Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 14 (2013), No 3, pp. 893-903 DOI: 10.18514/MMN.2013.753

>
&
> | ) 700 Z | <
s wiskoLcIVEYS

Diophantine quadruples in the ring of integers
of the pure cubic field Q(v/2)

Zrinka Franu$ié



A Miskolc Mathematical Notes HU e-ISSN 1787-2413
/i Vol. 14 (2013), No. 3, pp. 893-903

DIOPHANTINE QUADRUPLES IN THE RING OF INTEGERS OF
THE PURE CUBIC FIELD Q(3/2)

ZRINKA FRANUSIC
Received 16 April, 2013

Abstract. We show that in the ring of integers of the pure cubic field Q( 2/5) there exits a D(w)-
quadruple if and only if w can be represented as a difference of two squares of integers in Q ( «3/5).
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1. INTRODUCTION

Let R be a commutative ring with a unit 1 and let w € R. A set of m distinct
non-zero elements {wy,..., W} C R, such that w; -w; + w is a perfect square in
R for all 1 <i < j <m, is called a Diophantine m-tuple with the property D(w)
or a D(w)-m-tuple in R. If w = 1 then these sets are often called Diophantine m-
tuples. They are named after the 3rd-century Greek mathematician Diophantus of
Alexandria who first studied these sets and constructed the set {1,33,68, 105} with
the property D(256). Fermat found the set {1, 3,8, 120} - the first D(1)-quadruple in
Z. Baker and Davenport in [3] showed that Fermat’s quadruple cannot be extended
to a D(1)-quintuple. A folklore conjecture says that there is no D(1)-quintuples in
Z. Dujella proved that are only finitely many D(1)-quintuples (see [&]).

The problem of existence of D(w)-quadruples was mainly considered in rings
of integers of numbers fields. It all started with the fact that there does not exist a
D(n)-quadruple in the ring of integers Z if n =2 (mod 4). This simple statement
was observed independently by several authors (see [4, 13, 15]). On the other hand,
Dujella [5] showed that if n £ 2 (mod 4) and n & {—4,—3,—1,3,5,8,12,20} then
there exists a D(n)-quadruple. It is interesting that the condition n #£ 2 (mod 4) is
equivalent to the condition that n is representable as a difference of the squares of
two integers. An analogous result for Gaussian integers was also found by Dujella
[7]. He proved that there does not exist a D(a + bi)-quadruple in Z[i] if b is odd or
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a=b =2 (mod 4), i.e. if a + bi is not representable as a difference of the squares
of two elements in Z[i], and in contrary if a + bi is not of such form and a + bi ¢
{2,-2,142i,—1—2i,4i,—4i} then a D(a + bi)-quadruple exists. Therefore, it is
natural to state the following conjecture: There exists a D(w)-quadruple if and only
if w can be represented as a difference of two squares, up to finitely many exceptions.

So far, the conjecture was shown to be true in rings of integers of some real quad-
ratic fields. More precisely, the author proved that there exist infinitely many D (w)-
quadruples if and only if w can be represented as a difference of two squares, in the
ring of integers of Q(~/d) for d = 2 and for all positive integers d such that one of
Pellian equations x2 —dy? = =2 is solvable or such that x> —dy? = 4 is solvable in
odd numbers (see [10—12]). The assumption of solvability of these Pellian equations
allows to derive an effective characterization of integers that are representable as a
difference of two squares. Similar result for complex quadratic fields are harder to
obtain. Several authors contributed to the characterization of elements z of Z[v/—2]
for which a Diophantine quadruple with the property D(z) exists (see [1,9, 16]). One
important difference between real and complex quadratic fields is that in the real case
there exist infinitely many units and the methods for the construction of Diophantine
quadruples usually use elements with a small norm.

In this paper we prove the following conjecture for the ring of integers of the pure
cubic field Q( «3/5):

Theorem 1. If w can be represented as a difference of two squares of integers
in Q(~/2) then there exits infinitely many Diophantine quadruples with the property
D(w) in the ring of integers of Q(~2). If w is not a difference of two squares of
integers then a D(w)-quadruple does not exist in the ring of integers of Q(/2).

