

# Some general Baskakov type operators

Adrian D. Indrea and Ovidiu T. Pop



HU e-ISSN 1787-2413

# SOME GENERAL BASKAKOV TYPE OPERATORS

## ADRIAN D. INDREA AND OVIDIU T. POP

#### Received 24 September, 2013

*Abstract.* A general class of linear positive operators which generalizes Baskakov's operator is constructed. The operators of this type which preserve exactly two test functions from the set  $\{e_0, e_1, e_2\}$  are determined in each case, and for the operators obtained, we give their approximation theorem, convergence theorem and Voronovskaja-type theorem.

# 2010 Mathematics Subject Classification: 41A36; 26D15

*Keywords:* Baskakov type operators, modulus of continuity, approximation and convergence theorem, Voronovskaja-type theorem

### 1. INTRODUCTION

Let N be a set of positive integers and  $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ .

In [6], J. P. King constructed and studied general operators which generalizes the classical Berstein operators. Some King-type operators were studied in [3–6], [8,9].

In 1957, V. A. Baskakov [2], for  $m \in \mathbb{N}$  has introduced the linear positive operator

$$(V_m f)(x) = (1+x)^{-m} \sum_{k=0}^{\infty} {\binom{m+k-1}{k}} \left(\frac{x}{1+x}\right)^k f\left(\frac{k}{m}\right)$$
(1.1)

defined for any  $f \in C_2([0, +\infty)) = \left\{ f \in C([0, +\infty)) | \lim_{x \to \infty} \frac{f(x)}{1 + x^2} < +\infty \right\}$  and  $x \in [0, +\infty)$ . He proved that if  $f \in C_2([0, +\infty))$  then  $V_m f \longrightarrow f$  uniform on any compact  $[a, b] \subset [0, +\infty)$ . Note that the operators (1.1) preserve the test functions  $e_0$  and  $e_1$ . Generalizations of the operators (1.1) were introduced by M.A.Özarslan, G.Duman and N.I.Mahmudov in [10] by the form

$$(T_m f)(x) = \sum_{k=0}^{\infty} {\binom{m+k-1}{k}} (u_m(x))^k (1+u_m(x))^{-m-k} f\left(\frac{k}{m}\right)$$
(1.2)

for  $m \in \mathbb{N}, x \in [0, +\infty)$ , and they show that if  $u_m(x) \longrightarrow x$  on a compact  $[a, b] \subset [0, +\infty)$ , then  $T_m f \longrightarrow f$  uniform on [a, b] for all  $f \in C_2([0, +\infty))$ .

© 2014 Miskolc University Press

A similar result was obtained in [9] by L. Rempulska and K. Tomczak for the case in which the modified operators of Baskakov type preserve the test functions  $e_0$  and  $e_2$ .

In this paper, we introduce a general class of linear positive operators. We determine the operators of the general class which preserve only two test functions  $e_0$  and  $e_1$  or  $e_0$  and  $e_2$  or  $e_1$  and  $e_2$ .

In all these cases we give approximation properties, convergence theorems and Voronovskaja-type theorems.

The paper is organized as follows. In Section 2 we recall some results obtained by O.T.Pop in [7] which are essentially used for obtaining the main results of the paper. Section 3 is devoted to the construction of the general class of linear and positive operators defined by infinite sum, which we announced in the start. For the constructed class we establish a convergence theorem and Voronovskaja type theorem. In Section 4 we prove that in the general class constructed in Section 3 exists a unique operator which preserve the test functions  $e_0$  and  $e_1$ , the classical Baskakov operator. In Section 5 we obtain a King type operator, which is an operator that preserves the test functions  $e_0$  and  $e_2$  defined on semiaxis  $[0, +\infty)$ . We find here a result due the L. Rempulska and K. Tomczak [9].

Finally, in Section 6, we determine the operators from the general class which preserve the test function  $e_1$  and  $e_2$ .

#### 2. PRELIMINARIES

In this section we recall some results from [7], which we shall use in the present paper. Let I, J be real intervals with the property  $I \cap J$  is a nonempty interval. For any  $m, k \in \mathbb{N}_0, m \neq 0$ , we consider the functions  $\varphi_{m,k} : J \longrightarrow \mathbb{R}$ , with the property that  $\varphi_{m,k}(x) \ge 0$ , for any  $x \in J$  and the linear positive functionals  $A_{m,k}: E(I) \longrightarrow \mathbb{R}$ . For any  $m \in \mathbb{N}$  we define the operator  $L_m : E(I) \longrightarrow F(J)$ , by

$$(L_m f)(x) = \sum_{k=0}^{\infty} \varphi_{m,k}(x) A_{m,k}(f),$$
(2.1)

where E(I) is a linear space of real valued functions defined on I, for which the operators (2.1) are convergent and F(J) is a subset of real valued functions defined on J.

