhoods of
x € X arethesets V (x) ={y € X : (x,y) € V} when V runs over 9.

A uniform space (X, ?) is said to be Hausdorff if and only if the intersection of
all the V' € ¥ reduces to diagonal A of X i.e. (x,y) € V for V € ¢ implies x = y.
Notice that Hausdorffness of the topology induced by the uniformity guarantees the
uniqueness of limit of a sequence in uniform spaces. An element of uniformity ¥ is
said to be symmetrical if V = V! = {(y,x) : (x,y) € V}. Since each V € 1 contains
a symmetrical W € ¢ and if (x,y) € W then x and y are both W and V -close and
then one may assume that each V € § is symmetrical. When topological concepts
are mentioned in the context of a uniform space (X, ¢), they are naturally interpreted
with respect to the topological space (X, 7 (9)).

2. PRELIMINARIES

We shall require the following definitions and lemmas in the sequel.

Definition 1 ([1]). Let (X, ) be a uniform space. A function p : X x X — RT is
said to be an E-distance implies

(p1) Forany V € ¥ there exists § > 0 such that p(z,x) < § and p(z,y) < § for
some Z € X, imply (x,y) € V,

(p2) p(x.y)<p(x.2)+p(z,y), foranyx,y,z €X.

The following lemma embodies some useful properties of E-distance.

Lemma 1 ([1, 2]). Let (X,9) be a Hausdorff uniform space and p be an E-
distance on X. Let {x,} and {y,} be arbitrary sequences in X and {an}, {Bn} be
sequences in R™ converging to 0. Then, for x,y,z € X, the following holds:

(a) If p(xn,y) <ayand p(xyn,2) < Pnforalln € N, then y = z. In particular,
ifp(x,y)=0and p(x,z) =0,theny = z.
(b) If p(xn,yn) <anand p(xp,2) < Bn foralln € N, then {y,} converges to
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(c) If p(Xn,Xm) < ay for all m > n, then {x,} is a p—Cauchy sequence in
(X,9).

Let (X,0) be a uniform space equipped with E-distance p. A sequence in X is
p-Cauchy if it satisfies the usual metric condition. There are several concepts of
completeness in this setting.

Definition 2 ([1,2]). Let (X,?) be a uniform space and p be an E-distance on X.
Then

(1) X said to be S-complete if for every p-Cauchy sequence {x,} there exists
x € X with nli)ngop (xn,x) =0,

(i) X issaid to be p-Cauchy complete if for every p-Cauchy sequence {x, } there

exists x € X with lim x, = x with respect to 7 (),
n—00

(iii)) f : X — X is p-continuous if lim p (x,,x) = 0 implies
n—00

lim p(fxn, fx)=0,
n—>oo
@iv) f:X — X is t(¥)-continuous if lim x, = x with respect to 7 (¢) implies

n—>oo

lim fx, = fx with respect to 7 (9).

n—-oo

Remark 1 ([1]). Let (X,9) be a Hausdorff uniform space and let {x,} be a p-
Cauchy sequence. Suppose that X is S-complete, then there exists x € X such that
li)m p (xn,x) = 0. Then Lemma 1 (b) gives that li)m Xn = x with respect to the
n o0 n o0

topology 7 (¢}) which shows that S-completeness implies p-Cauchy completeness.
Lemma 2 ([5]). Let (X,v) be a Hausdorff uniform space, p be E-distance on X
and ¢ : X — R. Define the relation” < on X as follows;
x2Xyeox=yorpx,y)=ex)—¢ ().
Then” <X is a (partial) order on X induced by ¢.

Definition 3 ([6]). We call an element (x, y) € X x X a coupled fixed point of the
mapping T if T (x,y) =x, T (y,x) = y.

Definition 4 ([13]). An element (x,y) € X x X is called a coupled coincidence
point of a mapping 7 : X x X — X and g : X — X implies
T(x.y)=g(x).T(y.x)=g().

Definition 5 ([13]). Let X be anon-empty setand 7 : X x X — X and g: X — X.
We say T and g are commutative implies

g(T(x,y)=T(gx),g(»)
for any x,y € X.

