The cozero-divisor graph relative to finitely generated modules

H. Ansari-Toroghy, F. Farshadifar, and Sh. Habibi

THE COZERO-DIVISOR GRAPH RELATIVE TO FINITELY GENERATED MODULES

H. ANSARI-TOROGHY, F. FARSHADIFAR, AND SH.HABIBI

Abstract

Let R be a commutative ring and let M be a finitely generated R-module. Let's denote the cozero-divisor graph of R by $\bar{\Gamma}(R)$. In this paper, we introduce a certain subgraph $\Gamma_{R}(M)$ of $\dot{\Gamma}(R)$, called cozero-divisor graph relative to M, and obtain some related results.

2010 Mathematics Subject Classification: 05C75; 13A99; 05C99
Keywords: cozero-divisor, complete graph, finitely generated

1. Introduction

Throughout this paper, R will denote a commutative ring with identity. We denote the set of maximal ideals of R by $\operatorname{Max}(R)$.

A graph G is defined as the pair $(V(G), E(G))$, where $V(G)$ is the set of vertices of G and $E(G)$ is the set of edges of G. For two distinct vertices a and b of $V(G)$, the notation $a-b$ means that a and b are adjacent. A graph G is said to be complete if $a-b$ for all distinct $a, b \in V(G)$, and G is said to be empty if $E(G)=\varnothing$. Note that by this definition a graph may be empty even if $V(G) \neq \varnothing$. If $|V(G)| \geq 2$, a path from a to b is a series of adjacent vertices $a-v_{1}-v_{2}-\ldots-v_{n}-b$. The length of a path is the number of edges it contains. A cycle is a path that begins and ends at the same vertex in which no edge is repeated, and all vertices other than the starting and ending vertex are distinct. If a graph G has a cycle, the girth of G (notated $g(G)$) is defined as the length of the shortest cycle of G; otherwise, $g(G)=\infty$. A graph G is connected if for every pair of distinct vertices $a, b \in V(G)$, there exists a path from a to b. If there is a path from a to b with $a, b \in V(G)$, then the distance from a to b is the length of the shortest path from a to b and is denoted $d(a, b)$. If there is not a path between a and $b, d(a, b)=\infty$. The diameter of G is $\operatorname{diam}(G)=\operatorname{Sup}\{d(a, b) \mid a, b \in V(G)\}$.

The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [8]. He assumes that all elements of the ring are vertices of the graph and was mainly interested in colorings and then this investigation of coloring of a commutative ring was continued by Anderson and Naseer in [4]. Anderson and Livingston [7], studied the zero-divisor graph whose vertices are the nonzero zero-divisors.

Let $Z(R)$ be the set of zero-divisors of R. The zero-divisor graph of R denoted by $\Gamma(R)$, is a graph with vertices $Z^{*}(R)=Z(R) \backslash\{0\}$ and for distinct $x, y \in Z^{*}(R)$ the vertices x and y are adjacent if and only if $x y=0$. This graph turns out to exhibit properties of the set of the zero-divisors of a commutative ring. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory language and then the geometric properties of graphs help us explore some interesting results in algebraic structures of rings. The zero-divisor graph of a commutative ring has also been studied by several other authors (e.g., [5, 6, 10]).

In [2], Afkhami and Khashyarmanesh introduced the cozero-divisor graph $\Gamma(R)$ of R, in which the vertices are precisely the nonzero, non-unit elements of R , denoted $W^{*}(R)$, and two vertices x and y are adjacent if and only if $x \notin y R$ and $y \notin x R$.

Now let M be a finitely generated R-module. The purpose of this paper is to introduce a certain subgraph $\dot{\Gamma}_{R}(M)$ of $\Gamma(R)$, called the cozero-divisor graph relative to M and obtain some results similar to those of [2] and [3]. This graph, with a different point of view, can be regarded as a reduction of $\dot{\Gamma}(R)$, namely, we have $\dot{\Gamma}_{R}(R)=\dot{\Gamma}(R)$.

