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1. INTRODUCTION

In the theory of partial differential equations of the hyperbolic type the basic clas-
sical problems are already deeply studied. The domain of the independent variable is
bounded by two pairs of parallel lines or by two pairs of characteristics, the pair of
characteristics crossing “free” curve, etc [1,2,4].

Boundary-value problems for equations of hyperbolic type in the case of more
complicated structure of the bound of the domain are studied less frequently.

In this work we generalize results obtained before in [0] and construct the modi-
fication of the two-sided method for approximate integration of the boundary-value
problem for systems of second-order non-linear differential equations of hyperbolic
type on the plane, when the bound of the domain consists of the pair of characteristics
of the given system.

Note that constructive modifications of the numerical-analytic algorithm of in-
vestigation of the boundary-value problems for non-linear systems of ordinary dif-
ferential equations subjected to different types of boundary restrictions have been
studied in detail in [3, 7, 8].

Let us observe that the domain

D :UDS CR%s=1,2.03,
S
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where
Dy = {(x,y)|x € (x0,x1],y € (¥o., 1]},
Dy ={(x,y)|x €[x0.x1].y € (y1.81(x))}.
D3 = {(x,y)|x € (x1.x2].y € (g2(x). y1]}.
X0 < X1 <x2, Y0 <y1 <y2, ¥ =g&r(x) (x =kr(y)), x € [xr—1,x;], r = 1,2 are

“free” curves [4], and g1(xXr—1) = yr, g2(xr) = yr—1, g.(x) > 0.
The problem is to find the solution of the system of differential equations

LZU(x,y):f(x,y,U(x,y)) = f[U(x,y)], (1.1)
subjected to boundary restrictions of the form:
U(xo.y) =¥ (), U(x,y0) = ®(x).(x.) € D1. (12)

W (y) € C'yo, y1], @(x) € C'[x0,x1], ¥ (y0) = P(x0),
U(x,gr(x)) = 2,(x),x € [xr—1.xr], 2, (x) € Cl[xp_1,x,],7 = 1,2,
£21(x0) = ¥(y1), §22(x1) = P(x1),
in the space of vector-functions C*(D) := C -D(D) N C(D), where
LaU(x,y) := Uxy(x,y) + A1(x, p)Ux (x, y) + A2(x, y) Uy (x, y),
Ulx,y) = Wi(x,)), fIUx ] := (fUD, i =10 2:(x) = (w1,r(x)),
U(y) = (Yi(y)), ®d(x) := (¢i(x)) are some given vector-functions,
Ar(x,y) = (Si,jafr}), r =1,2, j = 1,n are given matrixes and d;,; is the Kron-
ecker symbol. o
Function U(x, y) = Us(x, ), (x,y) € Ds, s = 1,2, 3 is the solution of the boundary-
value problem (1.1)-(1.3), where Uy (x, y), (x,y) € D1 is the solution of the Goursat
problem (1.1), (1.2), Us(x,y), s =2,3, (x,y) € Dy, are the solutions of the Darboux
problems (1.1), (1.3), and the following conditions

Ux(x,y1) = U1(x, 1), Us(x1,y) = U1 (x1,9). Us(x,y) = (us,i (x,y))

take place.
Suppose that

(1.3)

Ay (x,y) € C(D)NCUO(Dy U Dy).
Az(x,y) € C(D)NCOV(Dy U Dy),
flU(x.y)] € C(B), f : B— R*, B C R"*2,
It is easy to show that the boundary-value problem (1.1)-(1.3) can be written in the
equivalent integral form

Us(x,y) = Is(x.y) + € T1,s FUL(E. ] + Ts F[Us (5, )]

(x,y) € Dg,s =1,2,3, (1.4)
where
_ | 0,s=1, | F*[U(x,y)].(x,y) € D1UD3,
=\ 15=23 FlUEY]:= F**[U(x,y)].(x,y) € D3,
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FRUG )] = fIUE )]+ [A2y (x,y) + A1 (x, y) A2 (x, »)]U(x, ),
F**[U(X,y)] = F*[U(X’Y)]+[Alx(x,y)—Azy(an)]U(an),

