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Abstract. In this paper we investigate the generalized Hyers-Ulam stability of mappings of
m�semigroups m 2N; m � 2 into Banach spaces. For mD 3 the results can be found in Am-
yari and Moslehian [Approximate homomorphisms of ternary semigroups, Lett. Math. Phys. 77
(2006), 1-9] with the mention that they are true in the class of normal m�semigroups which is
larger than the class of commutative m�semigroups. For mD 2 we find certain results of Hyers
[On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-
224 ], Aoki [On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan,
2 (1950), 64-66], Rassias, Th. M. [On the stability of the linear mapping in Banach space, Proc.
Amer. Math, Soc. 72 (1978), 297-300 ] and Rassias, J. M. [ Solution of a Problem of Ulam,
J. Approx. Theory Math. 57 (1989), 268-273 ]. In addition, we establish the superstability of
m�ary homomorphims into Banach algebras endowed with multiplicative norms, generalizing
the results of Szekelyhidi [On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math.
Soc., 84 (1982), 95-96 ] and Amyari and Moslehian (2006) .
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1. INTRODUCTION

In 1940 S.M. Ulam [22] proposed the famous problem ”Give conditions in order
for a linear mapping near an approximately linear mapping to exist”. More precisely,
given a group .G; �/; a metric group .G0; �;d / and a positive number " > 0; does
there exist ı > 0 such that if a function f W G! G0 satisfies the inequality d.f .x �
y/; f .x/ � f .y// < ı for all x;y 2 G; then there is a homomorphism T W G ! G0

such that d.f .x/; T .x// < " for all x 2 G‹ When this problem has a solution, we
say that the homomorphisms from G to G0 are stable.

In 1941 D.H. Hyers [13] solved the Ulam problem for the case of approximate
additive mappings under the assumption that G and G0 are Banach spaces. This
result was generalized by T. Aoki [3] in 1950 and improved by Th. M. Rassias [19]
in 1978. After 1982 J. M. Rassias [17, 18] , Th. M. Rassias [20] and L. Szekelyhidi
[21] established the stability for Ulam problem for different mappings. The aspect
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of stability that was introduced in these papers is called Hyers-Ulam (shortly H-U)
stability. During past few years several mathematicians, like P. Găvruţa [12], Z. Gajda
[10] have published on various generalizations and applications of H-U stability to a
number of functional equations .

In 2006 Amyari and M. S. Moslehian [1] generalized the H-U stability of map-
pings on commutative ternary semigroup homomorphisms into Banach spaces. Also,
the superstability (”stronger” than the concept of stability) of ternary semigroup ho-
momorphisms into Banach algebras endowed with multiplicative norms has been
investigated.

In 2012 M. Dehghanian and M. S. Modarres [6] investigated the generalized H-
U stability of ternary 
�homomorphisms on ternary semigroups. The stability of
ternary algebras homomorphisms has been studied by I. S. An and C. Park [2] , M.
S. Moslehian and L. Szekelyhidi [15], also.

The object of the present article is thus to formulate and solve some stability prob-
lems for m-ary case, in such a way to retrieve some known results from the bin-
ary or ternary case. m�Ary algebraic structures have many applications in different
branches. For example, in the theory of automata [11], some m�groupoids are ap-
plied in the theory of quantum groups, ternary structures [14] and m�Lie algebras
are used in physics. The first paper focused on m�groups was written by W. Dörnte
[7] in 1928. In 1940 E. Post [16] published an extensive study of m�groups. The
other mathematicians like W. Dudek [8], K. Glazek [9] investigated different m�ary
structures.

In this paper, using a sequence of Hyers type, we generalize the H-U stability of
mappings on m�semigroups, m � 2 into Banach spaces. As a particular case, for
m D 2 we obtain the results of P. Găvruţă [12], D. H. Hyers [13], T. Aoki [3], Th.
M. Rassias [19, 20], J. M. Rassias [18], and for mD 3 we find those of M. Amyari
and M. S. Moslehian [1] with the mention that they are true in the class of normal
m�semigroups which is larger than the class of commutative m�semigroups. In
addition, we establish the superstability of m�ary homomorphims into Banach al-
gebras endowed with multiplicative norms, generalizing the results of L. Szekelyhidi
[21] and Amyari and Moslehian [1].