The proof of the existence of D(w)-quadruples is based on the description of a
difference of two squares of integers in Q(~/2) and on applying polynomial formu-
las for Diophantine quadruples. The first step in proving the non-existence of certain
D(w)-quadruples was made by Juki¢ Mati¢ [14]. In the rings of integers of the cu-
bic fields of the form Q(/d), where d is even, she described some elements w that
cannot be written as a difference of two squares of integers and showed that D(w)-
quadruples do not exist. These results are complemented in Section 5 and lead to a
proof of the second statement of Theorem 1. In Section 4, the first statement of The-
orem 1 is proved by effective constructions of our objects - Diophantine quadruples.
This was accomplished thanks to a nice characterization of differences of two squares
in the ring of integers of Q(i/i) (Section 3).

We continue by exposing some well known facts relevant to the proof of Theorem
1 in the following section.
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2. PRELIMINARIES

Let us start with recalling some basic facts related to the structure of the ring of
integers Ok of the pure cubic field K = Q(3/2). Since +/2 is a root of the irreducible
polynomial x> —2 we have that [K : Q] = 3. Also, {1, ¥/2, ¥/4} is an integral basis
for K, so Og = Z[1, /2, ¥/4] (according to Theorem 7.3.2. in [2]).

As we said before, the methods for constructing D(w)-quadruples use elements
with a small norm. It is a well-known fact that Q( 3/5) possesses an unique funda-
mental unit n > 1 and itisn =1+ Y2+ 4 (Theorem 13.6.2. in [2]). All funda-
mental units in Q(/2) are £ and +7~' = £(1 — 3/2). Also, the important roles
have all (algebraic) units of O, i.e. £1",n € Z.

Following lemmas are valid in any commutative ring R with an unit.
Lemma 1 (Theorem 1, [6]). Let i,k € R. The set
(i, Bk + 1) 4 26, (3 +2) + 2k + 2,92k + 1)% + 8k + 4} (2.1
has the property DQu(2«x + 1) +1).

We emphasize that the set (2.1) is considered as a D(2u (2« + 1) 4 1)-quadruple
if it contains no equal elements or zero elements.

Lemma 2. If {wi,ws, w3, wq} is a D(w)-quadruple in R, then
{wiu, wou, w3u, wau is a D(wu?)-quadruple in R.
3. ON DIFFERENCE OF TWO SQUARES

Here, we describe the set of all integers that are representable as a difference of
squares of two integers in Q(/2).

Theorem 2. Let o, B,y € Z. Then w = o + B /2 +y /4 can be represented as a
difference of squares of two integers in Q(~/2) if and only if

a=0,1,3 (mod 4), =0 (mod 2)and («,B,y) %~ (0,0,2) (mod 4).
Proof. Suppose that
o+ BV2+yVAh= (a1 +b1V2+c1 VA2 — (a2 + by V2 + 2 V42,

for some ay,b1,c1,a2,b2,c0 € Z, then

a = a?—ai+4(bic1 —baca),
B = 2(ci—c3+biai—baaz),
y = b%—b%—l—Z(alcl —ascy).

It is easy to see thatw = 0,1,3 (mod 4) and B =0 (mod 2). Also, if we assume that
a=f=0 (mod 4) and y is even, then a; =a, (mod 2),b; =b, (mod 2),c1 =c,
(mod 2). Hence, y = b% —b% +2(ajc1 —azc) =0 (mod 4),1ie. y #2 (mod 4).
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The converse of the statement is proved by a series of equalities:

1+20+ 282+ (142y) V4=

Qy—a+1+@=B+DV2+(B-y)VH? -y —a+@-pV2+(B-1-

VIV,

1420 +282+2y 4= (@+ 1+ B2+ y VD —(a+BV2+y VD>,

da+4B Y2+ 4y Vd= @+ 1+ Y24y V4> —(@—1+B2+y V47>,

da+(AB+2)V2+2y VA= (@+ B2+ (y+ D VD> — (@ +BV2+y V42,

4a+2B8V2+Qr+DVA=(@+ B+ DV2+y V4> —(@+ Y2+ y V4?2
O

4, THE EXISTENCE OF D(w)-QUADRUPLES

In this section we construct a D (w)-quadruple for all w € Ok of the form given in
Theorem 2. The following lemma serves as a prototype or template for constructing
D(w)-quadruples for the majority of cases.