2. AUXILIARY RESULTS

Let M be an R-module. The support of M is denoted by $\operatorname{Supp}(M)$ and it is defined by
$\operatorname{Supp}(M)=\left\{P \in \operatorname{Spec}(R) \mid A n n_{R}(N) \subseteq P\right.$ for some cyclic submodule N of $\left.M\right\}$.
In the rest of this paper $\operatorname{Max}(\operatorname{Supp}(M))$ (i.e., the set of all maximal elements in $\operatorname{Supp}(M)$) is denoted by Max (M).

The Jacobson radical of M is denoted by $J(M)$ and it is the intersection of all elements in Max (M). Also, the union of all elements in $\operatorname{Max}(M)$ is denoted by $N_{R}(M)$ [12].
M is said to be a local module if $|\operatorname{Max}(M)|=1$ [12].
The subset $W_{R}(M)$ of R is defined by $\{r \in R \mid r M \neq M\}$ [12] and set $W_{R}^{*}(M)=$ $W_{R}(M) \backslash\{0\}$.
$Z_{R}(M)=\{r \in R \mid$ the R-module endomorphism on M defined by multiplication by r is not injective $\}$.

Remark 1 (See [12]). Let M be an R-module. Then $W_{R}(M) \subseteq N_{R}(M)$ and we have equality if M is a finitely generated R-module.

Remark 2. $\operatorname{Max}(M) \subseteq \operatorname{Max}(R)$.
Proof. This follows immediately from the proof of [12, 1.4].

3. Main ReSUlts

In the rest of this paper M is a finitely generated R-module.
Definition 1. We define the cozero-divisor graph relative to M, denoted by $\Gamma_{R}(M)$ as a graph with vertices $W_{R}^{*}(M)=W_{R}(M) \backslash\{0\}$ and two distinct vertices r and s are adjacent if and only if $r \notin\left(s M:_{R} M\right)$ and $s \notin\left(r M:_{R} M\right)$.

Definition 2. We define the strongly cozero-divisor graph relative to M, denoted by $\tilde{\Gamma}_{R}(M)$ as a graph with vertices $W_{R}^{*}(M)=W_{R}(M) \backslash\{0\}$ and two distinct vertices r and s are adjacent if and only if $r \notin \sqrt{\left(s M:_{R} M\right)}$ and $s \notin \sqrt{\left(r M:_{R} M\right)}$.

The following example shows that $\dot{\Gamma}(R), \Gamma_{R}(M)$, and $\tilde{\Gamma}_{R}(M)$ are different.
Example 1. Set $R=\mathbb{Z}$ (here \mathbb{Z} denotes the ring of integers) and $M=\mathbb{Z}_{12}$. Then $W_{R}^{*}(R)=\mathbb{Z} \backslash\{-1,1,0\}$ and $W_{R}^{*}(M)=\mathbb{Z} \backslash(\{m:(m, 12)=1\} \bigcup\{0\})$, where $(m, 12)$ denotes the greatest common divisor of m and 12. The elements 8 and 12 are adjacent in $\dot{\Gamma}(R)$ but they are not adjacent in $\dot{\Gamma}_{R}(M)$. Also, 6 and 8 are adjacent in $\tilde{\Gamma}_{R}(M)$ but they are not adjacent in $\tilde{\Gamma}_{R}(M)$. Moreover, 6 and 10 are adjacent in $\tilde{\Gamma}_{R}(R)$ but they are not adjacent in $\tilde{\Gamma}_{R}(M)$.

An R-module L is said to be a multiplication module if for every submodule N of L there exists an ideal I of R such that $N=I L$

Theorem 1. (a) $\Gamma_{R}(M)$ is a subgraph of $\Gamma(R)$.
(b) $\tilde{\Gamma}_{R}(R)$ is a subgraph of $\Gamma(R)$.
(c) If M is a faithful R-module, then $W_{R}^{*}(M)=W^{*}(R)$.
(d) If M is a faithful R-module, then $\tilde{\Gamma}_{R}(M)=\tilde{\Gamma}_{R}(R)$.
(e) If M is a faithful multiplication R-module, then $\Gamma_{R}(M)=\dot{\Gamma}(R)$.