X ry _
Ty UL, n)] = f K(x.y:£. ) FIUL (6. mdndE. (x.y) € D,
X0 YYo
X y -
Ty FlUs (. )] i= / K(x.y:£.0) FIU2(E. mldndE. (x.y) € Do,
1y Y1

y x o
T3 F[Us(§,n)] :=/ “ K~ ' (&.n:x,y)F[Us(€.n)]d€dn, (x.y) € D3,
g2(X) JX]

K(x,y:6,m) = (8i, ki j(x,y:6m), K x,y:6.m) = (8, ki l(x y:&.,n)) are some
matrixes,

e T
baeyieni=exp | [ a@@nac+ [ o).
X y

Iy(x,y) = (ys,i(x,y)), s = 1,2,3 — are vector-functions,
natrari=wess ([ @)+
+ / ki i (. yiE.Igh(€) +al? (6. y0)gi (E)ldE. (x.y) € Dy,

ki(y)

Y20 (x.y) = i1 (k1(y))exp ( / a}i)(s,wds) +

+ / ki (3600916 + a2 (&, yo) g (D)dE, (x.y) € D,
ki1(y)

g2(x)

¥3,i(x,y) := w;2(x)exp (/ a,'(,ll-)(x, 77)0177) +
y

y —
+ / ( )k,-‘,,-1<xo,n;x,y>[w;<n)+a§},-><xo,n)%-(n)]dm(m) e Ds,
g2(x

y _
Tya FIUL )] = f K(x.y:E. ) FIULE.)ldndE. (x.y) € D,
1 y Y1

T2 F[UI ) = / K~ (x.y:E ) FIUI €. mdEdn. (x.y) € Ds.
g2(x)
Remark 1. If A1x(x,y) = A2y(x,y), (x,y) € D then F*[U(x,y)] = F**[U(x, y)]
and K(x,y:E,n) = K1 nix,y).
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According to the problem setting Uy (x, y1) = Uax(x, y1) and
Uiy(x1,y) = Uzy(x1,y) when x € [xo,x1], ¥y € [yo,y1] and

uri, (x,y1) —uz,i, (x, yl)—Plze)Cp(fxo D, yl)df) x € [x0,x1], (L5)
Ui, (x1,y)—u3; (x1,y) = p2,iexp (fyyoal(x1,n)dn) .Y € [yo, y1l, .

where
pri = YL~ k/(yo{w (o) +a® (v, y1)oi1 (x0)—
~[#1x0) +a (xo. y0) (xo)]exp (f“ ) (xo, n)dn)—
- [ [ﬁ(XO,n,wl(n),---,wn(n))+( a) (xo.n) +al ) (xo.ma; (xo,n)xlfi(n))]
xexp (fyo @ (xo. n)dn>}

i=¢;(x1) —wf,z(xl)—glz(xl){afli)(xl,yo)wi,z(xl)—

—[Vi0) +a (v, yo)vi (o) | exp (3} % yo)ds)—
65001600+ (0 0) +0 D ¥0)) 6 (6)]

Xexp (fg (‘C yo)dr)dé}

The following lemma holds.

Lemma 1. Ler f[U(x,y)] € C(B), Ar(x,y) € C(D),
r=1,2 Ai(x,y) € CEO(D; UD3), A»(x,y) € COV(D; U D») and the boundary-
value problem (1.1)-(1.3) has the solution.

The solutions of the boundary-value problem (1.1)-(1.3) are regular (it means that
U(x,y) € C*(D)) if and only if the equality

,Or,i = 07

is true, forallr = 1,2 andi = 1,n.
In the other case equalities (1.5) hold and the solution of the problem (1.1)-(1.3)
is irregular.