Lemma 3. Leta,b,c € Z and (a,b,c) # (0,—1,0),(—1,0,0). The set

D ={1-3/2,
—21—132a —9a? —40b —36ab — 18h% — 40c — 36ac — 36bhc —36¢%+
(=15 —20a —9a% —32b — 18ab — 18b2 — 40c — 36ac — 36bc — 18¢2) v/2+
(=11 —20a —9a® —20b — 18ab — 9b2 —32¢ — 18ac — 36bc — 18¢2) V/4,
—16—26a —9a? — 40b — 36ab — 18h? — 40c — 36ac — 36bc —36¢%+
(=12 —=20a — 9a% —26b — 18ab — 18h% — 40c — 36ac — 36bc — 18¢2) I/ 2+
(=11 =20a —9a% —20b — 18ab — 9b2 —26¢ — 18ac — 36bc — 18¢2) /4,

—75—116a —36a? — 160b — 144ab —72b%> — 160c — 144ac — 144bc — 144¢%+
(=53 —80a —36a> —116b —72ab —72b%> —160c — 144ac — 144bc —72¢?) J2+
(—44 —80a —36a2 —80b — 72ab —36b% — 116¢ — 12ac — 144bc —72¢%) V/4}

isa D3+ 4a+ 2+ 4b) 2+ 4c J/4)-quadruple in Z[1, J/2, ¥/4]. The set

{—1945/248/4,—1749109 — 1388265 /2 — 1101867 /4,
—1749060 — 1388224 /2 — 1101831 v/4, —6996319 — 5552983 /2 — 4407404 /4}

is a D(3—2~/2)-quadruple and
{—19+ 52+ 834, 17524872 — 13909496 v/2 — 11039975 v/4,
—17524709 — 13909365 v/2 — 11039867 \3/2, —70099143 — 55637727 /2 — 44159692 «3/2}
isa D(—1+ 2«3/5)—quadruple.
Proof. Letu=1—2andk =a+ B2+ y 4 e Ok. Then
w=2uRk+1)+1=4a—8y +3+ (—da+4f—2) Y2+ (—4p + 4y) V4
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is of the form 3 4+ 4a + (2 + 4b) J2+4c 4. Now, let us make sure that for given
a,b,c € Z there exist o, 8,y € Z such that w = 3+ 4a + (2 + 4b) V2 + 4c V4.
Indeed, the linear system

4o —8y +3=3+4a, -4a+4—-2=2+4b, —4f +4y =4c,

i.e. the system
a—2y=a, —a+pB=1+b, B+y=c
has the integer solution
a=—-a—2b—-2c—-2,=—-a—-b—-2c—1,y=—a—b—c—1.

By putting this solution into (2.1) we obtain the set D. This is a D(w)-quadruple
if it consists of non-zero distinct elements. Hence, we have to check whether there
are equal elements or elements equal to zero in D and that requires solving 9 sys-
tems of three (nonlinear) equations. The results of the investigation are two inte-
ger solutions (a,b,c) = (0,—1,0),(—1,0,0) and corresponding sets {I — J2.1—
V2,6 —43/2,13-93/2} and {1 — /2,2—43/2,1— J/2,5—9:/2} which do not
represent D(3—2+/2) and D(—1 + 2 </2)-quadruple respectively (because they have
two equal elements). This situation can be resolved by putting w = 3 —23/2 =
ud(2u(2x + 1) + 1), where u = = 1 — +/2. Indeed, this holds for k = —7390 —
5865+/2 — 4655 /4 and according to Lemmas 1 and 2 we obtain the set {—19 +
532 +8/4,—1749109 — 138826532 — 1101867 v/4,...}. Similarly, we construct
D(—1+23/2)-quadruple since —1 +2/2 =ulQuQxk+1)+ 1) foru=p=1-32
and k = —23391 — 18565 /2 — 14735 /4. O

In what follows, the majority of cases are treated similarly by assuming that w =
u?(2u(2k + 1) + 1) for some u, u € Z[1, /2, ¥/4] and k € Q(~/2). By multiplying
the elements of the set (2.1) by u we obtain a D(w)-quadruple up to finitely many
exceptions. These exceptions are resolved separately as in Lemma 3. The results
for the existence of D(w)-quadruples for all w of the form 2a + 1 +2b~/2 + ¢ V4,
a,b,c € Z are exposed in several tables in Section 6. To be more simple, we occas-
ionally represent an integer w = a + b ¥/2 + ¢ /4 as a triple w = (a,b,c) .

A Diophantine quadruple for each exception can be found as in Lemma 3. Preci-
sely, each exception can be represented in a form v8u?(2u(2k +1) + 1) or
v1%u2(2u (2« + 1) 4 1), where u and « are given in tables for a corresponding ex-
ception and v = 1 — /2. (Note that w-v3 = w (mod 4) and w-v'® = w (mod 8)).