Definition 6 ([8]). The mappings 7 and g where T : X x X — X and g : X — X,
are said to be compatible implies

nll)ngop (& (T (xn,yn)), T (g(xn) .8 (¥n)) =0
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and
Mim p (g (T (yn,xn)). T (8 (yn) .8 (xn))) =0
whenever {x, } and {y,} are sequences in X, such that
lim T (xp,yn) = lim g(x,) =xand lim T (y,,x,) = lim g(yy) =y,
n—-oo n—-oo n—>o0 n—>oo

for any x, y € X are satisfied.

3. MAIN RESULTS

Definition 7. Let (X,?9) be a uniform space and let ” < be an order relation on
X and let T : X x X — X be an operator. We say that 7" has the mixed monotone
property if 7T (x,y) is monotone nondecreasing in x and is monotone nonincreasing
in y, thatis for any x,y € X,

x1,x2 € X, x1 2x2 = T (x1,y) X T (x2,Y) 3.1

and

y1,2€ X, y1 2 y2=> T (x,y1) = T (x,y2). (3.2)

Definition 8. Let (X,?) be a uniform space and let ” < be an order relation
on X andlet 7T : X x X — X, g: X — X be operators. We say T has the mixed
g—monotone property if 7' is monotone g—non-decreasing in its first argument and
is monotone g—non-increasing in its second argument, that is, for any x,y € X,

X1, X2 € X, g(x1) < g(x2) implies

T (x1,y) 2T (x2,y) (3.3)
and
V1, y2 € X, g(y1) X g (y2) implies

T(x,y1) =T (x,y2) (3.4)

If g is the identity mapping, then Definition 8 reduces to Definition 7.

Theorem 1. Let (X, 1) be a uniform space, ” < is an order on X and suppose
there is an E—distance p on X such that (X, p) is a p—Cauchy complete uniform
space. Let T : X x X — X be a © (¥) continuous mapping having the mixed mono-
tone property on X. Assume that there exists a k € [0, 1) with

p(T(x,y).T u.v) < E[px.u)+ p(y.v)]

for all comparable x, u and all comparable y, v. If there exist xg,yo € X such
that

xo 2 T (xo,y0) and yo = T (yo,x0).

then there exist x,y € X suchthatx =T (x,y)andy =T (x,y).

Proof. Since xo < T (x9,y0) = x1 and yo > T (x9, y0) = Y1
letting xo = 7T (x1,y1) and y» = T (y1,X1), we denote
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T2 (x0.y0) =T (T (x0.y0) . T (y0,%0)) = T (x1,y1) = x2.
T2 (y0.x0) = T (T (y0.x0), T (x0.¥0)) = T (y1.x1) = y2.
With this notation, we now have, due to the mixed monotone property of 7,
x2 = T?(x0.y0) =T (x1.y1) = T (x0,y0) = x1 and
y2 =T?(yo0.x0) = T (y1.x1) = T (y0.X0) = y1.
Further, forn = 1,2,... we let
Xnt1 = T" 1 (x0,y0) = T (T" (x0,0) . T" (yo,X0))
and
Ynt+1=T" 1 (yo.x0) = T (T" (yo.x0) . T" (x0. Y0))-
We can easily verify that
xo0 = T (x0,y0) = x1 = T?(x0,y0) = x2 < ... < T" 1 (x0,y0) < ...
and
yo =T (yo.x0) = y1 = T?(y0.X0) = y2 = ... = T" "1 (yg,x0) > ...
Now, we claim that, forn € N,
p (T (x0.y0). T" (x0.¥0)) < 5-[p (T (x0.70) . x0) + p (T (yo.X0) . yo)] ...(i)
P (T" (30, x0), T" (¥0.%0)) < E-[p (T (yo.x0) . o) + p (T (x0,Y0) , X0)] ...(i1)
Indeed, for n = 1, using T (xg, yo) > x0 and T (yo, x0) < yo, we get
p(T? (x0.0). T (x0,¥0)) = p (T (T (x0.0). T (¥0.%0)). T (x0.y0))

< &P (T (x0,70),x0) + P (T (y0,%0) , y0)].
Similarly,
P(T?(y0.x0).T (yo.x0)) = p(T (T (y0.x0).T (x0.¥0)). T (yo.x0))

=P (T (y0,x0), T(T (y0,%0) . T (x0,¥0)))