Definition 1. We say that the vector-function F[U(x,y)] € C;(B) if it satisfies
the following conditions [5]:
(1) F[U(x,y)] € C(B),
(2) there exists vector-function

H(x,y,U(x,y);V(x,y)):= H[U(x,y);V(x,y)]



ON GOURSAT-DARBOUX BOUNDARY-VALUE PROBLEM 1013

in the space of vector-functions C(Fl), By C R2(+1) PrxoyB_l = D, such
that

a) H[U(x,y):V(x,y)] = F[U(x, y)], _

b) for any pair of vector-functions U(x, y), V(x,y) € By from the space
C (D) that satisfy condition

U(x,y) > V(x,9),(x,y) € D,
in the domain B, the inequality
HUGy):V(x,p)]=H[V(x,y):U(x.y)] 2 0 (1.6)

is true,

(3) vector-function H[U(x,y);V(x,y)] satisfies the Lipshitz condition in the
domain B1; it means that f_or any vector-functions U, (x, y), Vi (x,y) € By,
r = 1,2 from the space C(D) the following condition

|H[U1(x,y); Ua(x,y)] = H[Vi(x,y): Va(x, »)]| < LUW1(x, »)| + |[Wa(x, »)]),

holds, where Wy (x,y) := Ur(x,y) = Vr(x,y),r = 1,2, L = (8;,;,1i,;) is the
Lipshitz matrix, /; ; > 0,i,j = 1,n.

If vector-function f[U(x,y)] € C(B) and has bounded partial derivatives of the
first order on all arguments, starting from the third one, then F[U(x,y)] always be-
longs to the space C;(B). The opposite statement isn’t true.

Let us set sufficient conditions of existence and uniqueness of regular or irregular
solution of the problem (1.1)-(1.3), when (x,y) € D.

Suppose that the vector-functions Zs ,(x,y) := (Zs,i,p(x,y)) and
Vs,p(x,y) == (vs,i,p(x,y)) € C (D) belong to the domain By, s =1,2,3, p € N.

Let us put

Ws,p(x.y) = Zs,p(x,y) = Vs,p(x,¥),(x,y) € Ds,s = 1,2,3,
fsp(x’Y) = H[Zs,p(x,); Vs, p(x, ¥)],
Js.p(x,y) = H[Vs p(x,¥): Zs, p(x, y)],

Ol;k,p(x’Y) = Zs,p(x»y)_Fs(x,y)_esTl,sflp(g’rl)_Tsfsp(é”?)’
Bsp(x.¥) = Vs p(x,y) = Is(x,y) —€sT1,s f1,p(§. 1) — Ts f5,p (. 1),
Z:,p(x’y) = Zs,p(x,y) = Cs,p(x, y)Ws,p(x,y),
Vep(x.y) i= Vs p(x,y) + Qs,p(x. )W p(x, ),

(x,y)e Ds,s =1,2,3,pe N,

FP(x,y) = H[Z] ,(x,y): Vs, (x, »)],

Fyp(x,y) = H[V,(x,9); Zs p+1(x, y)],

Cs,p(x, ) = (8i,jCs,ip(x,¥)), Qs,p(x.¥) 1= (8i,;qs,i,p(x,y)) are arbitrary matri-
xes with non-negative elements c¢s; »(x,¥).¢s,i,p(x,y € C(Dy)), such that

1.7)

Cs,i,p(X,Y) 5 O’S,QS,i,p(X,y) S 0»5,()5,)’) 655‘7‘9 = 17293, (18)
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forall pe Nandi = 1,n.
Let us build the sequences of vector-functions {Z ,(x,y)} and {V§ ,(x,y)} ac-
cording to the formulas 1.9:

Zs,p—i—l(X,Y) = Iy(x,y) +€sT1,sF1p(E»7I) + Tstp(é,n), o
Vs.p+1(x.y) = Ts(x,y) + & T1 s F1p(¢.n) + Ty F (5.1). (x,y) € Dy,
where as the zero approximation Zs o(x, y), Vs,0(x,y) € B we take arbitrary vector-

functions from C (53) satisfying conditions (1.2), (1.3) and inequalities

WS,O(x’y) = 0»0‘:,0(_76,)’) >0,
ﬂ;",o(x,y) <0,(x,y)e Ds,s =1,2,3.