Since, we have shown the existence of D (w)-quadruples for w =2a +1+2b 2+
c /4, by multiplying w with u? where u = V2, u = /4 and u = 2 we prove
that there exist D(4a +2b 32+ (1 +2¢)V4), D(4a + (2 + 4b) V2 + 4c J/4) and
D(8a + 4+ 8b /2 + 4c¢ /4)-quadruples, respectively. The remaining cases are gi-
ven in the tables in Section 7.
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The exceptions are not a problem and we treat them the same way as before.
Hence, we have proved that if w is a difference of two squares of integers then
there exists a D(w)-quadruple and even more, there exist infinitely many D(w)-
quadruples. Indeed, if v is an algebraic unit so is v™! and an another D (w)-quadruple
is obtained by multiplying the elements of D(wv?)-quadruple by v™!. So, the exis-
tence of infinitely many algebraic units in Q( +/2) imply that there are infinitely many
D (w)-quadruples. One may ask whether distinct quadruples by multiplying by units
appear. The answer is positive due to the fact that the first element of a Diophantine
quadruple created as described above is of the form pu, where pu and u are taken
from a finite set of values. For instance, see Lemma 3.

5. THE NONEXISTENCE OF D(w)-QUADRUPLES

Lemma 4 (Lemma 3.1, Theorem 3.2, [14]). If w € Ok is of one of the following
forms

a+ Qb+ 1)V24cV4, 4a+2+b2+c V4,
then there exist no D(w)-quadruples in Og.

Lemma 5. If w € Ok is of the form 4a + 4b /2 + (4¢ + 2) /4 then there exist no
D(w)-quadruples in Ok.

Proof. Leta,b,c € Z and w = 4a + 4b /2 + (4c +2) J/4. Assume that
{w1,wy, w3, wq} is a D(w)-quadruple in Og. If w; = a; + b; V24 V4, ie. wi =
(aibi,ci), 1 <i <4, then

w; -w; mod 4 € § = {(0,0,2),(0,0,3),(0,2,2),(0,2,3),

(1709 1)7(15072)5 (172’0)3(1’25 3)}’
for 1 <i < j < 4. We obtain that there do not exist four integers wq,wz, w3, w4
in Ok such that the above condition is fulfilled by testing all possibilities directly.
To be more specific, we characterize congruence types modulo 4 of Diophantine

pairs and triples. Let us recall, that the D(w)-pair {w1,w,} has a congruence type
[(@1.B1.71). (@2, B2.y2)] if a; = o; (mod 4), b; = B; (mod 4), ¢; = y; (mod 4),
i = 1,2. Without loss of generality, we assume that {w;, w5} is ordered in an ascend-
ing order according to a congruence type i.e. a1B1V14 < ®2B2Y24, Where afy, =
o -4? + B-4+y-1 (- anumber in the quaternary numeral system with digits -, 8 and
). For instance, if w; mod 4 = (0,0, 1) and if {w{,w>} is a D(w)-pair, then
wz mod 4 € §1 = {(2,0,0),(2,0,1),(2,0,2),(2,0,3),(2,2,0),(2,2,1),(2,2,2),
(2,2,3),(3,0,0),(3,0,1),(3,0,2),(3,0,3),(3,2,0),(3,2,1),(3,2,2),(3,2,3)}.

Now, if w, mod 4 = (2,0,0) and if {w,, w3} is a D(w)-pair, then
ws mod 4 € S, ={(2,0,1),(2,0,3),(2,1,1),(2,1,3),(2,2,1),
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(2,2,3),(2,3,1),(2,3,3)}.

So, if {w, w2, w3} is a D(w)-triple and if {w1, w>} has a congruence type
[(0,0,1),(2,0,0)] then

ws mod 4 € S1 NS, ={(2,0,1),(2,0,3),(2,2,1),(2,2,3)}.
Finally, if w3 mod 4 = (2,0,1) and if {ws, w4} is a D(w)-pair, then
wq mod 4 € S3 ={(2,0,2),(2,2,0),(2,2,2),(3,1,0),(3,1,2),(3,3,0),(3,3,2)}.

Under assumptions that {w;, w,, w3, w4} is a D(w)-quadruple and {wy,w,, w3} has
a congruence type [(0,0,1),(2,0,0),(2,0, 1)], it holds that

wg € S1NSNS3=a.
O

According to Theorem 2 and Lemmas 4, 5, we conclude the if w € Ok is not
representable a difference of two squares of integers, then a D(w)-quadruple does
not exist. That proves the second statement of the Theorem 1.
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