2. PRELIMINARIES

First, we recall notations, definitions and properties related to
m�semigroups which are used throughout this paper.

Let .S;./ı/ be an m�semigroup, m 2 NI m � 2; i.e. a set S with associative
operation ./ı W Sm! S: A sequence of simbols x1x2 : : :xi whether they are sets or
individual elements, will be abbreviated to xi1. When x1 D x2 D : : :D xi D x, then

we will write x1x2 : : :xi D
.i/
x . With this convention, the associative law is written as

..xm1 /ı x
2m�1
mC1 /ı D .x

i
1 .x

iCm
iC1 /ı x

2m�1
iCmC1/ı
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for all x1; : : : ;x2m�1 2 S and i D 1;2; : : : ;m�1:

Recursively, one may also define xŒ0� D x, xŒ1� D .
.m/
x /ı, xŒkC1� D .xŒk�

.m�1/
x /ı

for every natural number k. Therefore xŒk� D .
.k.m�1/C1/

x /ı which is the so-called
long product.
The following laws are true:

.xŒk1�; : : : ;xŒkm�/ı D x
Œk1C:::CkmC1�; for all k1; : : : ;km 2N

.xŒk�/Œs� D xŒks.m�1/CkCs�; 8 k;s 2N

We remark that

.xŒ1�/Œ1� D xŒmC1� D .
.m2/
x /ıI

�
xŒmC1�

�Œ1�
D .

.m3/
x /ı D x

Œm2CmC1�

and

.
.mk/
x /ı D x

Œmk�1Cmk�2C:::CmC1�; 8 k 2N�:

An m�semigroup .S;./ı/ will be called:
- commutative, iff .xm1 /ı D .x

�.m/

�.1/
/ı for all x1 : : : ;xm 2 S and for each permuta-

tion � of 1;2; : : : ;mI
- semicommutative, iff .xm1 /ı D .xmx

m�1
2 x1/ı for all x1;x2; : : : ;xm 2 S I

- entropic, iff ..x1m11 /ı.x
2m
21 /ı : : : .x

mm
m1 /ı/ı D ..x

m1
11 /ı; .x

m2
12 /ı; : : : ; .x

mm
1m /ı/ı for

any m by m matrix .xij /i;jD1;m of elements from S ;

- normal (or exponential), iff .xm1 /
Œn�
ı D .x

Œn�
1 ; : : : ;x

Œn�
m /ı for all x1; : : : ;xm 2 S and

for all n 2N:
We remark that commutativity implies semicommutativity, semicommutativity im-

plies entropy and entropy implies the normality of m�semigroup S .
An m-semigroup .S;./ı/ is called an m-group if for all a0;a1; : : : ;am 2 S and

fixed i 2 f1; :::;mg there exists an unique element x 2S such that .ai�11 ;x;amiC1/ı
D a0. In some m-groups there is an element e 2 A (called an identity or a neutral

element) such that .
.i�1/
e ;x;

.m�i/
e /ı D x holds for all x 2 S and for all i D 1; : : : ;m.

It is interesting that there are m-groups with two or more neutral elements or which
do not contain such elements [7, 16].

We mention that if .S;�/ is a semigroup (group) and we define the m- ary op-
eration ./ı W Sm ! S; .xmi /ı D x1 � x2 � � � � xm, then .S;./ı/ is an m-semigroup
(m�group), so called the m-semigroup (m-group) derived from the binary semig-
roup (group) .S;�/. In addition, there are m-semigroups that are not derived from a
binary semigroup.

