
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No 2, pp. 489-496 DOI: 10.18514/MMN.2014.755

On Green's equivalences in Γ-groupoids

Kostaq Hila and Jani Dine



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No. 2, pp. 489–496

ON GREEN’S EQUIVALENCES IN � -GROUPOIDS

KOSTAQ HILA AND JANI DINE

Received 24 September, 2013

Abstract. This paper deals with � -groupoids which are generalizations of groupoids and � -
semigroups. The main purpose of this paper is to extend Green’s equivalences and Green’s
Lemma to suitably restricted � -groupoids. We study only � -groupoids satisfying some addi-
tional conditions and we show that these are sufficient for the statement of Green’s equivalences
in case of � -groupoids. Additional condition sufficient to prove Green’s Lemma for � -groupoids
is provided and some illustrative examples are presented.
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1. INTRODUCTION AND PRELIMINARIES

In 1964, N. Nobusawa [16] introduced the notion of a � -ring, more general than
a ring. In 1966, W. E. Barnes [1] weakened slightly the conditions in the definition
of � -ring in the sense of Nobusawa. Many fundamental results in ring theory have
been extended to � -rings by different authors obtaining various generalization ana-
logous to corresponding parts in ring theory. In 1981, M. K. Sen [19] and later in
1986, Sen and Saha [20] introduced the concept of the � -semigroup as a generaliz-
ation of semigroup and ternary semigroup. Many classical notions and results of the
theory of semigroups have been extended and generalized to � -semigroups by a lot
of mathematicians. Green’s relations for semigroups were introduced by J. A. Green
in a paper of 1951 [7]. Green’s relations for � -semigroups defined in [6,18], play an
important role in studying of the structure of � -semigroups as well as in case of the
plain semigroups and become a familiar tool among � -semigroups. Several treat-
ments and contributions concerning Green’s relations for � -semigroups have been
made by a lot of mathematicians, for instant [2–4, 6, 8–10, 12, 13, 15, 17, 18, 20]. Re-
cently, in [11] we have introduced and studied the hyperversion of Green’s relations
in � -semihypergroups. The Green’s equivalence relations, Green’s Lemma and its
corollaries are important tools in the theory of � -semigroups as well as in the case
of the plain semigroups. The proof of those fundamental results depends on little
more than the associativity of the � -operation defined in � -semigroups. However,
when we remove this property, we find ourselves faced with the problem of obtaining
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similar results in � -groupoids. For this, we will study only � -groupoids satisfying
some additional conditions and we show that these are sufficient for the statement
of Green’s equivalences in case of � -groupoids. Additional condition sufficient to
prove Green’s Lemma for � -groupoids is provided and some illustrative examples
are presented. The main purpose of this paper is to extend Green’s equivalences and
Green’s Lemma to suitably restricted � -groupoids and to obtain some results which
are parallel to those obtained for groupoids and semigroups [5, 14].

We introduce below necessary notions and present a few auxiliary results that will
be used throughout the paper.

Definition 1. Let M and � be two non-empty sets. Any map from M �� �

M !M will be called a � -multiplication in M and denoted by .�/� . The result
of this multiplication for a;b 2M and ˛ 2 � is denoted by a˛b. A � -groupoid
M is an ordered pair .M;.�/� / where M and � are non-empty sets and .�/� is a
� -multiplication on M .

M is called a � -semigroup, if in addition, the following assertion is satisfied:
8.a;b;c;˛;ˇ/ 2M 3�� 2; .a˛b/ˇc D a˛.bˇc/.

Example 1. Let M be a semigroup and � be any nonempty set. If we define
ab D ab for all a;b 2M and  2 � . Then M is a � -semigroup.

Example 2. LetM be a set of all negative rational numbers. ObviouslyM is not a
semigroup under usual product of rational numbers. Let � D f� 1

p
W p is primeg. Let

a;b;c 2M and ˛ 2 � . Now if a˛b is equal to the usual product of rational numbers
a;˛;b, then a˛b 2M and .a˛b/ˇc D a˛.bˇc/. Hence M is a � -semigroup.

Example 3. Let M D f�i;0; ig and � DM . Then M is a � -semigroup under
the multiplication over complex numbers whileM is not a semigroup under complex
number multiplication.

Notice that every semigroup is a � -semigroup and � -semigroups are a generaliz-
ation of semigroups. The same holds for � -groupoids.

A � -groupoidM is said to be commutative if for all a;b 2M; 2 � , abD ba.