*Remark* 1. The operators  $(L_m)_{m \in \mathbb{N}}$  are linear and positive on  $E(I \cap J)$ .

For  $m \in \mathbb{N}$  and  $i \in \mathbb{N}_0$ , we define  $T_{m,i}$  by

$$(T_{m,i}L_m)(x) = m^i (L_m \psi_x^i)(x) = m^i \sum_{k=0}^{\infty} \varphi_{m,k}(x) A_{m,k}(\psi_x^i)$$
(2.2)

for any  $x \in I \cap J$ , where  $\psi_x : I \longrightarrow \mathbb{R}, \psi_x(t) = t - x$ .

In what follows  $s \in \mathbb{N}_0$  is even and we assume that the following condition: there exist the smallest  $\alpha_s, \alpha_{s+2} \in [0, +\infty)$ , so that

$$\lim_{m \to \infty} \frac{(T_{m,j} L_m)(x)}{m^{\alpha_j}} = B_j(x) \in \mathbb{R}$$
(2.3)

for any  $x \in I \cap J$  and  $j \in \{s, s+2\}$ ,

$$\alpha_{s+2} < \alpha_s + 2 \tag{2.4}$$

hold.

**Theorem 1** ([7]). Let  $f \in E(I)$  be a function. If  $x \in I \cap J$  and f is s times differentiable in a neighborhood of x,  $f^{(s)}$  is continuous on x, then

$$\lim_{m \to \infty} m^{s - \alpha_s} \left( (L_m f)(x) - \sum_{i=0}^s \frac{f^{(i)}(x)}{m^i i!} (T_{m,i} L_m)(x) \right) = 0.$$
(2.5)

Assume that *f* is *s* times differentiable on *I*. Let  $K \subset I \cap J$  be a compact interval. For there one we assume that exist  $m(s) \in \mathbb{N}$  and constant  $k_j \in \mathbb{R}$  depending on *K*, such that for  $m \ge m(s)$  and  $x \in K$  the following relation

$$\frac{(T_{m,j}L_m)(x)}{m^{\alpha_j}} \le k_j, \ j \in \{s, s+2\}$$
(2.6)

holds.

Following [7], the convergence expressed by (2.5) is uniform on K and

$$m^{s-\alpha_{s}}\left|(L_{m}f)(x) - \sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i}i!} (T_{m,i}L_{m})(x)\right| \leq (2.7)$$
$$\leq \frac{1}{s!} (k_{s} + k_{s+2}) \omega \left(f^{(s)}; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right),$$

for any  $x \in K, m \ge m(s)$ , where  $\omega(f; \delta)$  denotes the modulus of continuity of the function f.

In the following, we use the identity

$$(1+x)^{-m} = \sum_{k=0}^{\infty} (-1)^k \binom{m+k-1}{k} x^k$$
(2.8)

where  $x \ge 0$  and  $m \in \mathbb{N}$ .

By differentiating the relation (2.8) and multiplying with  $\frac{x}{m}$ , we obtain

$$-x(1+x)^{-m-1} = \sum_{k=0}^{\infty} (-1)^k \binom{m+k-1}{k} x^k \frac{k}{m}.$$
 (2.9)

Similarly, differentiating the relation (2.9) and multiplying with  $\frac{x}{m}$  we get

$$\frac{x}{m}(mx-1)(1+x)^{-m-2} = \sum_{k=0}^{\infty} (-1)^k \binom{m+k-1}{k} x^k \left(\frac{k}{m}\right)^2, \qquad (2.10)$$

where  $x \ge 0$  and  $m \in \mathbb{N}$ .

# 3. The construction of a general linear and positive operators defined by infinite sum

Let  $m_0 \in \mathbb{N}$  be given,  $\mathbb{N}_1 = \{m \in \mathbb{N} | m \ge m_0\}$ , the functions  $\alpha_m : J \longrightarrow \mathbb{R}$  and  $\beta_m : J \longrightarrow \mathbb{R}$  such that  $\alpha_m(x) > 0$ ,  $\beta_m(x) > 0$ ,  $\beta_m(x) - \alpha_m(x) > 0$  for any  $x \in J$  and any  $m \in \mathbb{N}_1$ .