Definition 1. A normed m�semigroup is a triplet .S;./ı;k k/ such that .S;./ı/
is an m�semigroup and k k W S ! Œ0;1/;



.xm1 /ı

 � kx1kC : : :Ckxmk for all
x1; :::;xm 2 S .
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Definition 2. Let .X;�;k k/ be a Banach space over the field of real numbers
or complex numbers. If we define an m-ary operation ./ı W Xm ! X I .xm1 /ı D

x1 �x2 � � � �xm then .X;./ı/ is an commutative m�group with neutral element. We
say that .X;./ı;k k/ is an m�ary Banach space derived from .X;�;k k/:

Extending the notion of ternary Banach algebra given in [5],[23] we have

Definition 3. An m-ary Banach algebra is a normed Banach space .X;k k/
equipped with an m-ary operation ./ı W Xm! X which is associative and satisfies

.xm1 /ı

� kx1k : : :kxmk for all x1; :::;xm 2 S . If



.xm1 /ı

D kx1k : : :kxmk then we
say that the norm is multiplicative.

3. THE GENERALIZED HYERS-ULAM STABILITY

P. Găvruţă [12] obtained a generalization of Th. M. Rassias’s theorem by replacing
the Cauchy differences by a control mapping ' satisfying a condition of convergence.
In the same manner, using the Hyers ”direct method” we can prove the following
theorem, which generalizes Theorem 2.1 of Amyari and Moslehian [1] for ternary
semigroups.

Theorem 1. Let .S;./ı/ be an m�semigroup, X a Banach space and
' W Sm! Œ0;1/ be a mapping such that

Q'.x1; : : : ;xm/ WD
1

m

X1

nD0
m�n'..

.mn/
x1 /ı; : : : ; .

.mn/
xm /ı/ <1 (3.1)

Suppose that the map f W S !X satisfies the condition


f ..x1; : : : ;xm/ı/�Xm

iD1
f .xi /




� '.x1; : : : ;xm/: (3.2)

Then there exists an unique mapping T W S !X such that

kf .x/�T .x/k � Q'.x;x; : : : ;x/ (3.3)
and

T .xŒ1�/DmT.x/ ; for all x 2 S: (3.4)
Moreover, if S is a normalm�semigroup then T is a homomorphism of S on .X;

P
/,

the m�semigroup derived from .X;C/.

Proof. For x1 D : : :D xm D x in (3.2) we get


f .xŒ1�/�mf .x/


� '.x; : : : ;x/
or 



 1mf .xŒ1�/�f .x/





� 1

m
'.x; : : : ;x/:
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Because

.
.mkC1/
x /ı D x

ŒmkCmk�1C:::CmC1�
D .xŒm

k�1Cmk�2C:::C1�/Œ1� D ..
.mk/
x /ı/

Œ1�

we also have 



f ...mkC1/
x /ı/�mf .

.mk/
x /ı





� '...mk/
x /ı; : : : ; .

.mk/
x /ı/:

Then, recursively, we obtain





m�nf ...mn/
x /ı/�f .x/





D 



Xn�1

kD0

�
m�.kC1/f ..

.mkC1/
x /ı/�m

�kf ..
.mk/
x /ı/

�




D





Xn�1

kD0
m�k

�
1

m
f ..

.mkC1/
x /ı/�f ..

.mk/
x /ı/

�




�

Xn�1

kD0
m�k





 1mf ...mkC1/
x /ı/�f ..