< 5[p(T (x0.y0).x0) + p (T (yo.x0) . yo)].
Now, assume that (i) and (i) hold. Using
T"*1(x0,y0) = T" (x0, o) and T"*1 (g, x0) < T" (yo.x0) We get
p (T2 (x0.v0). T" 1 (x0.y0)) = p(T (T" ! (x0.y0) . T" T (y0.x0))

s T (Tn (X(), yO) s ™ (yO,X())))

<Eip(rnt! (xol, ¥0).T" (x0.y0)) + p (T" ! (y0.x0) . T" (yo.x0))]
< KL p (T (x0,¥0) , x0) + p (T (0, %0) , Yo)]-

Similarly, one can show that
P (T"+2 (y0.x0) . T"+ (yo.x0)) < K5 [p (T (0.x0) . o) + p (T (x0. ¥0) . x0)].
This implies that {T" (xo, yo)} and {T" (yg, x¢)} are p—Cauchy sequences in X.
Indeed, let m > n, then
P (T™ (x0,0) . T" (x0.¥0)) < p(T™ (x0.0) . T" " (x0.y0))+

oot p(T" 1 (x0,y0) . T" (x0. Y0))

m—1 n
< KBk [ (T (x50, ¥0) . x0) + p (T (Y0, %0) , ¥o)]

< 585512 (T (0,70, %0) + P (T (¥0,%0) , yo)].
Similarly, we can verify that {T"(y¢, Xxo)} is also a p—Cauhy sequence.
Since X is a p — Cauchy complete uniform space, there exist x, y € X such that

. n _ : m —
Jim 77 (xo, o) = x and lim 77 (yo,xo) = -
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Finally, we claim 7' (x,y) = x and T (y,x) = y.

Let & > 0. Since T is 7 () —continuous at (x, ), for a given 5 > 0, there exists

a § > 0 such that

p(x,u)+ p(y,v) <8 implies p(T (x,y),T (u,v)) < 5.

Since {T" (x9, y0)} — x and {T" (yo,x0)} — y, for n = min (%, %) > 0, there
exist ng,mo such that, for n > ng, m > my,

p(T" (x0,¥0).x) <nand p(T™ (yo.X0).y) <.

Now, for n € N, n > max{ng,mo},

p(T(x,y).x) < p(T (x,y).T"* 1 (x0,y0)) + p (T" ! (x0.0) . x)

= p(T'(x,y), T(T"(x0,y0). T" (yo.x0))) + p(T"*! (x0, y0) . x)
<S+n=<e
This implies that 7 (x, y) = x. Similarly, we can show that 7 (y,x) = y. O

Theorem 2. Ler (X, 1) be a uniform space, ” <" is an order on X and suppose
there is an E—distance p on X such that (X, p) is a p—Cauchy complete uniform
space. Assume there is a function ¢ : [0,00) — [0,00) with ¢ (t) <t and 1ir;1+¢ (r)<

r—

t for each t > 0 and also suppose T : X x X — X and g : X — X are such that T
has the mixed g—monotone property and

p(g(x),g(u))+p(g(y),g(v)))
2

P .o <o (35
for all x,y,u,v € X for which g (x), g (u) are comparable and g (y), g (v) are
comparable. Suppose
T(X xX)Cg(X), gist(¥)— continuous and monotone increasing and T and
g be compatible mappings. Also suppose

(a) T is t (9)— continuous or
(b) X has the following property :
(1) if a non-decreasing sequence {x,} — x, then

Xp <X (3.6)
foralln,
(ii) if a non-increasing sequence {yn} — y, then
Y= n 3.7
for all n.

If there exist xg, yo € X such that

g (xo0) = T (xo0,y0) and g (yo) = T (yo,Xo),
then there exist x,y € X such that

gx)=T(x,y)and g(y) =T (y.x),
thatis, T and g have a coupled coincidence point in X.
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Proof. Let xo, yo € X, be such that

g(x0) 2T (x0,y0) and g (yo) > T (y9,Xx0) . Since

T (X xX) < g(X), we can define x;, y; € X such that

g (x1) =T (xo0,y0) and g (y1) =T (yo,xo).

In the same way we construct,

g(x2) =T (x1,y1) and g (y2) =T (y1.x1).