We define the operators of the following form

$$(P_m f)(x) = \sum_{k=0}^{\infty} \binom{m+k-1}{k} \alpha_m^k(x) \beta_m^{-m-k}(x) f\left(\frac{k}{m}\right), \tag{3.1}$$

for any  $m \in \mathbb{N}_1, x \in J$  and  $f \in E([0, +\infty))$ , where  $E([0, \infty))$  is a linear space of real valued functions defined on  $[0, \infty)$ , for which the operators defined by (3.1) are convergent.

If in (2.8)-(2.10), we substitute x by  $-\frac{\alpha_m(x)}{\beta_m(x)}$ , we obtain

$$(\beta_m(x) - \alpha_m(x))^{-m} = \sum_{k=0}^{\infty} \binom{m+k-1}{k} (\alpha_m(x))^k (\beta_m(x))^{-m-k}$$
(3.2)

$$\alpha_m(x) \left(\beta_m(x) - \alpha_m(x)\right)^{-m-1} = \sum_{k=0}^{\infty} \binom{m+k-1}{k} \left(\alpha_m(x)\right)^k \left(\beta_m(x)\right)^{-m-k} \frac{k}{m}$$
(3.3)

$$\frac{1}{m}\alpha_m(x)(m\alpha_m(x) + \beta_m(x))(\beta_m(x) - \alpha_m(x))^{-m-2} =$$
(3.4)

$$=\sum_{k=0}^{\infty} \binom{m+k-1}{k} (\alpha_m(x))^k (\beta_m(x))^{-m-k} \left(\frac{k}{m}\right)^2, x \in J, m \in \mathbb{N}.$$

We impose the condition

$$(P_m e_0)(x) = 1 + u_m(x), \tag{3.5}$$

for any  $m \in \mathbb{N}_1$  and any  $x \in J$ , where  $u_m : J \longrightarrow \mathbb{R}, u_m(x) > -1$ . From (3.1), (3.2) and (3.5) follows the equality

$$\beta_m(x) - \alpha_m(x) = (1 + u_m(x))^{-\frac{1}{m}}$$
(3.6)

for any  $m \in \mathbb{N}_1$  and any  $x \in J$ .

Let us to impose the condition

$$(P_m e_1)(x) = x + v_m(x), (3.7)$$

for any  $m \in \mathbb{N}_1$  and any  $x \in J$ , where  $v_m : J \longrightarrow \mathbb{R}, v_m(x) > -x$ . Taking (3.1), (3.3) and (3.7) into account, we get

$$\alpha_m(x)(\beta_m(x) - \alpha_m(x))^{-m-1} = x + v_m(x), m \in \mathbb{N}_1, x \in J.$$
(3.8)

From (3.6) and (3.8) it follows

$$\alpha_m(x) = \frac{x + v_m(x)}{1 + u_m(x)} (1 + u_m(x))^{-\frac{1}{m}}$$
(3.9)

and

$$\beta_m(x) = \left(1 + \frac{x + v_m(x)}{1 + u_m(x)}\right) (1 + u_m(x))^{-\frac{1}{m}},\tag{3.10}$$

 $m \in \mathbb{N}_1, x \in J$ .

Taking (3.9) and (3.10) into account, the operator (3.1) becomes

$$(P_m f)(x) = (1 + u_m(x)) \sum_{k=0}^{\infty} {\binom{m+k-1}{k}} \left(\frac{x + v_m(x)}{1 + u_m(x)}\right)^k.$$
 (3.11)  
  $\cdot \left(1 + \frac{x + v_m(x)}{1 + u_m(x)}\right)^{-m-k} f\left(\frac{k}{m}\right),$ 

 $m \in \mathbb{N}_1, x \in J, f \in E([0, +\infty)).$ 

From (3.1) and (3.4), we have

$$(P_m e_2)(x) = \frac{x + v_m(x)}{m} \left( (m+1)\frac{x + v_m(x)}{1 + u_m(x)} + 1 \right),$$
(3.12)

for any  $m \in \mathbb{N}_1$  and any  $x \in J$ .