.mk/
x /ı/






�
1

m

Xn�1

kD0
m�k'.xŒ

Pk�1
iD0 m

i �; : : : ;xŒ
Pk�1

iD0 m
i �/:

Hence




m�nf .xŒPn�1
iD0m

i �/�f .x/



� 1

m

Xn�1

kD0
m�k'.xŒ

Pk�1
iD0 m

i �; : : : ;xŒ
Pk�1

iD0 m
i �/:

(3.5)

Similarly, for all x 2 S , n;r 2N; r < n we can show that


m�nf .xŒPn�1
iD0m

i �/�m�rf .xŒ
Pr�1

iD0m
i �/





�
1
m

Pn�1
kDrm

�k'.xŒ
Pk�1

iD0 m
i �; : : : ;xŒ

Pk�1
iD0 m

i �/:

From this inequality and condition (3.1) we conclude that the sequence

an.x/Dm
�nf .xŒ

Pn�1
iD0m

i �/

(a so called generalized Hyers-Ulam sequence) is a Cauchy sequence in X . In
view of above conclusion, corroborated with the completeness of X , it follows that
fan.x/gn2N is convergent. Let T W S !X be their limit

T .x/D lim
n!1

m�nf .xŒ
Pn�1

iD0m
i �/: (3.6)
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Because .xŒ1�/Œ
Pn�1

iD0m
i � D xŒ

Pn
iD0m

i �, for all x 2 S , we obtain

T .xŒ1�/D lim
n!1

m�nf ..xŒ1�/Œ
Pn�1

iD0m
i �/D

Dm lim
n!1

m�.nC1/ f
n!1

.xŒ
Pn

iD0m
i �/DmT.x/:

By (3.1) and (3.6) and by letting n!1 in inequality (3.5), we have

kT .x/�f .x/k � Q'.x; : : : ;x/

for all x 2 S .
We intend now to prove that T is uniquely defined. Let T 0 W S ! X be another

mapping with these properties. Then by (3.4) we conclude



T .x/�T 0.x/

Dm�n

mnT .x/�mnT 0.x/


Dm�n




T .xŒPn�1
iD0m

i �/�T 0.xŒ
Pn�1

iD0m
i �/





�m�n



T .xŒPn�1

iD0m
i �/�f .xŒ

Pn�1
iD0m

i �/



C

Cm�n



f .xŒPn�1

iD0m
i �/�T 0.xŒ

Pn�1
iD0m

i �/





and by (3.3) we have

T .x/�T 0.x/

� 2m�n Q'.xŒPn�1
iD0m

i �; : : : ;xŒ
Pn�1

iD0m
i �/:

Taking the limit in this inequality as n!1 , we obtain T .x/ D T 0.x/ for all
x 2 S and so T is unique.

In the sequel, we suppose that .S;./ı/ is a normal m�semigroup, i.e.

.x1; : : : ;xm/
Œk�
ı D

�
x
Œk�
1 ; : : : ;xŒk�m

�
ı

(3.7)

for all x1; : : : ;xm 2 S and all k 2 N. Replacing xj by xŒ
Pn�1

iD0m
i �

j ; j D 1; : : : ;m in
inequality (3.2) we have



f .ŒxŒPn�1

iD0m
i �

1 ; : : : ;x
Œ
Pn�1

iD0m
i �

m �ı/�
Pm
jD1f .x

Œ
Pn�1

iD0m
i �

j /






� '.x

Œ
Pn�1

iD0m
i �

1 ; : : : ;x
Œ
Pn�1

iD0m
i �

m /:

Using the equality (3.7), if we divide both sides by mn we obtain



m�nf ..x1; : : : ;xm/ŒPn�1
iD0m

i �
ı /�

Pm
jD1m

�nf .x
Œ
Pn�1

iD0m
i �

j /






�m�n'.x

Œ
Pn�1

iD0m
i �

1 ; : : : ;x
Œ
Pn�1

iD0m
i �

m /:

In the last inequality, by letting n!1, and by (3.1) and (3.6), we get
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T ..x1; : : : ;xm/ı/D
Xm

jD1
T .xj /

i.e. T is an m� semigroup homomorphism. �

Therefore, we have proven that under suitable conditions on the function involved,
”near” any solution of inequality (3.2) there exists a solution of equation f ..xm1 /ı/DPm
jD1f .xj /. The word ”near” means that the distance of the solution of the equation

from the solution of the inequality is explicitly evaluated through the function ' W
Sm! Œ0;1/.