(1.9)

(1.10)

Afterwards vector-functions Zs o(x, ), Vs.0(x,y) € C(Dj) that satisfy conditions
(1.2), (1.3), inequalities (1.10) and belong to the domain B, will be called compari-
son functions of the problem (1.1)-(1.3).

From (1.9) follows that for (x,y) € Dy, s =1,2,3 the equalities

Zsp(x,9)=Zs,p+1(x,y) = a5,p(x,y) 1= Zs p(x,y) — Ts(x,y)—
_fsTl,sFlp(é’n)_Tstp(E’n)’ (1.11)
Vs, p(x,¥) = Vs p+1(x,y) = Bs,p(x,y) := Vs, p(x,y) = [s(x,y)— .
—esTl,sFl,p(E’rl)_Tst,p(évn)’

are true, where o, p (x, ) 1= (0,5, p(x, 1)), Bs,p(x,¥) := (Bs,i,p(x,¥)), i = 1,n are
vector-functions and

Ws,p+1(x,y) = eT1,s(F{ (§,n) = F1,p (€, m) + Ts(FP (§,1) — Fs p(E. 1), (1.12)

a5, p(x,y) = e T1 s (FE(E ) — FP TN E )+
+T(FF ) — FP T E.0). (1.13)
Bs.p(x.¥) 1= €sT1,s(F1,p(E.1) — F1,pt1(E.1)+
+Ts(Fs,p(§v 7)) - Fs,p+l (S’ 77))
As (1.8), (1.10) hold we get that

Vs0(x,y) < Vifo(x.y) < Z5o(x.y) < Zso(x.y).(x,y) € Dg,s = 1,2,3.
It means that
VsTO(X’Y)»Z:,o(x»)’) € By
if only Vs,0(x.y). Zs0(x.y) € B1.
Note that if
a;':o(x,y) >0
then
Ols,O(x’y) > 0.
But from (1.11) for p = 0 we get that

Zso(x,y)—Zs1(x,y) =0,



ON GOURSAT-DARBOUX BOUNDARY-VALUE PROBLEM 1015

Zs1(x,y)—=Vso(x,y) = _ﬁjgo(x’y) +€sT1,s(F10(§v77) — f1,0(€,m)+
+T5(FP(E,m) = fs,0(5,m) =0,

Zs,l(X,y) €F1 and
Bso(x,y) = Bs.o(x,y) = 0.

It means that
ﬁs,()(xvy) = VS,O(x’y)_ I/S,l(x?y) = 0.

As Zs0(x,y) = Vs, (x,y) then Vi1 (x,y) € By, B
We choose matrixes Cy o(x,y) and Qg 0(x,y) in such way that for (x,y) € Dy,
s = 1,2, 3, the following conditions

Zso(x,y)=Zs1(x,y)—Cs0(x,y)Ws0(x,y) >0,

1.14
Vao(@.y) = Va1 (5. ) + Qsox. ) Wso(x.y) <0 (119
hold.
It is easy to see that the inequality
VS‘,O(x’y) - ZS,l(xuy)i_ Qs,O(X»Y)Ws,O(X»Y) =< 0’ (1 15)

(x,y) € Dg,s =1,2,3,

holds if and only if
Ws,l(an) Z O’ (X,y) 655‘-

Indeed, if (1.15) holds, from (1.12) for p = 0, taking into account (1.6), we get
that

Ws1(x,y) = 0.