Next  $(P_m \psi_x^2)(x) = (P_m e_2)(x) - 2x(P_m e_1)(x) + x^2(P_m e_0)(x)$  and taking (3.5), (3.7) and (3.12) into account we get

$$(P_m\psi_x^2)(x) = \frac{m(v_m(x) - xu_m(x))^2 + (x + v_m(x))^2 + (1 + u_m(x))(x + v_m(x))}{m(1 + u_m(x))}$$
(3.13)

for any  $m \in \mathbb{N}_1$  and any  $x \in J$ .

Coming back to Theorem 1, for the operators (3.1), we have  $I = [0, +\infty)$ ,  $E(I) = C_2([0, +\infty))$ 

$$\varphi_{m,k}(x) = (1 + u_m(x)) \binom{m+k-1}{k} \left( \frac{x + v_m(x)}{1 + u_m(x)} \right)^k \left( 1 + \frac{x + v_m(x)}{1 + u_m(x)} \right)^{-m-k}$$
(3.14)

and

$$A_{m,k}(f) = f\left(\frac{k}{m}\right),\tag{3.15}$$

for any  $m \in \mathbb{N}_1, x \in J$  and  $f \in C_2([0, +\infty))$ .

In the following, let  $K \subset I \cap J$  be a compact interval.

We suppose that there exists the sequences  $(a_m(K))_{m \in \mathbb{N}_1}, (b_m(K))_{m \in \mathbb{N}_1}$ , so that

$$\lim_{m \to \infty} a_m(K) = \lim_{m \to \infty} b_m(K) = 0, \qquad (3.16)$$

$$|u_m(x)| \le a_m(K),\tag{3.17}$$

$$|v_m(x)| \le b_m(K),\tag{3.18}$$

for any  $m \in \mathbb{N}_1$  and any  $x \in K$ .

In what follows, let us suppose that the following equality

$$\lim_{m \to \infty} m(v_m(x) - xu_m(x)) = l(x)$$
(3.19)

holds for any  $x \in J$ , where  $l : J \longrightarrow \mathbb{R}$  is a bounded function on K.

*Remark* 2. From (3.16) - (3.18) it results that if

$$\lim_{m \to \infty} u_m(x) = \lim_{m \to \infty} v_m(x) = 0, x \in K,$$

then

$$\lim_{m \to \infty} m(v_m(x) - xu_m(x))^2 = \lim_{m \to \infty} m(v_m(x) - xu_m(x)) \cdot \\ \cdot \lim_{m \to \infty} (v_m(x) - xu_m(x)) = 0.$$

This Remark 2 implies that there exist  $m_1 \in \mathbb{N}$  such that

$$(m(v_m(x) - xu_m(x)))^2 \le 1, m \in \mathbb{N}_1, m \ge m_1, x \in K.$$
(3.20)

Let us denote

$$M_1(K) = \sup\{a_m(K) | m \in \mathbb{N}_1\},\$$

$$M_2(K) = \sup\{b_m(K) | m \in \mathbb{N}_1\}$$

Now, let  $\mathbb{N}_2 = \{m \in \mathbb{N} | m \ge max(m_0, m_1)\}.$ 

According to Theorem 1 one obtains  $\alpha_0 = 0, \alpha_2 = 1, (T_{m,0}P_m)(x) = (P_m e_0)(x)$ , for any  $m \in \mathbb{N}_1$  and any  $x \in K$ .

From (3.16) one arrives at

$$\lim_{m \to \infty} (T_{m,0} P_m)(x) = 1 = B_0(x), x \in K.$$
(3.21)

Consequently we get that exists  $m(0) \in \mathbb{N}$  such that

$$(T_{m,0}P_m)(x) = 1 + u_m(x) \le 1 + M_1(K) = k_0(K)$$
(3.22)

holds for any  $m \ge max(m_0, m(0))$  and  $x \in K$ .

We have  $(T_{m,2}P_m)(x) = m^2(P_m\psi_x^2)(x), m \in \mathbb{N}_1, x \in J$ . Taking (3.13), (3.19) and (3.20) into account, we get

$$\lim_{m \to \infty} \frac{(T_{m,2}P_m)(x)}{m} = x(1+x) + l(x) = B_2(x), x \in K.$$
(3.23)

Also there exists  $m(2) \in \mathbb{N}$  such that

$$\frac{(T_{m,2}P_m)(x)}{m} \le b(1+b) + 2 = k_2(K) \tag{3.24}$$

for any  $m \ge max(m_0, m(2), m_1)$  and  $x \in K$ , where maxK = b.