As a consequence, if '.x1; : : : ;xm/D constant, Theorem 1 gives a generalization
of the well known Hyers result [13].

Corollary 1. Let .S;./ı/ be an m�semigroup, m � 2, X be a Banach space and
" > 0. Suppose that f W S !X is a mapping satisfying


f ..x1; : : : ;xm/ı/�Xm

jD1
f .xj /




< "
for all x1; : : : ;xm 2 S .

Then there exists an unique mapping T W S !X such that

kf .x/�T .x/k<
"

m�1
and

T .xŒ1�/DmT.x/ ;8x 2 S:

Moreover, if S is a normalm�semigroup, then T is anm�semigroup homomorph-
ism.

Proof. Because m � 2, the series
P1
nD0

"

mnC1
is convergent with sum

"

m�1
.

Applying Theorem 1 there exists an unique mapping T W S !X such that

T .x/D lim
n!1

m�nf .xŒm
n�1C:::CmC1�/

with
T .xŒ1�/DmT.x/I 8x 2 S

and
kf .x/�T .x/k<

"

m�1
:

�

For various forms of the function '.x1; : : : ;xm/ we obtain other generalizations of
some results on stability published in the last years.

First, we suppose that f W S!X is a mapping satisfying a condition weaker than
Hyers’s condition on approximate additive mappings in terms of a product of powers
of norms.
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Corollary 2. Let .S;./ı;k k1/ be a normedm�semigroup,m2N;m� 2, .X;k k2/
be a Banach space and "> 0. Suppose that k1; : : : ;km 2R; 0�pD k1C : : :Ckm<1
and f W S !X is a mapping satisfying the condition


f ..x1; : : : ;xm/ı/�Xm

jD1
f .xj /





2
< "kx1k

k1

1 kx2k
k2

1 : : :kxmk
km

1 ;

8x1; : : : ;xm 2 S:

Then there is an unique mapping T W S !X such that

kf .x/�T .x/k2 <
"kxk

p
1

m�mp

and
T .xŒ1�/DmT.x/, 8x 2 S:

Moreover, if S is a normal m�semigroup, then T is an m�ary homomorphism.

Proof. Because .S;./ı;k k1/ is a normed m�semigroup, we have for all x 2 S ,


xŒ1�



1
D jj.

.m/
x /ıjj1 �mjjxjj1:

By induction, we have jjxŒk�jj1 � ..m�1/kC1/jjxjj1 for all k 2N.
Hence

jjxŒm
n�1C:::CmC1�

jj1 �m
n
jjxjj1;

for all n 2N and all x 2 S:
Let ' W Sm! Œ0;1/ be defined by '.x1; : : : ;xm/ D "jjx1jj

k1

1 : : : jjxmjj
km

1 where
0� p D k1C : : :Ckm < 1:

Because

'..
.mn/
x1 /ı; : : : ; .

.mn/
xm /ı/D "jj.

.mn/
x1 /ıjj

k1

1 : : : jj.
.mn/
xm /ıjj

km

1

� ".mnjjx1jj1/
k1 : : : .mnjjxmjj1/

km

D ".mn/k1C:::Ckm jjx1jj
k1

1 : : : jjxmjj
km

1

D "mnpjjx1jj
k1

1 : : : jjxmjj
km

1 ;

the series

1

m

1X
nD0

m�n'..
.mn/
x1 /ı : : : .

.mn/
xm /ı/�

1

m

1X
nD0

".mp�1/njjx1jj
k1

1 : : : jjxmjj
km

1 <1

is convergent with the sum

e'.x1; : : : ;xm/� "

m�mp
jjx1jj

k1

1 : : : jjxmjj
km

1

and
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e'.x; : : : ;x/� "jjxjj
p
1

m�mp
:

According to Theorem 1 there is an unique mapping T W S !X such that

kf .x/�T .x/k2 �
"jjxjj

p
1

m�mp

and

T .xŒ1�/DmT.x/, for all x 2 S:

If S is a normal normed m�semigroup, then T is an m�ary homomorphism. �

We remark that, in the special case wheremD 2, Corollary 2 is Theorem 1.1 from
J. M. Rassias [18].