Continuing in this way we construct two sequences {g(x,)} and {g(y,)} in X
such that,

g (xp+1) = T (xp, yn) and

g n+1) =T (yn.Xn) (3.8)
forall n > 0.
Now we prove that for all n > 0,
g (xn) X & (Xn41) (3.9)
and
g(n) = & (Yn+1). (3.10)

Since g (xo) =X T (x0,y0) and g (yo) = T (yo,Xo) , in view of g (x1) = T (xo, yo)
and g (y1) = T (yo,xo0), we have g (xo) = g(x1) and g (yo) = g (y1), that is, (3.9)
and (3.10) hold for n = 0.

We presume that (3.9) and (3.10) hold for some n > 0. As T has the mixed
g—monotone property and g (xn) < g (xn+1), & (¥n) = & (Yn+1) , from (8), we get
g (xn+1) =T (xn, yn) 2 T (Xn+1,yn) and

T (Yn+1:%n) 2T (Yn.Xn) = & n+1) - (3.11)

Also for the same reason we have g (x,42) =T (Xp+1, Vn+1) = T (Xn+1.yn) and

T (Yn+1,%0) =T (Yn+1.Xn+1) = & Yn+2). (3.12)

Then from (3.11) and (3.12)

g (Xn+1) 2 g (Xnt2) and g (Yn+1) = & (Yn+2)-
Then, by mathematical induction it follows that (3.9) and (3.10) hold for all n > 0.

Let, 8p = p(g(xn). 8(xn+1))+ P (€(¥n). & (Yn+1)) and §), = p (g(xn+1). 8 (xn)) +
P(€(n+1).80n))-
Next we prove that
On <2¢ (‘S"T—l) and
|
8 <2¢ (S"T—l) : (3.13)

Since for alln > 0, g (xp—1) < g(x,) and g (yn—1) > g (yn), we have from (3.5)
and (3.8),

P (& (xn),8 (xn+1)) = p(T (xn—1,Yn—1), T (Xn, yn))
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(3.14)

S¢(p(g(xn—l),g(xn))erp(g(yn—l),g(yn))) :¢(8nT—l)

and

P (& (xn+1),8 (xn)) = p(T (xn,yn), T (Xn—1,Yn-1))
< ¢ (2EL)E 0= NHPEONE0n=D)) = ¢ S'T_l)

Similarly from (3.5) and (3.8), we have for all n > 0,
(€ Wn) g Wn+1) =P (T (yn—1.Xn-1). T (Yn,Xn))

Sd)(p(g(yn—l),g(yn))+p((g’(xn_l),g(xn))) :¢(5n_—1)

5 7 (3.15)

and
(€ Wn+1).8(vn)) = p(T (yn.xn) . T (Yn—1.Xn—1))
<¢ (p(g(yn),g(yn—l))erp(g(xn),g(xn—l))) — 4 (3;'12—1).
Combining (3.14) and (3.15) we obtain(3.13).
Since ¢ (t) <t for ¢t > 0, it follows from (3.13) that the sequences {8} and {3, }

are monotone decreasing sequence of non-negative real numbers. Hence there exist
8 >0and §' > 0 such that lim 8y, =8 and lim 8, = 8'. If possible, let § > 0. Taking
n—o0 n—o0

the limit as n — oo in (3.13) and using lim+¢ (r) <t forall t > 0, we obtain
r—t

5= lim 8 =2 lim ¢ (¥51) =2 1im ¢ (%) <2f =5,
n—00 n—o00 8p_1—8+
which is a contradiction. Thus § = 0. Hence we have

Aim [p(g (xn) . & (Xn+1)) + p(§ (Yn) . & (n+1))] = lim 8, =0 (3.16)

and similarly §' = 0 that is _lim [p(g (Xn+1).& (xn)) + P(& (Yn+1).& (¥n))] =
lim 8}, = 0.
n—>oo
Next we show that {g(x,)} and {g (y»)} are p-Cauchy sequences. Let at least one
of {g (x5)} and {g (y,,)} be not a p — Cauchy sequence. Then there exists ¢ > 0 and
sequences of natural numbers {m (k)} and {/ (k)} such that for every natural number
k