Proof. Parts (a) and (b) are clear.
(c) By part (a), $W_{R}^{*}(M) \subseteq W^{*}(R)$. Now let $r \in W^{*}(R)$ and $r \notin W_{R}^{*}(M)$. Then $r M=M$. Thus by Nakayama' Lemma, $1+r t \in A n n_{R}(M)=0$. Hence $R r=R$, which is a contradiction.
(d) By part (c), $W_{R}^{*}(M)=W^{*}(R)$. Now let r and s be two distinct adjacent vertices of $\tilde{\Gamma}_{R}(R)$ and let $r \in \sqrt{\left(s M:_{R} M\right)}$. Then $r^{n} M \subseteq s M$ for some $n \in \mathbb{N}$. Thus by [11, Theorem 75], there exist $t \in R$ and $k \in \mathbb{N}$ such that $\left(r^{k n}+s t\right) M=0$. Since M is faithful, $r^{k n}+s t=0$ and so $r \in \sqrt{s R}$. This contradiction shows that $E\left(\tilde{\Gamma}_{R}(R)\right) \subseteq E\left(\Gamma_{R} M\right)$. The reverse inclusion is clear.
(e) By part (c), $W_{R}^{*}(M)=W^{*}(R)$. Now let r and s be two distinct adjacent vertices of $\Gamma(R)$ and let $r \in\left(s M:_{R} M\right)$. Then $r M \subseteq s M$. Thus by [1], $R r \subseteq s R$, which is a contradiction. Hence $E(\Gamma(R)) \subseteq E\left(\Gamma_{R}(M)\right)$. The reverse inclusion is clear.

Remark 3. By using part (e) of Theorem 1, if $M=R$, then $\dot{\Gamma}_{R}(R)=\dot{\Gamma}(R)$.

We use the following lemma frequently.
Lemma 1. Let M be an R-module and $P \in \operatorname{Max}(M)$. Then $P=\left(P M:_{R} M\right)$.
Proof. Assume $\left(P M:_{R} M\right)=R$ so that $P M=M$. Since M is finitely generated, there exists $x \in P$ such that $(1+x) M=0$. Thus $1+x \in A n n_{R}(M)$ but by [12], $P \supseteq A n n_{R}(M)$. It follows that $1 \in P$, a contradiction. Now the results follows from $P \subseteq\left(P M:_{R} M\right)$ and Remark 2.

Proposition 1.

(a) The graph $\Gamma_{R}(M)$ is not complete if and only if there exists an element $s \in$ $W_{R}^{*}(M)$ such that $\left|\left(s M:_{R} M\right)\right|>2$.
(b) $\Gamma_{R}(M)$ is complete if and only if $\left(s M:_{R} M\right)=\{0, s\}$ for all elements s in $W_{R}^{*}(M)$.
(c) If R is an integral domain, then $\Gamma_{R}(M)$ is not complete.

Proof. Straightforward
Theorem 2. $\Gamma_{R}(M)$ is complete if and only if $\tilde{\Gamma}_{R}(M)$ is complete.
Proof. The sufficiency is clear. Conversely, we assume that $\Gamma_{R}(M)$ is complete and r, s be arbitrary distinct elements in $W_{R}^{*}(M)$ and $r \in \sqrt{(s M: M)}$. Then $r^{n} M \subseteq$ $s M$ for some $n \in \mathbb{N}$. Since $\Gamma_{R}(M)$ is complete, r^{n} and s are adjacent. But this is a contradiction by the above arguments.

We use the notation $\Gamma_{R}(M) \backslash J(M)$ to denote a subgraph of $\Gamma_{R}(M)$ with vertices $W_{R}^{*}(M) \backslash J(M)$.

Theorem 3. (a) The graph $\Gamma_{R}(M) \backslash J(M)$ is connected.
(b) If M is a non-local module, then diam $\left(\Gamma_{R}(M) \backslash J(M)\right) \leq 2$.