Corollary 3. Let .S;./ı;k k1/ be a normedm�semigroupm2N,m� 2, .X;k k2/
be an m�ary Banach space and " > 0. Suppose that f W S ! X is a mapping satis-
fying the inequality


f .x1;x2; : : : ;xm/ı�Xm

jD1
f .xj /





2
< ".jjx1jj

p
1 C : : :Cjjxmjj

p
1 /

for x1; : : : ;xm 2 S , where 0� p < 1:
Then there is an unique mapping T W S !X such that

kf .x/�T .x/k2 �
"mjjxjj

p
1

m�mp

and

T .xŒ1�/DmT.x/, 8 x 2 S:

Moreover, if S is a normal m�semigroup, then T is an m�ary homomorphism.

Proof. We apply Theorem 1 to the mapping ' W Sm!X ,

'.x1; : : : ;xm/D ".jjx1jj
p
1 C : : :Cjjxmjj

p
1 /:

Because for 0 � p < 1, the series
P1
nD0m

n.p�1/ converges to
m

m�mp
and so we

obtain the result above. �

In particular, the case mD 2 gives the results of T. Aoki [3] and Th. M. Rassias
[19].
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4. SUPERSTABILITY

Let .S;./ı/ be anm�semigroup,X a Banach space and f W S!X be a mapping.
Investigations concerning stability properties of the functional equation

f ..xm1 /ı/D

mX
jD1

f .xj /

proved that any ”approximate” solution of this equation can be approximated by
an exact solution, i.e., by an m�ary homomorphism if we regard .X;

P
/ as an

m�semigroup derived from .X;C/. The equation f ..xm1 /ı/D
mQ
jD1

f .xj / possesses

a more surprising stability property, namely, any unbounded approximate solution
must be an m�ary homomorphism. Such a phenomenon is called superstability (see
L. Szekelyhidi [21], for mD 2 and M. Amyari and M.S. Moslehian [1] for mD 3).
More exactly, suppose that we are given a functional equation E.f /D 0, such that
the notion of boundedness of f and E.f / makes sense and furthermore, we assume
that E.f / is bounded whenever f is bounded. The functional equation E.f / D 0
is stable if any function g approximately satisfying this equation is near to a true
solution of this equation. This functional equation is superstable if the boundedness
of E.f / implies that either f is bounded or E.f / D 0. Therefore the notion of
superstability is ”stronger” than the notion of stability.

In this section we will study the superstability ofm�ary homomorphism, general-
izing the results of Amyari and Moslehian. [1].

Theorem 2. Let .S;./ı/ be an m�semigroup, A a normed algebra whose norm
is multiplicative and "� 0. If f W S ! A satisfies the inequality


f ..x1; : : : ;xm/ı/�Ym

jD1
f .xj /




� " (4.1)

for all x1; : : : ;xm 2 S , then there is ı" > 1 such that either

kf .x/k � ı", for all x 2 S; (4.2)

or
f ..x1; : : : ;xm/ı/D

Ym

jD1
f .xj /,8x1; : : : ;xm 2 S: (4.3)

Proof. By inequality (4.1) we have



f .xŒ1�/� .f .x//m


� ":

We remark that the equation ım�ıD " has a unique solution ı" > 1. Suppose that
there exists a 2 S such that kf .a/k> ı" i.e. kf .a/k D ı"Cp for some p > 0: Then


f .aŒ1�/


D 


.f .a//m� ..f .a//m�f .aŒ1�//




� kf .a/km�



.f .a//m�f .aŒ1�/
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� .ı"Cp/
m
� "

D ım" Cmı
m�1
" pC : : :Cpm� .ım" � ı"/

> ı"Cmp:

Assume by induction that


f .aŒmn�1C:::CmC1�/



> ı"Cmnp:

Then


f .aŒmnC:::CmC1�/



D 


f ..aŒmn�1C:::CmC1�/Œ1�/





�




f .aŒmn�1C:::CmC1�/



m�

�




.f .aŒmn�1C:::CmC1�//m�f ..aŒm
n�1C:::CmC1�/Œ1�/





� .ı"Cm

np/m� " > ı"Cm
nC1p:

Therefore 


f .aŒmn�1C:::CmC1�/



> ı"Cmnp (4.4)

holds for all positive integers n.
Because for every x1;x2; : : : ;x2m�1 2 S according to the inequality (4.1) we have

f ..xm1 /ıx2m�1mC1 /ı/�f ..x

m
1 /ı/f .xmC1/ : : :f .x2m�1/



� "
and 

f ..xm�11 .x2m�1m /ı/ı/�f .x1/ : : :f .xm�1/f ..x

2m�1
m /ı/ı



� ":
By associativity of m�ary operation ./ı, we obtain

f ..xm1 /ı f .xmC1/ : : :f .x2m�1/�f .x1/ : : :f .xm�1/ıf ..x2m�1m /ı/



� 2":
Because the norm k k is multiplicative, we have


f ..xm1 /ı/ f .xmC1/ : : :f .x2m�1/�Q2m�1

jD1 f .xj /





�


f ..xm1 /ı/ f .xmC1/ : : :f .x2m�1/�f .x1/ : : :f .xm�1/f ..x2m�1m /ı/



C
C


f .x1/ : : :f .xm�1/.f ..x2m�1m /ı/�f .xm/ : : :f .x2m�1//




� 2"Ckf .x1/k : : :kf .xm�1/k":

In particular, for xmC1 D xmC2 D : : :D x2m�1 D aŒm
n�1C:::CmC1� we obtain


f ..xm1 /ı/�Ym

jD1
f .xj /




 �


f .aŒmn�1C:::mC1�/



m�1

� 2"Ckf .x1/k : : :kf .xm�1/k":
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By (4.4)

kf ..xm1 /ı/�f .x1/ : : :f .xm/k �
2"Ckf .x1/k : : :kf .xm�1/k"

.ı"Cmnp/m�1
:

Letting n!1 then
f .xm1 /ı D f .x1/ : : :f .xm/

for all x1; : : : ;xm 2 S . �

The Baker’s example [4] extended to m�ary product shows that the crucial step
in the proof above is the fact that the norm is multiplicative.
Given " > 0 there is an unique solution ı" greater than 1 of the equation jım� ıj D
": If .S D R; . /ı/ is the m�semigroup with .xm1 /ı D x1C : : :C xm, M2.R/ is the

algebra of 2x2 matrices with real elements and f WR!M2.R/; f .x/D

�
ex 0

0 ı"

�
then for the usual matrix norm we have

kf .x1C : : :Cxm/�f .x1/ : : :f .xm/k D

D





� 0 0

0 ı� ım

�



D jı� ımj D ";
for all x1; : : : ;xn 2 R: Hence f .x1C : : :Cxm/¤ f .x1/:::f .xm/ while f is unboun-
ded.

Szekelyhidi [21] proved that the invariance of the vector space where the functions
are defined is enough to ensure superstability. The notions and results of Theorem 2
can be generalized in the following:

Definition 4. Let .S;./ı/ be an m�semigroup and let V be the linear space of
complex C�valued function on S . The space V is called right (left) invariant if
' W S !C belongs to V implies that the right (left) translation

'ym�1
1
W S !C; 'ym�1

1
.x/D '..x;ym�11 /ı/

.ym�1
1

' W S !C; ym�1
1

'.x/D '..ym�11 ;x/ı//

belongs to V for every y1;y2; : : : ;ym�1 2 S .