And if the last estimation is true then from the second inequality (1.14) we estab-
lish that condition (1.15) is true.
So
Vs,0(x,y) < Vs1(x,y) < Zs1(x,y) < Zs0(x, ),
(x,y) € Ds,s =1,2,3.

Then from (1.13) for p = 0 we get
as,1(x,y)>0,B51(x,y) <0,(x,y) e Dy, s =1,2,3.

Taking vector-functions Zs 1(x,y), Vs,1(x,y) € By as the given ones and repeat-
ing all the above reasoning by the method of mathematical induction we get that if we
choose matrices Cs, p(x,y) and Qg »(x,y) on every step of iterations (1.9) in such
way that for (x,y) € Dy, s = 1,2,3 the conditions

Zs,p(x,)’)_zs,p+1(x’y) _Cs,p(X,y)Ws,p(xyy) >0,

1.16
Vep(Xoy) = Vo p1(x.7) + Os.p(xs 1) Wsp(x.) < 0. p € N, (1.16)
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hold, then in the domain B the inequalities

Ve,p(X.9) = Vs pt1(x,y) = Zs pr1(x,y) = Zs,p(x,y),
as,p(x.y) Zof ,(x,y) = 0,Bs,p(x,y) < B5 ,(x,y) =0, (1.17)
(x,y) € Ds,s =1,2,3, forallp € N

are true.

Lemma 2. If F[U(x,y)] € C1(B) and there exist comparison vector-functions
Zs0(x,), Vs.o(x,y), (x,y) € Ds, s = 1,2,3 of the boundary-value problem (1.1)-
(1.3) in the domain B, then the set of matrixes Cs,p(x,y), Os,p(x,y) € C(Dy),
that satisfy conditions (1.16), (1.8), in non-empty.

Indeed, let us put

ot n(6ey) = ay; (o5 (6 9), Wi p(x,y) #0,
P ’ 0» Ws,i,p(x,y) =Ov

Gsip(c,y) =1 5ipF P p (6 9) Wi p (6, ¥) # 0,
$t.p ’ O,I/Vs,i,p(an):O’(X,y)eDS’SZ1’2’3’

Psip (X, ¥) i=ag; (X, ¥) = B5; (X, ¥) + Wsip(x, ), p € N.

It is obvious that the chosen non-negative functions ¢ i, p (x,¥), ¢s,i, p(X, y) satisfy
conditions (1.8), and according to (1.11)

Zs,p(x»y)_zs»p+l(xvy)_Cs,p(xvy)Ws,p(x’y) >
> (E = Ps,p(x,y))as,p(x,y) =0,
Vs,p (X, ) = Vs pr1(x,y) + Qs p(x, y) Wy p(x, y) <
= (E—Psi(an)),Bs,p(an’) = 0’
(x,y)e Ds,s =1,2,3,pe N,
Ps p(x,y) = (Si,j(x,y)Ws,i,p(x,y)ps_,l.l,p(x,y)) ,i,j = 1,n is a matrix.
The following theorem is true.

Theorem 1. Let the vector-function F[U(x,y) € C1(B)],
A1(x,y) e C(D)NCLO (DU D3), Ax(x,y) € C(D)NCOD(Dy U D,) and there
exist the comparison functions Zs o(x,y), Vs.0(x,y) € Ds, s = 1,2,3 of the problem
(1.1)-(1.3) in the domain B.

Then for the vector-functions Zs p(x,y), Vs, p(x,¥) built according to (1.9), where
non-negative matrixes Cs p(x,y), Qs,p(x,y) € C(ﬁs), s = 1,2, 3 satisfy conditions
(1.8), (1.10) in the domain B}, the inequalities (1.17) are true.

Let us show that these sequences of vector-functions { Z; ,(x,y)} and { Vs »(x,y)}
converge uniformly in the domain Dy, s = 1,2, 3 to the unique solution of the system
of integral equations (1.4).
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As inequalities (1.17) in B hold it is sufficient to show that
pli)nc;loWs_,p(x,y) = 07
(x,y) € Ds,s =1,2,3.