2. ON GREEN’S RELATIONS IN � -GROUPOIDS

Let M be a � -groupoid. If E is any binary relation on the set M and a;b 2
M , then let aEb mean that a is E-related to b and, whenever E is an equivalence
relation onM , let the E-equivalence class containing a be denoted by Ea, i.e., Ea D
fx 2M jxEag. We define now two relations, the so-called Green’s relations on a
� -groupoid M .
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Definition 2. LetM be a � -groupoid and a;b 2M . We define aRb if and only if
either aD b or there exist x;y 2M and ˛;ˇ 2 � , such that a˛x D b and bˇy D a.
Dually, we define cLd if and only if either cD d or there exist u;v 2M and ;ı 2 �
such that uc D d and vıd D c.

When these are equivalence relations we will write Ra for the R-class of a, and
Lc for the L-class of c.

When M is associative, that is, a � -semigroup, then it is known that the relations
R and L are equivalence relations [6]. In this case we have aRb iff a�M [fag D
b�M [fbg.

For arbitrary � -groupoids, these two subsets of M need not have any particular
relationship even though aRb. For this, we give the following definition.

Definition 3. LetM be a � -groupoid. M is said to be left consistent ifH.x˛y/D
.Hx/˛y for any x;y 2M , ;˛ 2 � and any � -subgroupoidH ofM . M is said to
be weakly left consistent if the above holds just for H DM .

Definition 4. LetM be a � -groupoid. M is said to be right consistent if .x˛y/H
D x˛.yH/ for any x;y 2M , ˛; 2 � and any � -subgroupoidH ofM . M is said
to be weakly right consistent if the above holds just for H DM .

Definition 5. Let M be a � -groupoid. M is said to be [weakly]consistent if it is
both [weakly] left and [weakly] right consistent.

Definition 6. LetM be a � -groupoid. M is said to be intra-consistent if .xH/˛y
D x.H˛y/ for any x;y 2M;;˛ 2 � and any � -subgroupoid H of M . M is said
to be weakly intra-consistent if the above holds just for H DM .

Proposition 1. Let M be a weakly right consistent or a weakly intra-consistent
� -groupoid. Then aRb if and only if a�M [fag D b�M [fbg for a;b 2M .

Proof. ”) ”. Let M be weakly right consistent and assume aRb. If a D b the
result is evident. Otherwise there exist x;y 2M and ˛;ˇ 2 � such that a˛x D b
and bˇy D a. Let  2 � and so aM � a�M . Then we have: aM D .bˇy/M D
bˇ.yM/ � bˇM � b�M , that is, a�M � b�M . On the other side, we have:
bM D .a˛x/M D a˛.xM/ � a˛M � a�M , that is b�M � a�M . Hence
a�M D b�M . Since a 2 b�M and b 2 a�M , the requested result follows. If M
is weakly intra-consistent and aRb and a ¤ b we can show in a similar way that
a 2 a�M D b�M , and b 2 b�M , and the result follows immediately.

”( ”. The converse is trivial. �

An immediate corollary of the above proposition is the following.

Corollary 1. If M is either a weakly consistent or a weakly intra-consistent � -
groupoids, R and L are equivalence relations. Indeed if M is weakly consistent,
then R is a left congruence and L is a right congruence.
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Problem 1. In general, R need not be a left congruence on a weakly intra-
consistent � -groupoid. Can one finds an example of a non-trivial weakly intra-
consistent � -groupoid in which R is not a left congruence?

Let we consider now the case M is a commutative � -groupoid.

Proposition 2. Let M be a commutative � -groupoid. Then M is [weakly] left
consistent if and only if M is [weakly] right consistent and therefore [weakly] con-
sistent.

Proof. Let a;b 2M;˛;ˇ 2 � and H be any � -subgroupoid of M . By the com-
mutativity of M we have .a˛b/ˇH D Hˇ.b˛a/ and a˛.bˇH/ D .bˇH/˛a D

D .Hˇb/˛a. The two equalities are linked if M is either [weakly] left or [weakly]
right consistent and hence the conditions [with H DM ] are equivalent. �

Remark 1. For the commutative groupoids, if they are [weakly] right consistent
and therefore [weakly] consistent, in either case they are [weakly] intra-consistent.
When we pass to � -groupoids, this property does not hold. In fact, if M is [weakly]
right (or left) consistent � -groupoid, by the commutativity ofM , we have: .a˛H/ˇbD
bˇ.a˛H/D .bˇa/˛H D .aˇb/˛H D aˇ.b˛H/D aˇ.H˛b/, for any a;b 2M;˛;ˇ�
and H is any � -subgroupoid of M [with H D M ], which shows that M is not
[weakly] intra-consistent in general.

Example 4. LetM Dfx;y;´; tg and � Df˛;ˇgwith the � -multiplication defined
by

˛ x y ´ t

x x x y y

y y y x x

´ ´ ´ t t

t t t ´ ´

˛ x y ´ t

x x x y y

y y y x x

´ t t ´ ´

t ´ ´ t t

It can be easily verified thatM is weakly left consistent and weakly intra-consistent
but not weakly right consistent.