m (k) > 1 (k) >k and
k=& (Xi)) - & (xm@))) + 2 (& (i) - & Vmw))) = & (3.17)
Now corresponding to / (k) we can choose m (k) to be the smallest positive integer
for which (3.17) holds. Then,
2 (g (X10)) - & (Xm@y—1)) + 2 (g V1)) » & (Ymr)-1)) <& (3.18)
Further from (3.17) and (3.18), for all k > 0, we have,
e = pe = p(8(X10)) - & (¥mit)-1)) + P (& (Km@r-1) - & (¥m(i)))
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+2 (8 1wy) - & may-1)) + 2 (& (Ymay-1) & (Ymx)))
=p (g (xi)) - & (Xm)=1)) + 2 (g W10)) - & Ymr)=1)) +Smt)—1 <€+ Em@e)—1-
Taking the limit as k — oo, we have by (3.16),

lim p; =e. (3.19)
k—o00
Again, for all k > 0, we have,

PE=p (& (x106)) - & (omaiey)) + 2 (8 (V1)) - & (Ymaw)))
P (g (i) 8 (x1a0)+1))

+P£g xl(k)—i—l) g (Xmiy+1)) + 2 (& mio+1) - & (om@io)))
pP\g
+2 (g (Vity+1) & Vmay+1)) + P (8Omty+1)-& (Vmw)))

=p (g (@) (Xl<k>+1)) +p(g(1w) & (Vigy+1))
+p(g XI(k)+1),g(xm(k)+1))
+0(8 (V1G)+1) & Vmy+1) + P (& (¥m@y+1) - & (¥mw)))

+2 (8 (Vmw+1) -8 Um))) -
Hence, forall k >0

(
gyl(k)) (J’l(k)+1))
(

Pk <8100 + 80+ P (8 (X100)+1) - & (Xmaty+1)) + P (& (Vi) +1) - & (Ymw)+1)) -
(3.20)
From (3.5),(3.8),(3.9),(3.10) and (3.17), for all k > 0, we obtain

P (g (xi@y+1) & (mr+1)) = 2 (T (1) 1)) > T (Xmeiy> Ymiy))

<4 (P (& (1)) - & (xmaxy)) +

2

P (g (i) »g(ym(k)))) — (&), (3.21)

2

Also by (3.5),(3.8),(3.9),(3.10) and (3.17), for all k > 0, we have,
P (8 1wy+1) & Wma+1)) = 2 (T (16 x10) « T (Ymiy- Xmk))

(p (g (1)) - & (xm@py)) + P (8 (1k)) - 8 (ym(k)))) — ¢ (&) . (322

<
=¢ 2 2

Putting (3.21) and (3.22) in (3.20) for all k > 0, we obtain, pgx < &;x) + 8m(k) +
2 (%).

Letting n — oo in the above inequality and using (3.16),(3.17) and (3.19) we ob-
tain,

e <2 lim ¢(ﬁ)=z lim
k—>o0 2

pr—et

Pk )
<2t = 3.23
o(55) <23 (3.23)
which is a contradiction. Therefore, {g (x,)} and {g (y,)} are p-Cauchy sequences
in X and hence they are convergent in the p-Cauchy complete uniform space (X, ).
Let
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nlggoT (Xn,yn) = nll)moog (xp) = x and

nll)H;OT (VnsXn) = nlggog (yn) =y. (3.24)
Since T and g are compatible mappings, we have by (3.24),
lim p(g(T (xn,yn)). T (g (xn).g(yn))) =0 (3.25)
n—>oo
and
Mim p(g (T (yn,xn)). T (g (yn). g (xn))) = 0. (3.26)
Next we prove that g(x) =T (x,y) and g(v) =T (y,x).
Let (a) hold.

For all n > 0, we have,

P (g (xn). T (g(xn).& (yn)))
< p(g(xn), (T (xn.yn))) + p(&(T (xn,yn)). T (g (xn).& (¥n))).
Taking the limit as n — oo, using (3.8), (3.24),(3.25) and the fact that T and g are

continuous, we have p (g (x,),T (x,y)) =0.
Similarly, from (3.8), (3.24),(3.26) and the continuities of 7" and g, we have

p(g(yn). T (y.x)) =0.