Let
max sup |Wsio(x,y)| =d,
sl B
I[L|[ =1,
maxsup(l—cs,ip(x,y)—qs,i,p(x,¥)) <q,
SLP D
ma.x Sup {kl,l (x’y’g,n)’kl—’ll (g,n;x’y)} S O,SK,S = 2, 3s
Rl 51U55

max{l,sup(y —yo+x—xo)} =y.
D

Then from (1.12) by method of mathematical induction we get that the following
estimations

1
max sup Wi p(x,y) = [[Ws,p(x. )| = ?(lqkyn(y —Yo+x—x0))Pd, (1.18)
H DS .

SO
JL"gOZS:P(x’y) :JLnoioVs,p(x,y) = Us(x,y)(x,y) € Ds,s =1,2,3.

Passing to the limit in (1.9) for p — oo we get that the limit functions Uy (x,_y)
are the solutions of the systems of integral equations (1.4) for (x,y) € Dy,
s=1,2,3.

Theorem 2. Let conditions of Theorem 1 hold.

Then the sequences of vector-functions {Zs p(x,y)}, {Vs,p(x,y)} build according
to (1.9), where as a zero-approximation we choose the comparison vector-functions
of the problem (1.1)-(1.3) and matrixes Cs p(x,y) and Qs p(x,y), s =1,2,3
satisfy conditions (1.8), (1.16):

(1) uniformly converge to the unique solution of the system of integral equations
(1.4), for (x,y) € D5, s =1,2,3,

(2) estimates (1.18) take place,

(3) in the domain B the inequalities

Vs,p(X.¥) = Vs pr1(x,y) Us(s,y) = Zs pr1(x,y) = Zs p(x,y),
(x,y) e Ds,s =1,2,3,p € N,

hold, where Ug(x, y) is the unique solution of the system of integral equations
(1.4), for (x,y) € Dy,

(4) the convergence of the iteration method (1.9), (1.8), (1.16) isn’t slower than
the convergence of the Pikar two-sided method (for Cs p(x,y) =

Qs,p(x’Y) =0)

(1.19)



1018 V. V. MARYNETS AND K. V. MARYNETS

Proof. The uniqueness of the solution of the system of integral equations (1.4) for
(x,y) € Dg,s = 1,2,3 can be proved from the opposite assumption.

Suppose that for any number p in some point
(x,y) € Ds Zs p(x,y) < Us(x,y). Then according to (1.17) for all m € N

Us(x,y) > Zs, p(x,¥) > Zs, p+m(x,y)

in the point (x, y) € Dy and in this point the sequence of vector-functions
{Zs,p+m(x,y)} for m — oo does not converge to the solution Us(x,y). We got the
contradiction. Analogically we prove that the inequality

Vs,p(x,y) < Us(x,y),(x,y) € Ds,s=1,2,3

holds.

Let Zs p(x,y), Vs, p(x,y) € B are the comparison vector-functions of the prob-
lem (1.1)-(1.3). Let us put 7“,“ (x, y),Vs,pH (x,y) the following two-sided app-
roximations to the solution of the systems of integral equations (1.4) build in order of
the Picar method. Then for (x,y) € Dy,s = 1,2,3 according to (1.6), (1.8) we get

Zsp+1(6,9) = Zs,p1(x,y) = esTr s (fF (,m) — FL (E,m)+
+Ts(fsp(§a77)—Fsp(§’7l)) >0, Vs,p+1(x»J’)—Vs,p+1(X’)’) =
= EsTl,S(fl,p(g,U)— Fl,p(i:’n)) + TS(‘fS,p(E’ 77) _FS,p(gvT’)) <0.