Problem 2. Can one find an example of a non-trivial � -groupoid which is both
weakly left and right consistent but not weakly intra-consistent or to prove that a
weakly consistent � -groupoid is weakly intra-consistent?

In order to prove Green’s Lemma for � -groupoids we will need the following
result, whose proof is straightforward.

Lemma 1. Let M be a � -groupoid. If M is weakly right consistent, then for all
a 2M and � 2 � , a�M is a � -subgroupoid. Also, a�M is a � -subgroupoid.

Corollary 2. LetM be a � -groupoid. IfM is weakly right consistent, then for all
a 2M;� 2� , a�M [fag is a � -subgroupoid. Also, a�M [fag is a � -subgroupoid.
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Let M be a � -groupoid. The mapping �s˛ WM !M defined by �s˛a D s˛a for
all s;a 2M and ˛ 2 � is called left translation of � -semigroup M . The mapping
�
ˇ
s0 WM !M defined by b�ˇs0 D bˇs

0 for all s0;b 2M and ˇ 2 � is called right
translation of � -semigroup M .

Theorem 1. Let M be a consistent � -groupoid and suppose cRb for some c ¤
b. Then there are s;s0 2 M;˛;ˇ 2 � such that c˛s D b;bˇs0 D c and the right
translations �˛s ;�

ˇ
s0 , are, respectively, mappings from Lc into Lb and Lb into Lc ,

which are R-class preserving, that is, for x 2 Lc ;xRx�˛s and for y 2 Lb;yRy�
ˇ
s0 .

Proof. Let cRb for some c ¤ b. Since c ¤ b, the existence of s;s0 follows from
the Definition 2. Now let aLc and dLb. By Corollary 1, L is a right congruence,
thus we have a˛sLc˛s D b and dˇs0Lbˇs0 D c. Thus we have Lc�˛s � Lb and
Lb�

ˇ
s0 � Lc .

Now, if a ¤ c, then for any � 2 � , a�M � a˛.s�M/ D .tc/˛.s�M/ where
tc D a for some t 2M; 2 � by the Definition 2. Since s�M is a � -subgroupoid
by Lemma 1, we have .tc/˛.s�M/D tŒc˛.s�M/�D tŒ.c˛s/�M�D t.b�M/.
Thus a D tc D t.bˇs0/ 2 t.b�M/ � a�M . Continuing we have
a�M � .a˛s/�M D t.b�M/ � tŒbˇ.s0�M/� D tŒ.bˇs0/�M� D t.c�M/ D

.tc/�M D a�M , whence a�M D .a˛s/�M . But a 2 a�M and a˛s 2 a�M D

.a˛s/�M so that we can conclude by Proposition 1 that aRa˛s. If a D c, the pre-
ceding argument can be simplified to show that cRc˛s. In a similar way, it can be
shown dRdˇs0. �

Corollary 3. If M is a consistent � -groupoid, then R ıLDLıR on M .

Proof. If aLcRb, then the above Theorem yields an s 2M such that aRasLb

for some  2 � , and so LıR �R ıL. The reverse inclusion is proven dually. �

Now we give the following definition.

Definition 7. A � -groupoid M is said to be D-� -groupoid if LıRDR ıL on
M .

In such cases we define D DLıR and D is then clearly an equivalence relation.
Note that the consistent � -groupoids are D �� -groupoid, while the converse is

not necessarily true. The following example shows this.

Example 5. Let M D fx;yg and � D f˛;ˇg with the � -multiplication defined by

˛ x y

x y x

y y x

ˇ x y

x x x

y x x

Here we have that LDR D !, the universal relation on M , so that M is certainly
D�� -groupoid, whileM˛.xˇx/D y ¤ x D .M˛y/ˇy, that is,M is not a consist-
ent � -groupoid.
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3. GREEN’S LEMMA FOR � -GROUPOIDS

Theorem 1 shows us that for a consistent � -groupoid M certain right translations
define maps between two L-classes which are R-class preserving. In general, it is
not known if �˛s and �ˇs0 are mutually inverse maps between Lc and Lb , as is the case
of � -semigroups [6].

In the following results are provided additional conditions which suffice to guar-
antee this result.

Definition 8. LetM be a D-� -groupoid. A D-class,D ofM is said to be regular
if there is an  -idempotent element (xx D x/ in each L and R-class of D.

Lemma 2. Let M be a consistent � -groupoid. If ee D e for some  2 � , then
xe D x for all x 2L-class, Le, and ey D y for all y 2R-class Re.