**Theorem 2.** Let  $f \in C_2([0, +\infty))$ . Then

$$\lim_{m \to \infty} P_m f = f \tag{3.25}$$

uniformly on K. There exists  $m(0) \in \mathbb{N}, m(0)$  depending on K, so that the following inequalities

$$|(P_m f)(x) - (1 + u_m(x))f(x)| \le (k_0(K) + k_2(K))\omega\left(f;\frac{1}{\sqrt{m}}\right), \qquad (3.26)$$

$$|(P_m f)(x) - f(x)| \le |u_m(x)| \cdot |f(x)| + (k_0(K) + k_2(K))\omega\left(f; \frac{1}{\sqrt{m}}\right) \quad (3.27)$$

and

$$|(P_m f)(x) - f(x)| \le a_m(K)M(K) + (k_0(K) + k_2(K))\omega\left(f;\frac{1}{\sqrt{m}}\right)$$
(3.28)

hold for any  $m \in \mathbb{N}_2, m \ge m(0)$  and  $x \in K$ , where

$$M(K) = \sup\{|f(x)| \mid x \in K\}.$$

*Proof of Theorem* 2. Applying the Theorem 1 for  $\alpha = 0$  yields (3.25) and (3.26). Next, using the inequality  $|a-c|-|b-c| \le |a-b|$ , (3.27) follows, and consequently (3.28) holds.

*Remark* 3. The equations (3.26)-(3.28) are asymptotic formula for a class of approximation processes of King's type (see [1]).

**Theorem 3.** Let  $f \in C_2([0, +\infty))$ . If  $x \in K$ , f is two times differentiable in x and  $f^{(2)}$  is continuous in x, the following relations

$$\lim_{m \to \infty} m\left((P_m f)(x) - (1 + u_m(x))f(x)\right) = l(x)f^{(1)}(x) + \frac{x(1+x)}{2}f^{(2)}(x)$$
(3.29)

holds.

*Proof of Theorem* 3. If  $m \in \mathbb{N}_1, x \in K$ , according Theorem 1 yields

$$(T_{m,1}P_m)(x) = m(P_m\psi_x)(x) = m((P_me_1)(x) - x(P_me_0)(x)).$$

Applying (3.1) and (3.5) it follows

$$(T_{m,1}P_m)(x) = m(v_m(x) - xu_m(x)).$$
(3.30)

Using Theorem 1 for s = 2, (3.22), (3.23) and (3.30) one arrives at (3.29).

*Remark* 4. The relation (3.29) is a Voronovskaja-type theorem (see [11]).

#### ADRIAN D. INDREA AND OVIDIU T. POP

# 4. $(P_m)_{m \ge m_0}$ OPERATORS PRESERVING TEST FUNCTIONS $e_0$ AND $e_1$

In the following, we consider K = [a, b], where b > 0. In this case  $J = [0, +\infty)$ and  $m_0 = 1$ , then  $\mathbb{N}_1 = \mathbb{N}$ . If the operators,  $(P_m)_{m \in \mathbb{N}}$  preserve  $e_0$  and  $e_1$ , we have  $P_m e_0 = e_0$  and  $P_m e_1 = e_1$ , for any  $m \in \mathbb{N}$ . Taking (3.5) and (3.7) into account, it results that  $u_m(x) = v_m(x) = 0$  and l(x) = 0 for any  $m \in \mathbb{N}$  and any  $x \in [0, +\infty)$ .

In this case, we get again the classical Baskakov operators. One has  $a_m([a,b]) = b_m([a,b]) = 0$ , for any  $m \in \mathbb{N}$ ,  $k_0([a,b]) = 1$  and  $k_2([a,b]) = b(1+b) + 2$ . Our statements turn into well known results.