Combining the above two results we get g (x) =T (x,y)and g () =T (y,x).

Next we suppose that () holds.

By (3.9), (3.10) and (3.24) we have {g (x5 )}} is non-decreasing sequence, g (x,) —
x and {g (y»)} is non-increasing sequence,

g (yn) = y as n — oo. Then by (3.6) and (3.7) we have for all n > 0,

g (xp) =x and g (yn) = y. (3.27)
Since, T and g are compatible mappings and g is continuous, by (3.25) and (3.26)
we have,
lim g(g(xx)) =g (x) = lim g(T (xn,yn)) = lim T (g(xn),.g(yn)) (3.28)
n—00 n—00 n—00
and

Jim g (g (yn)) =g (y) = lim g(T (yn,xn)) = lim T (g(yn).g(xn)). (3.29)

Now we have p (g (x),T (x,y)) = p(g(x).g(gxn+1)) + P (g (g (xn+1)). T (x,y)).
Taking the limit as n — oo in the above inequality, using (3.8) and (3.28) we have,

p(g(x).T(x,y))
< lim p(g(x).g(g(xn+1))+ lim p(g (T (xn,yn)). T (x,y))
n—>oo n—>00
< Tim p (T (g (n) g (). T (x.3).
Since the mapping g is monotone increasing, by (3.5), (3.27) and the above in-
equality, we have for all n > 0,
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: p(g(g(xn)),g(x))+p(g(g(yn)).g(¥))
P(g().T(x.y) < lim ¢ ; )

Using (3.24) and the property of ¢— function we obtain, p (g (x),T (x,y)) <O0.
That is

gx)=T(x.y)

and similarly, by virtue of (3.8), (3.24) and (3.29) we obtain

g)=T©.x).

Thus we have proved that T and g have coupled coincidence point in X.

This completes the proof of the Theorem 2. O

Remark 2. If we assume g (x) = x forall x € X and ¢ (¢) = k¢ for 0 <k < 1 then
we obtain the results of Theorem 1.

Corollary 1. Let (X,9) be a uniform space, ” < is an order on X and suppose
there is an E—distance p on X such that (X, p) is a p—Cauchy complete uniform
space. Assume there is a function ¢ : [0,00) — [0, 00) with ¢ (t) <t and lim+¢ (r)<

r—t

t for each t > 0 and also suppose T : X x X — X and g : X — X are such that T
has the mixed g—monotone property and

p(T(x,y)’T(u’v))E¢(p(g(X),g(u))erp(g(y),g(v))) (3.30)
forall x,y,u,v € X for which comparable g (x), g (u) and comparable g (y), g (v).

Suppose
T(XxX)<g(X), gis t () — continuous and commutes with T and also sup-
pose either
(a) T is t (§)— continuous or
(b) X has the following property :
(1) if a non-decreasing sequence {x,} — x, then

Xn =X (3.31)
foralln,
(ii) if a non-increasing sequence {y,} — y, then
Y= n (3.32)
foralln.

If there exist xq, yo € X such that

g (x0) = T (x0,y0) and g (yo) = T (y0,x0),
then there exist x,y € X such that

gx)=T(x,y)and g(y) =T (y.x),
that is, T and g have a coupled coincidence.

Example 1. Let X =[0,1]x[0,1], p(x,y) =| x1 —x2 | + | y1 —y2 | for x =
(x1,x2),y =(y1,y2) € X and” <" is a partially ordered with the natural ordering of
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real numbers. Then (X, <) be an ordered uniform space and (X, p) isa p—Cauchy
complete uniform space. Let g : X — X be defined as
g(x)=x%2= (x%x%) forall x = (x1,x2) € X.
LetT: XxX > X bezdeﬁned as;
T (ey) = ((x1—3J/1) ’(x2—3y2) ) x,yeX, x>y
(0,0), X<y
T corresponds the mixed g—monotone property.
Let ¢ : [0,00) — [0, 00) be defined as
o) = %t, fort €10,00).
Let {x,} and {y,} be two sequences in X such that,
lim T (xn,yn) =a, lim g(x,) =a,a = (ay,az)
n—->oo n—oo
lim 7 (yp,xn) =b, lim g(yp) =b,b=(b1,b2).
n—->oo n—-oo
Then obviously, a = (0,0) and b = (0,0).
Now, for all n > 0;
g (xp) = x2 = (x,zl(l)a ,%(2)) Xn = (xn(l) xn(z)) €X

g(yn) = yn = (yn(l) yn(z)) yn = n1),Yn2) € X
X yn(l) X2 In2) ;
. U XpZ
T(xn,Yn)— 3 ) f n=Jn
(0 0) Xn < Yn
yn(l) xn(l) yn(2) xn(2) ;
, , 1 =X
T (ynsXn) = 3 3 ) S n =
(O 0)7 yi’l < Xn