Proof. (a) If M is a local module, then $W_{R}^{*}(M) \backslash J(M)$ is a empty set, which is connected. So we assume that $|\operatorname{Max}(M)|>1$. Let r and s be arbitrary distinct elements in $W_{R}^{*}(M) \backslash J(M)$. Suppose that r is not adjacent to s. We may assume that $r \in\left(s M:_{R} M\right)$. Since $r \notin J(M)$, there exists $P \in \operatorname{Max}(M)$ such that $r \notin P$. Thus $P \nsubseteq J(M) \cup\left(s M:_{R} M\right)$, otherwise, $P \subseteq J(M)$ or $P \subseteq\left(s M:_{R} M\right)$. In first case, $J(M)=P$ so that $|\operatorname{Max}(M)|=1$. In second case, $P=\left(s M:_{R} M\right)$ by Lemma 1. In either case we have a contradiction. Choose t in $P \backslash\left(J(M) \cup\left(s M:_{R} M\right)\right)$. Now by using Lemma 1, we see that $r-t-s$ is the required path.
(b) This follows from the proof of part (a).

Corollary 1. Let M be a non-local R-module with $J(M)=0$. Then $\dot{\Gamma}_{R}(M)$ is connected and diam $\left(\Gamma_{R}(M)\right) \leq 2$.

Theorem 4. Let M be a non-local module such that for every element $r \in J(M)$, there exist $P \in \operatorname{Max}(M)$ and $s \in P \backslash J(M)$ with $r \notin\left(s M:_{R} M\right)$. Then $\Gamma_{R}(M)$ is connected and $\operatorname{diam}\left(\Gamma_{R}(M)\right) \leq 3$.

Proof. Suppose that $r, s \in W_{R}^{*}(M)$ and r is not adjacent to s. We may assume that $r \in\left(s M:_{R} M\right)$. Then, we have the following cases:

Case 1. Suppose that $s \in J(M)$. We claim that $r \in J(M)$. Otherwise there exists $P \in \operatorname{Max}(M)$ such that $r \notin P$. Then $r M \subseteq s M \subseteq P M$. Thus by Lemma $1, r \in$ $\left(P M:_{R} M\right)=P$, a contradiction. Thus by hypothesis, there exists $t \in P \backslash J(M)$ for some $P \in \operatorname{Max}(M)$ with $r \notin\left(t M:_{R} M\right)$). Also $t \notin\left(r M:_{R} M\right)$; otherwise, we have $t M \subseteq r M \subseteq s M$. Thus $t \in\left(s M:_{R} M\right) \subseteq\left(P M:_{R} M\right)=P$ for each $P \in J(M)$ so that $t \in J(M)$, a contradiction. Thus r is adjacent to t. By similar arguments, we see that t is adjacent to s. Hence $r-t-s$ is the required path.

Case 2. Suppose that $r, s \notin J(M)$. Then $r \notin P$, for some $P \in \operatorname{Max}(M)$. If $P=\left(s M:_{R} M\right)$, then since $r \in\left(s M:_{R} M\right)$, we have a contradiction. Choose p in $P \backslash\left(s M:_{R} M\right)$. By similar arguments as in part (a), we see that $r-p-s$ is the desired path.

Case 3. Assume that $s \notin J(M)$ and $r \in J(M)$. By our assumption, there exists $q \in P \backslash J(M)$, for some $P \in \operatorname{Max}(M)$ such that $r \notin\left(q M:_{R} M\right)$. We claim that $q \notin\left(r M:_{R} M\right)$. Otherwise, $q M \subseteq r M \subseteq P M$ for every $P \in \operatorname{Max}(M)$. Thus by Lemma 1, $q \in\left(P M:_{R} M\right)=P$ for every $P \in \operatorname{Max}(M)$, a contradiction. Hence r is adjacent to q. Further, $s \notin\left(q M:_{R} M\right)$. If $q \notin\left(s M:_{R} M\right)$, then we get the the path $r-q-s$. Otherwise, we can apply case 2 for the elements q and s to get a path $q-u-s$ for some $u \in W_{R}^{*}(M)$. Hence we have $r-q-u-s$.

Theorem 5. Let M be a non-local module. Then $g\left(\Gamma_{R}(M) \backslash J(M)\right) \leq 5$ or $g\left(\Gamma_{R}(M) \backslash J(M)\right)=\infty$.