**Theorem 4** ([2]). *Let*  $f \in C_2([0, +\infty))$  *one has* 

$$\lim_{m \to \infty} P_m f = f \tag{4.1}$$

uniformly on any compact interval  $[a,b] \subset \mathbb{R}_+$  and then exists  $m(0) \in \mathbb{N}$ , m(0) depending on b so that

$$|(P_m f)(x) - f(x)| \le (3+b+b^2)\omega\left(f;\frac{1}{\sqrt{m}}\right), m \in \mathbb{N}_2, m \ge m(0), x \in [a,b].$$
(4.2)

**Theorem 5** ([2]). Let  $f \in C_2([0, +\infty))$ . If  $x \in [a, b]$ , f is two times differentiable in x and  $f^{(2)}$  is continuous in x, then

$$\lim_{m \to \infty} m((P_m f)(x) - f(x)) = \frac{x(1+x)}{2} f^{(2)}(x).$$
(4.3)

5.  $(P_m)_{m \ge m_0}$  OPERATORS PRESERVING THE TEST FUNCTIONS  $e_0$  AND  $e_2$ 

In this case  $J = [0, +\infty)$  and  $m_0 = 1$ , then  $\mathbb{N}_1 = \mathbb{N}$ . Because  $P_m e_0 = e_0$  and  $P_m e_2 = e_2$  for any  $m \in \mathbb{N}$ , taking (3.5) into account, it follows  $u_m(x) = 0$ , for any  $m \in \mathbb{N}$  and any  $x \in [0, +\infty)$ .

By using (3.12) yields

$$(m+1)(x+v_m(x))^2 + (x+v_m(x)) - mx^2 = 0$$
(5.1)

for any  $m \in \mathbb{N}$  and any  $x \in [0, +\infty)$ .

From (5.1) we get  $v_m(x) = \frac{\sqrt{4m(m+1)x^2+1}-1}{2(m+1)} - x$ , for any  $m \in \mathbb{N}$  and any  $x \in [0, +\infty)$ , and then the operators from (3.8) become

$$(P_m f)(x) = \sum_{k=0}^{\infty} {\binom{m+k-1}{k}} \left(\frac{\sqrt{4m(m+1)x^2+1}-1}{2(m+1)}\right)^k.$$
 (5.2)  
$$\cdot \left(1 + \frac{\sqrt{4m(m+1)x^2+1}-1}{2(m+1)}\right)^{-m-k} f\left(\frac{k}{m}\right),$$

 $m \in \mathbb{N}, x \in [0, +\infty), f \in C_2([0, +\infty)).$ 

So we came across the results obtained by L. Rempulska and K. Tomczak in [9].

Lemma 1. We have that

$$v_m(x) \le \frac{\sqrt{4m(m+1)a^2 + 1} - 1}{2(m+1)} - a, m \in \mathbb{N}, x \in K = [a, b]$$
(5.3)

and

$$\frac{\sqrt{4m(m+1)a^2+1}-1}{2(m+1)} - a \le \sqrt{\frac{1}{2}a^2 + \frac{1}{16}} - a, m \in \mathbb{N}.$$
(5.4)

*Proof of Lemma 1.* Since the function  $v_m$  is decreasing on [a, b], it gets the maximum value in a and (5.3) follows. By direct computation, (5.4) is obtained. 

Lemma 2. The following relation

$$\lim_{m \to \infty} m v_m(x) = -\frac{1+x}{2}$$
(5.5)

holds, where  $x \in K$ .

Proof of Lemma 2. We have

$$\lim_{m \to \infty} m v_m(x) = \lim_{m \to \infty} \frac{m}{2(m+1)} \left( -1 + \sqrt{4m(m+1)x^2 + 1} - 2(m+1)x \right) =$$
$$= \frac{1}{2} \left( -1 + \lim_{m \to \infty} \frac{-4mx^2 - 4x^2 + 1}{\sqrt{4m(m+1)x^2 + 1} + 2(m+1)x} \right)$$
nd (5.5) follows.

aı

According to the notations from Section 3, taking Lemma 1 and Lemma 2 into account we have  $a_m([a,b]) = 0$ , for any  $m \in \mathbb{N}$ ,  $b_m([a,b])$ 

 $= \frac{\sqrt{4m(m+1)a^2+1}-1}{2(m+1)} - a, \ l(x) = -\frac{1+x}{2}, \text{ for any } m \in \mathbb{N}, \text{ any } x \in [a,b], \ b_m([a,b]) \le \frac{1+x}{2}$  $\sqrt{\frac{1}{2}a^2 + \frac{1}{16}} - a = M_2([a, b])$ , for any  $m \in \mathbb{N}$  and then  $M_1([a, b]) = 0, k_0([a, b]) = 1$ ,  $\vec{k_2}([a,b]) = b(1+b) + 2.$ 