Proof. Let x 2 Le. Then x D t˛e for some t 2 M and ˛ 2 � . Now xe D

.t˛e/e D t˛.ee/D t˛e D x since feg is a � -subgroupoid of M . The other result
is dual. �

Proposition 3. Let D be a regular D-class of a consistent � -groupoid M . Then
for any a 2 D, there exist t; t 0 2M and ; 0;˛;ˇ 2 � such that a D a.t˛a/ D
.aˇt 0/ 0a.

Proof. Let a 2D. Since D is regular, there is an  -idempotent e 2 La D Le. By
Lemma 2, ae D a. Since eLa, there is a t 2M;˛ 2 � such that t˛a D e. Then
aD ae D a.t˛a/. Dually one obtains aD .aˇt 0/ 0a. �

Remark 2. A converse of Proposition 3 is false: a � -groupoid M may be con-
sistent, and for every a 2M may have t; t 0 2M and ; 0;˛;ˇ 2 � such that a D
a.t˛a/D .aˇt 0/ 0a, and yet M may have no idempotents. We have the following
example.

Example 6. Let M D fx;yg and � D f˛;ˇg with the � -multiplication defined by

˛ x y

x y x

y y x

ˇ x y

x y y

y x x

In the � -groupoidM there no idempotents and further, for example, xD x˛.xˇx/D
.x˛x/ˇx. Moreover, here we have LDRD !.

Definition 9. Let M be a � -groupoid. M is said to be almost associative if
whenever H is a � -subgroupoid of M and a;b;c 2 M;˛;ˇ; 2 � , we have
HŒ.a˛b/ˇc�DHŒa˛.bˇc/� and Œa˛.bˇc/�H D Œ.a˛b/ˇc�H .

Theorem 2. A regular, consistent, almost associative � -groupoid is associative.
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Proof. Let a;b;c 2 M . Then .a˛b/ˇc D .a˛b/ˇ.ce/ for some ee D e 2

Lc ; 2 � . But .a˛b/ˇ.ce/ D Œ.a˛b/ˇc�e D Œa˛.bˇc/�e D a˛Œ.bˇc/e� D

a˛Œbˇ.ce/� D a˛.bˇc/ since M is consistent and almost associative and feg is a
� -subgroupoid. We thus have that .a˛b/ˇc D a˛.bˇc/ for any a;b;c 2 M and
˛;ˇ 2 � , i.e., M is associative. �

Now, based on the above results, we are ready to state and to prove the so-called
Green’s Lemma for � -groupoids.

Corollary 4. (Green’s Lemma). Let M be a consistent almost associative � -
groupoid. If D is a regular D-class of M and cRb for c;b 2 D, then there exist
s;s0 2M;˛;ˇ 2 � such that c˛sD b;bˇs0D c and the right translations �˛s ;�

ˇ
s0 , are

mutually inverse bijections between Lc and Lb and are R-class preserving.

Proof. By Theorem 1 we need only to show that �˛s and �ˇs0 are mutually inverse
bijections. Let f f D f 2 Rc for some  2 � , and f u D c for some u 2M .
Then c D bˇs0 D .c˛s/ˇs0 D ..f u/˛s/ˇs0 D .f .u˛s//ˇs0 D f ..u˛s/ˇs0/ D
f .u˛.sˇs0//D .f u/˛.sˇs0/D c˛.sˇs0/:

Now let a 2 Lc and eıe D e 2 Lc for some ı 2 � . There exist t 2 M and
� 2 � such that t�c D a. Then .a/�˛s �

ˇ
s0 D .a˛s/ˇs0. Since .a˛s/ˇs0 2 La \

Ra by Theorem 1, .a˛s/ˇs0 D Œ.a˛s/ˇs0�ıe D Œa˛.sˇs0/�ıe D Œ.t�c/˛.sˇs0/�ıe D
Œt�.c˛.sˇs0//�ıe D Œt�c�ıe D aıe D a since c D c˛.sˇs0/ from above. Thus �˛s �

ˇ
s0

is the identity map on Lc . Similarly �ˇs0�
˛
s is the identity map on Lb . The result now

follows. �

It is clear that, as it is shown in this paper, a consistent, almost associative � -
groupoid with every .R ıL/-equivalence class regular is necessarily a � -semigroup
and so the Green’s Lemma takes its familiar form in � -semigroups [3, 6].

From all the above, the following problems arise:

Problem 3. What we can say about the validation of Green’s Lemma for infinite
� -groupoids?

Problem 4. How necessary is the regularity in the Corollary 4?

Problem 5. Is there any natural condition for � -groupoids weaker than that of
almost associativity which can replace it leaving Corollary 4 true but Theorem 2
false?

Problem 6. Is there a regular consistent � -groupoid in which the right transla-
tions of Theorem 1 are not mutually inverse?
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