Proof. Use the technique of $[2,2.8]$ and apply Theorem 3.
Theorem 6. Let $|\operatorname{Max}(M)| \geq 3$. Then $g\left(\Gamma_{R}(M)\right)=3$.
Proof. Clearly, $g\left(\Gamma_{R}(M)\right) \geq 3$. Let P_{1}, P_{2}, and P_{3} be distinct elements of $\operatorname{Max}(M)$. By Remark 2, $\operatorname{Max}(M) \subseteq \operatorname{Max}(R)$. Choose $a_{i} \in P_{i} \backslash \cup_{j=1}^{3} P_{j}, 1 \leq i \leq 3$ and $j \neq i$. Then by using 1 , we see that $a_{1}-a_{2}-a_{3}-a_{1}$ is a cycle. Therefore $g\left(\Gamma_{R}(M)\right)=$ 3.

For a graph G, let $\chi(G)$ denote the chromatic number of the graph G, i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A clique of a graph is its complete subgraph and the number of vertices in the largest clique of G, denoted by clique (G), is called the clique number of G.

Theorem 7. (a) Let R not be a field. Then if Max (M) has an infinite number of maximal ideals, then clique $\left(\Gamma_{R}(M)\right)$ is also infinite; otherwise clique $\left(\Gamma_{R}(M)\right) \geq|\operatorname{Max}(M)|$.
(b) If $\chi\left(\Gamma_{R}(M)\right)<\infty$, then $|\operatorname{Max}(M)|<\infty$.

Proof. Use the technique of [2, 2.14].

A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends.

Theorem 8. Assume that $|\operatorname{Max}(M)| \geq 5$. Then $\Gamma_{R}(M)$ is not planar.
Proof. Assume that $|\operatorname{Max}(M)| \geq 5$. Choose $a_{i} \in m_{i} \backslash \cup_{j=1}^{5} m_{j}$, where $m_{i} \in$ $\operatorname{Max}(M), 1 \leq i \leq 5$, and $j \neq i$. Then $a_{i} \notin\left(a_{j} M:_{R} M\right)$. Otherwise, $a_{i} \in\left(a_{j} M:_{R}\right.$ $M) \subseteq\left(m_{j} M:_{R} M\right)=m_{j}$ by Lemma 1. Similarly, $a_{j} \notin\left(a_{i} M:_{R} M\right)$. Hence $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ forms a complete subgraph of $\Gamma_{R}(M)$ which is isomorphic to K_{5}. Thus by [9, p.153], $\Gamma_{R}(M)$ is not planar.

For any vertex x of a connected graph G, the eccentricity of x, denoted by $e(x)$, is the maximum of the distances from x to the other vertices of G, and the minimum value of the eccentricity is the radius of G, which is denoted by $r(G)$.

Theorem 9. Let M be a non-local module with $J(M)=0$. Then $r\left(\Gamma_{R}(M)\right)=2$ if and only iffor each $t \in W_{R}^{*}(M)$, there exists $s \in W_{R}^{*}(M)$ such that t is not adjacent to s.

Proof. The proof is similar to that of [2,3.14].
Theorem 10. Let R be a Noetherian ring. If $\Gamma_{R}(M)$ is totally disconnected, then M is a local module with maximal ideal of the from $\left(x M:_{R} M\right)$ for some $x \in W_{R}^{*}(M)$.

Proof. It is easy to see that M is a local module. Set $\operatorname{Max}(M)=m$. Assume to contrary that m is not the form of $\left(r M:_{R} M\right)$ for every $r \in W_{R}^{*}(M)$. Set $A=$ $\left\{\left(r M:_{R} M\right), r \in W_{R}^{*}(M)\right\}$. Then A has a maximal member, say ($\dot{r} M:_{R} M$) for some $\dot{r} \in W_{R}^{*}(M)$. Choose $s \in m \backslash\left(\dot{r} M:_{R} M\right)$. We claim that $\dot{r} \notin\left(s M:_{R} M\right)$. Otherwise, we have $\left(\dot{r} M:_{R} M\right) \subseteq\left(s M:_{R} M\right)$, so $\left(\dot{r} M:_{R} M\right)=\left(s M:_{R} M\right)$ by maximality. Hence $s \in\left(\dot{r} M:_{R} M\right)$ so that \dot{r} is adjacent to s, a contradiction.