Then, it follows that;

Jim p (g (T (xn, yn)). T (g (xn) . g (yn))) — 0 asn — oo

and

Mim p (g (T (yn,xn)). T (8 (yn). g (xn))) = 0asn — co.

Hence, the mappings T and g are compatible in X.

Also, xg = 0= (0,0) and y9 = ¢ = (c1,c3) are two points in X such that

g (x0) = g((0,0)) = (0,0) =T ((0,0).(c1.¢2)) = T (x0, o)

and

g(vo) = g ((c1.c2) = (¢}.¢3) = (“f, ) = T((c1.¢2).(0.0)) = T (. o).
We next verify inequality (5) of Theorem 2. We take x, y,u,v € X, such that

g(x) = g ((x1,x2)) < g((u1,u2)) = g (u) and g (y) = g (v), that is, x* < u? =
x? <u?and x3 <u3 and y? > v?> = y? > v? and y3 > v3.

We consider the following cases:

Casel: x > yandu > v.

2_,2 2,2 2_ .2 2_.2
Then p(T (x,y),T (u,v)) = p ((xl 3y1 ’ x23y2) ’ (u13v1 ’ u23v2))
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2 2_.2 2_.2 2_.2
—[X1TYT Y + X37Yy; U7V
3 3 3 3
_ m—ﬁ__ﬁ—ﬁ |2 vy
3 3 3
2_.2 2_.2 2_ .2
xX5—u yé—v y5—v
< 27U 1Y 27V
w2 2
_ 2{ | Tl +|x3— “2| |y1—v1|+|y2 v3|
- 3 2

—¢ (p((g(x),g(u)));rp((g(y),g(v)))) ‘
Case2: x > yand u < v.

Then p (T (x.).T (u.v)) = p ((’“%;y’z,’“z y2) . o))

_ | xi01
- 3

X33
3

+

2,.2_.2_ .2
U5+X5—y5—u5
3

2,.2_ .2 .2
Uy +x7—yy—uy
3

W3—y?)—u2—x?)
3

+

(uz y2) (uz_xz)

(PN

2_ .2 2_.2
WimyDH0G=x) | | @D HE=D) | (Gince v > u)

< ([ei o o) o ] 58]
_ 2{ |x,2—ul|+|x2—u2| [y —vi|+]y3—v3
3 2
—¢ (p((g(x),g(u)))-zkp((g(y),g(v)))) .
Case3: x <yandu > v.
Wiev? w22
Thenp(T(x,y),T(u,v))=p((0,0)7( e ‘%))
w2—p2 w22
— 13 L4 23 2
_ u%—l—x%—v%—x% + u%-i—x%;v%—x%
_ (x%—vlz)—(u%—xlz) + (xz—vz) (uz—)c2
3
2.2 2_.2 -
< (yl U])';(u] xl) + (y2 v2)+(u2 xz) (Sincey>x)
x| (o) o (|t | 4 232

+ +

3 3 3 3

X

)+

)
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_ 2 ) il
-3

2 +
=¢ (g (x).gw)))+p((g(»).g(v))
> .

2 —vi|+y3—v3]
2

Case 4: x < y and u < v with x2 < u? and y? > v2.

Then 7 (x,y) =0and T (u,v) =0, thatis p(T (x,y),T (u,v)) = 0. Obviously
(5) is satisfied.

Thus it is verified that the functions 7, g, ¢ satisfy all the conditions of Theorem
2. Here (0, 0) is the coupled coincidence point of 7 and g in X.

Remark 3. In this example 7" and g are not commuting maps. Thus the result of
[13] which is noted here in Corollary 1 is not applicable to this example.
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