As consequences of Theorem 2 we get

**Theorem 6.** For any  $f \in C_2([0, +\infty))$  it follows

$$\lim_{m \to \infty} P_m f = f \tag{5.6}$$

uniformly on compact [a,b] and there exists  $m(0) \in \mathbb{N}$ , m(0) depending on b, so that

$$|(P_m f)(x) - f(x)| \le (3 + b(1 + b))\omega\left(f; \frac{1}{\sqrt{m}}\right), m \in \mathbb{N}_2, m \ge m(0), x \in [a, b].$$
(5.7)

**Theorem 7.** Let  $f \in C_2([0, +\infty))$ . If  $x \in [a, b]$ , f is two times differentiable in x and  $f^{(2)}$  is continuous in x, then

$$\lim_{m \to \infty} m((P_m f)(x) - f(x)) = -\frac{1+x}{2} f^{(1)}(x) + \frac{x(1+x)}{2} f^{(2)}(x).$$
(5.8)

*Proof of Theorem* 7. Taking Lemma 2 into account and applying (3.29), (5.8) is obtained.

# 6. $(P_m)_{m \ge m_0}$ OPERATORS PRESERVING THE TEST FUNCTIONS $e_1$ AND $e_2$

In this case  $m_0 \in \mathbb{N}$ ,  $m_0 \ge 2$  is a fixed number and  $J = \left[\frac{1}{m_0 - 1}, +\infty\right)$ . If  $P_m e_1 = e_1$ , for any  $m \in \mathbb{N}_1$ , yields  $v_m(x) = 0$ , for any  $m \in \mathbb{N}_1$  and any  $x \in \left[\frac{1}{m_0 - 1}, +\infty\right)$ . For  $x \ge \frac{1}{m_0 - 1}$ , we have  $\frac{mx - 1}{x + 1} \ge \frac{m - m_0 + 1}{m_0}$  because the function  $\frac{x + 1}{mx - 1}$  is decreasing on  $\left[\frac{1}{m_0 - 1}, +\infty\right)$ , from where  $\frac{mx - 1}{x + 1} > 0$  for any  $m \in \mathbb{N}_1$  and any  $x \in \left[\frac{1}{m_0 - 1}, +\infty\right)$ . Taking (3.12) into account, from  $P_m e_1 = e_1$  and  $P_m e_2 = e_2$  for any  $m \in \mathbb{N}_1$ , we have  $\frac{m + 1}{m} \frac{x^2}{1 + u_m(x)} + \frac{x}{m} = x^2$ , for any  $x \in \left[\frac{1}{m_0 - 1}, +\infty\right)$ , from where

$$u_m(x) = \frac{x+1}{mx-1}, m \in \mathbb{N}_1, x \in \left[\frac{1}{m_0 - 1}, +\infty\right).$$
(6.1)

Then the operators from (3.11) become

$$(P_m f)(x)$$

$$= \frac{(m+1)x}{mx-1} \sum_{k=0}^{\infty} {\binom{m+k-1}{k}} \left(\frac{mx-1}{m+1}\right)^k \left(1+\frac{x-1}{m+1}\right)^{-m-k} f\left(\frac{k}{m}\right)$$
(6.2)

for  $m \in \mathbb{N}_1$ ,  $x \in \left\lfloor \frac{1}{m_0 - 1}, +\infty \right)$  and  $f \in C_2([0, +\infty))$ .

According to the notations from Section 3, we have  $b_m\left(\left[\frac{1}{m_0-1}, b\right]\right) = 0, l(x) = -1-x$ , for any  $m \in \mathbb{N}_1$ , and because the function  $u_m(x) = \frac{x+1}{mx-1}$  is decreasing on  $\left[\frac{1}{m_0-1}, +\infty\right)$ , we get that

$$u_m(x) \le \frac{m_0}{m - m_0 + 1} = a_m\left(\left[\frac{1}{m_0 - 1}, b\right]\right)$$

for any  $x \in \left[\frac{1}{m_0-1}, b\right)$  and  $M_2\left(\left[\frac{1}{m_0-1}, b\right]\right) = 0$ . Then  $k_0 = 1 + m_0$ ,  $k_2 = b(1 + b) + 2$  and  $M_1\left(\left[\frac{1}{m_0-1}, b\right]\right) = m_0$ .