Theorem 11. Assume that M is a non-local module. Then the following conditions are equivalent.
(a) $\dot{\Gamma}_{R}(M) \backslash J(M)$ is complete bipartite.
(b) $\Gamma_{R}(M) \backslash J(M)$ is bipartite.
(c) $\Gamma_{R}(M) \backslash J(M)$ contains no triangles.

Proof. Use the technique of [3, 2.13].
Proposition 2. If the graph $\Gamma_{R}(M) \backslash J(M)$ is n-partite for some positive integer n, then $|\operatorname{Max}(M)| \leq n$.

Proof. Assume to the contrary that $|M a x(M)|>n$. Since $\Gamma_{R}(M) \backslash J(M)$ is an n-partite graph, there are maximal ideals P_{1} and P_{2} of $\operatorname{Max}_{R}(M)$ with $\left(r M:_{R}\right.$ $M) \subseteq P_{1} \backslash P_{2}$ and $\left(s M:_{R} M\right) \subseteq P_{2} \backslash P_{1}$, where r, s belong to the same part. But this implies that r is adjacent to s which is a contradiction.

Theorem 12. Let M be an R-module with $\operatorname{Max}(M)=\left\{m_{1}, m_{2}\right\}$. Then $\Gamma_{R}(M) \backslash$ $J(M)$ is a complete bipartite graph with parts $m_{i} \backslash J(M), i=1,2$, if and only if every pair of ideals $\left(r M:_{R} M\right),\left(s M:_{R} M\right)$ contained in $\left(m_{1} \backslash J(M)\right)$ or $\left(m_{2} \backslash\right.$ $J(M)$), where $r, s \in R$, are totally ordered.

Proof. Suppose that $\dot{\Gamma}_{R}(M) \backslash J(M)$ is a complete bipartite graph with parts $m_{i} \backslash$ $J(M), i=1,2$. Further assume to the contrary that there exist ideals $\left(r M:_{R} M\right)$, $\left(s M:_{R} M\right) \subseteq m_{1} \backslash J(M)$ such that $\left(r M:_{R} M\right) \nsubseteq\left(s M:_{R} M\right)$ and $\left(s M:_{R} M\right) \nsubseteq$ $\left(r M:_{R} M\right)$. We claim that r is adjacent to s in $m_{1} \backslash J(M)$. Otherwise, without loss of generality, we assume that $r \in\left(s M:_{R} M\right)$. Then $r, s \in m_{1} \backslash J(M)$ and we have $r M \subseteq\left(s M:_{R} M\right) M$. Thus $\left(r M:_{R} M\right) \subseteq\left(\left(s M:_{R} M\right) M:_{R} M\right)=\left(s M:_{R} M\right)$, a contradiction. Hence r is adjacent to s in $m_{1} \backslash J(M)$, which is again a contradiction by hypothesis. Conversely, assume that $i \in\{1,2\}$ and $\left(r M:_{R} M\right),\left(s M:_{R} M\right) \subseteq$ $m_{i} \backslash J(M)$. We may assume that $\left(r M:_{R} M\right) \subseteq\left(s M:_{R} M\right)$. Then clearly, $r, s \in$ $m_{i} \backslash J(M)$ and r is not adjacent. Now if $r \in m_{1} \backslash m_{2}$ and $s \in m_{2} \backslash m_{1}$, then by using 1 , we see that r is adjacent to s. Therefore $\Gamma_{R}(M) \backslash J(M)$ is a complete bipartite graph with parts $m_{i} \backslash J(M), i=1,2$.

Theorem 13. Let M be a faithful R-module and $Z_{R}(M) \neq W_{R}(M)$. Then $\Gamma_{R}(M)$ is finite if and only if R is finite.