It means that the convergence of the method is not slower than the convergence of
the Picar’s two-sided method. g

Let us remark that according to the forms of matrices Cs, ,(x,y) and Q; ,(x,y)
in (1.9), (1.8), (1.10) we get different modifications of the two-sided method.

Corollary 1. Let conditions of Theorem 2 hold.

Then there exists the unique solution of the boundary-value problem (1.1)-(1.3) in
the domain D. Besides in the case, when pri=0forallr =1,2andi = 1,n it will
be regular, and in the other case, irregular.

Corollary 2. Let ¥(y) = ®(x) =0, (x,y) € D1, £2,(x) =0, x € [x,_1,%/],
r=1,2and F[U(x,y)] € C1(B), besides F[U(x,y)] = H[U(x, y);0].
Then if F[0] < (=)0 in B the solution of (1.1)-(1.3) for (x,y) € D satisfies the
inequality
U(x,y) < (>)0.

Together with (1.1) let us observe the following system
LrZ(x,y) = fi(x,y.Z(x,y)) := filZ(x. )], fi: B—R",BeR""2.  (1.20)

We suppose that the right hand-sides of the systems (1.1), (1.20) satisfy the follo-
wing conditions:

(1) f[U(x,y)] € C1(B),
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(2) vector-function f1[Z(x,y)] € C (B) and has bounded first order derivatives
on all its arguments in B, starting from the third one

of;[Z (x,
f[%;cy)]:: bi,j(x,y) < oo,

and V(x, y, Z(x,y)) € B the inequalities
bij(x. ) +8i jlal) (x.y) +af)(x.y)al) (x.9)] 2 0.(x.y) € D1 U Dy,

i,
bi,j(x,y)+6i,j [a,(,l,-)x (x,y)+ af}} (x, y)af,z} (x,»)]=0,(x,y) € D1U D3,
(1.21)
hold, B o
(3) for any vector-function V(x,y) € B from C*(D)
NV = () VX, )] (1.22)

Theorem 3. Let Ay € C(D)NC 19 (Dy U D3), A, € C(D)NCO-D(D; U D,)
and the right sides of the systems (1.1), (1.20) f[U(x,y)] and f1[Z(x,y)] satisfy
conditions (1)-(3) above and there exist comparison functions of the problems (1.1)-
(1.3), (1.20), (1.2), (1.3) in the domain B.

Then the solutions of these problems satisfy inequalities

U(x,y) < (=)Z(x.y).(x,y) € D. (1.23)

Proof. According to Theorem 2 and Collorary 1 there exist unique solutions of
the problems (1.1)-(1.3) and (1.20), (1.2), (1.3) (regular or irregular). So putting
W(x,y):=Z(x,y)—U(x, y) and using Lagrange theorem about complete increases
we’ll get

LoW(x.y) = As(x, y)W(x,y) + Aa(x. y), (1.24)
where A3(x,y) = 15,-,1- (x,y),i,j =1,n matrix, 15,-,]- (x,y) are derivatives of b; ; (x,y)
for some fixed values Z(x,y) € B and according to (1.22)
Ag(x.y) = filU(x. y)] = fU(x. y)] = (2)0.

Vector-function W(x, y) satisfies homogenous conditions (1.2), (1.3) and
FX[W(x, )] :=[A3(x,y) + A2y (x,y) + A1 (x, p) A2(x, Y)IW(x, y) + Aa(x, y),
F*[W(x, )] = [A3(x,y) + A1x(x, y) + A1 (x. y) A2 (x, )W (x, y) + Aa(x, y)

= F*[W(x,p)] + [A1x(x,y) — A2y (x, Y)W (x, y),

i.e. according to (1.21)
FIW(x,y)] = H[W(x,y):0]
and
F[0] = (2)0.
Using Corollary 2 we get that

W(x,y) > (<)0,(x,y) € D.
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(1]
(2]
(3]
(4]
(3]
(6]

(7]

(8]

It means that inequalities (1.23) hold. U
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