**Theorem 8.** For any  $f \in C_2([0, +\infty))$  it follows

$$\lim_{m \to \infty} P_m f = f \tag{6.3}$$

uniformly on the compact  $\left[\frac{1}{m_0-1}, b\right]$  and there exists  $m(0) \in \mathbb{N}$  depending on b, such that

$$|(P_m f)(x) - f(x)| \le \frac{m_0}{m - m_0 + 1} M\left(\left[\frac{1}{m_0 - 1}, b\right]\right) +$$
(6.4)

$$+(3+m_0+b(1+b))\omega\left(f;\frac{1}{\sqrt{m}}\right)$$

for any  $m \in \mathbb{N}_2$ ,  $m \ge m(0)$  and  $x \in \left[\frac{1}{m_0 - 1}, b\right]$ , where

$$M\left(\left[\frac{1}{m_0-1},b\right]\right) = \sup\left\{|f(x)| \mid x \in \left[\frac{1}{m_0-1},b\right]\right\}$$

*Proof of Theorem* 8. It results immediately from Theorem 2.

**Theorem 9.** Let  $f \in C_2([0, +\infty))$ . If  $x \in \left[\frac{1}{m_0-1}, b\right]$ , f is two times differentiable in x and  $f^{(2)}$  is continuous in x, then

$$\lim_{m \to \infty} m((P_m f)(x) - f(x)) = \frac{1+x}{x} f(x) - (1+x) f^{(1)}(x) + \frac{x(1+x)}{2} f^{(2)}(x).$$
(6.5)

*Proof of Theorem 9.* We have  $\lim_{m \to \infty} m u_m(x) = \frac{1+x}{x}$ , l(x) = -1-x, for any  $x \in \left[\frac{1}{m_0-1}, b\right]$  and taking (3.29) into account, follows (6.5).

## REFERENCES

- O. Agratini, "An asymptotic formula for a class of approximation processes of King's type," *Studia Sci. Math Hungar*, vol. 47, no. 4, pp. 435–444, 2010.
- [2] V. A. Baskakov, "An example of sequence of linear positive operators in the space of continuous functions," *Dokl. Akad. Nouk. SSSR*, vol. 113, pp. 249–251, 1957.
- [3] P. I. Braica, O. T. Pop, and A. D. Indrea, "About a King-type operator," *Appl. Math. Inf. Sci.*, vol. 6, no. 1, pp. 145–148, 2012.
- [4] H. Gonska and P. Pitul, "Remarks on an article of J. P. King," Comment Math. Univ. Carolin, vol. 46, no. 4, pp. 645–666, 2005.
- [5] A. D. Indrea, "A particular class of linear and positive Stancu-type operators," Acta Univ. Apulensis, no. 31, pp. 249–256, 2012.
- [6] J. P. King, "Positive linear operators which preserve x<sup>2</sup>," Acta. Math. Hungar, vol. 3, no. 99, pp. 203–208, 2003.
- [7] O. T. Pop, "About some linear and positive operators defined by infinite sum," *Dem. Math.*, vol. XXXIX, no. 2, pp. –377–388, 2006.
- [8] O. T. Pop, A. D. Indrea, and P. I. Braica, "Durrmeyer operators of King-type," Annals of the University of Craiova, vol. 39, no. 2, pp. 288–298, 2012.
- [9] L. Rempulska and K. Tomczak, "Approximation by certain linear operators preserving x<sup>2</sup>," *Furk. J. Math.*, vol. 33, pp. 273–281, 2009.
- [10] M. A. Özarslan, G. Duman, and N. I. Mahmudov, "Local approximation properties of modified Baskakov operators," *Springer Basel A.G. Math*, vol. 59, pp. 1–11, 2011.
- [11] E. Voronovskaja, "Determination de la forme asumptotique d'approximation des fonctions par les polynômes de S. N. Berstein," C.R. Acad. Sci. URSS, p. 7985, 1932.

#### ADRIAN D. INDREA AND OVIDIU T. POP

# Authors' addresses

# Adrian D. Indrea

Tehnological High School of Tarna Mare 22 tăşnadului Street 440114 Satu Mare, Romania *E-mail address:* adrian.indrea@yahoo.com

# Ovidiu T. Pop

National College "Mihai Eminescu" 5 Mihai Eminescu Street 440014 Satu Mare, Romania *E-mail address:* ovidiutiberiu@yahoo.com