Proof. Clearly if R is finite, then $\Gamma_{R}(M)$ is finite. So we assume that $\Gamma_{R}(M)$ is finite and show that R is finite. Suppose that R is infinite and look for a contradiction. By Remark 1, we have $Z_{R}(M) \subset W_{R}(M)=N_{R}(M)$. Choose $x \in$ $W_{R}(M) \backslash Z_{R}(M)$. Since $R x$ is a finite R-module and $R \backslash W_{R}(M)$ is an infinite set, there exist distinct elements $r_{1}, r_{2} \in R \backslash W_{R}(M)$ such that $r_{1} x=r_{2} x$. Therefore $\left(r_{1}-r_{2}\right) x=0$. Then we have $x\left(\left(r_{1}-r_{2}\right) M\right)=0$. Since x is a nonzero-divisor on M, we have $\left(r_{1}-r_{2}\right) M=0$ so that $r_{1}-r_{2} \in A n n_{R}(M)$. Thus $r_{1}=r_{2}$, a contradiction.

Corollary 2. Let R be a domain and let $Z_{R}(M)=\{0\}$. If $\Gamma_{R}(M)$ is a finite graph, then R is a field.

Proof. If $W_{R}(M) \neq\{0\}$, then by Theorem $13, R$ is finite so that R is a field. Otherwise, if $W_{R}(M)=\{0\}$, then we have $W_{R}(M)=\cup_{p \in \operatorname{Max}(M)} P=\{0\}$ by Remark 1. This implies that the zero ideal of R is a maximal ideal and hence R is a field.

Remark 4. One can see, by using the same technique, that the results about $\Gamma_{R}(M)$ in this section is also true for $\tilde{\Gamma}_{R}(M)$.

REFERENCES

[1] Z. Abd El-Bast and P. F. Smith, "Multiplication modules," Commun. Algebra, vol. 16, no. 4, pp. 755-779, 1988.
[2] M. Afkhami and K. Khashyarmanesh, "The cozero-divisor graph of a commutative ring," Southeast Asian Bull. Math., vol. 35, no. 5, pp. 753-762, 2011.
[3] M. Afkhami and K. Khashyarmanesh, "On the cozero-divisor graphs of commutative rings and their complements," Bull. Malays. Math. Sci. Soc. (2), vol. 35, no. 4, pp. 935-944, 2012.
[4] D. D. Anderson and M. Naseer, "Beck's coloring of a commutative ring," J. Algebra, vol. 159, no. 2, pp. 500-514, 1993.
[5] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, "The zero-divisor graph of a commutative ring. II," in Ideal theoretic methods in commutative algebra. Proceedings of the conference in honor of Professor James A. Huckaba's retirement, University of Missouri, Columbia, MO, USA, ser. Lect. Notes Pure Appl. Math., D. D. Anderson, Ed. New York: Marcel Dekker, 2001, vol. 220, pp. 61-72.
[6] D. F. Anderson, R. Levy, and J. Shapiro, "Zero-divisor graphs, von Neumann regular rings, and Boolean algebras," J. Pure Appl. Algebra, vol. 180, no. 3, pp. 221-241, 2003.
[7] D. F. Anderson and P. S. Livingston, "The zero-divisor graph of a commutative ring," J. Algebra, vol. 217, no. 2, pp. 434-447, 1999.
[8] I. Beck, "Coloring of commutative rings," J. Algebra, vol. 116, no. 1, pp. 208-226, 1988.
[9] J. A. Bondy and U. S. R. Murty, Graph theory with applications. New York: American Elsevier Publishing Co., 1976.
[10] G. A. Cannon, K. M. Neuerburg, and S. P. Redmond, "Zero-divisor graphs of nearrings and semigroups," in Nearrings and nearfields. Proceedings of the conference on nearrings and nearfields, Hamburg, Germany, July 27-August 3, 2003., H. Kiechle, Ed. Dordrecht: Springer, 2005, pp. 189-200.
[11] I. Kaplansky, Commutative rings. Chicago: University of Chicago Press, 1978.
[12] S. Yassemi, "Maximal elements of support and cosupport," http://www.ictp.trieste.it/\$\sim\$pub_ off.

Authors' addresses

H. Ansari-Toroghy

Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

E-mail address: ansari@guilan.ac.ir

F. Farshadifar

University of Farhangian, Tehran, Iran.
E-mail address: f.farshadifar@gmail.com

Sh.Habibi

Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

E-mail address: sh.habibi@guilan.ac.ir