Theorem 3. Let .S;./ı/ be an m�semigroup, V a right invariant linear space of
complex valued functions on S and '; f W S!C be nonzero functions for which the
function  ym�1

1
W S !C;

 ym�1
1

.x/D '..x;ym�11 /ı/�'.x/f .y1/ � : : : �f .ym�1/;

belongs to V for every y1; : : : ;ym�1 2 S . Then either ' 2 V; or f is an m�ary ho-
momorphism of m�semigroup .S;./ı/ into .C;˘/�the derived m�semigroup from
the semigroup .C; �/.
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Proof. Suppose that f is not an m�ary homomorphism of S into C. Hence there
are elements x2;x3; : : : ;xmC1 2 S such that

f ..xmC12 /ı/¤ f .x2/f .x3/ : : :f .xmC1/

and therefore there is

Œf ..xmC12 /ı/�f .x2/ : : :f .xmC1/�
�1 denoted
D a�1:

Assume that xi 2 S such that bi D f .xi /¤ 0; i 2 fmC2; :::;2m�1g.
Then, by associativity law of m�ary operation we have

'...xm1 /ıx
2m�1
mC1 /ı/�'..x

m
1 /ı/f .xmC1/ : : :f .x2m�1/

D Œ'..x1.x
mC1
2 /ıx

2m�1
mC2 /ı/�'.x1/f ..x

mC1
2 /ı/f .xmC2/ : : :f .x2m�1/�

�Œ'..xm1 /ı/�'.x1/f .x2/ : : :f .xm/�f .xmC1/ : : :f .x2m�1/

C'.x1/Œf ..x
mC1
2 /ı/�f .x2/ : : :f .xmC1/�f .xmC2/ : : :f .x2m�1/

and hence

'.x1/D fŒ'...x
m
1 /ıx

2m�1
mC1 /ı/�'..x

m
1 /ı/f .xmC1/ : : :f .x2m�1/�

�Œ'..x1.x
mC1
2 /ıx

2m�1
mC2 /ı/�'.x1/f ..x

mC1
2 /ı/f .xmC2/ : : :f .x2m�1/�

CŒ'..xm1 /ı/�'.x1/f .x2/ : : :f .xm/�f .xmC1/ : : :f .x2m�1/g

�Œf .xmC12 /�f .x2/ : : :f .xmC1/�
�1Œf .xmC2/�

�1 : : : Œf .x2m�1/�
�1:

Therefore
'.x1/D Œ x2m�1

mC1
..xm1 /ı/� .xmC1

2 /ıx
2m�1
mC2

.x1/

C xm
2
.x1/f .xmC1/ : : :f .x2m�1/�a

�1b�1mC2b
�1
mC3 : : :b

�1
2m�1:

Since V is right-invariant linear space we conclude that the right-hand side of
above equality as a function of x1 belongs to V , then hence so does '. �

As a consequence we obtain a natural generalization of Theorem 3.4 of Amyari
and Moslehian [1]:

Corollary 4. Let .S;./ı/ be anm�semigroup and ';f W S!C be nonzero func-
tions for which there exists a bounded function ˛ W Sm�1! Œ0;1/ such that

j'..xm1 /ı/�'.x1/f .x2/ : : :f .xm/j � ˛.x2;x3; : : : ;xm/
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for all x1;x2; : : : ;xm 2 S .
Then either ' is bounded or f is anm�ary homomorphism of .S;./ı/ into .C;˘/:

Proof. Let V be the linear space of all bounded C�valued function on S . The
function  xm

2
W S !C

 xm
2
.x1/D '..x

m
1 /ı/�'.x1/f .x2/ : : :f .xm/

belongs to V for each x2;x3; : : : ;xm. Then we can apply Theorem 3 which implies
that either ' is bounded or f is an m�ary homomorphism. �

In the special case where f D ' W S ! C and mapping ˛ D ", " > 0 we obtain a
generalization of Corollary 3.5 from [1]:

Corollary 5. Let .S;./ı/ be anm�semigroup, " > 0 and f W S!C be a nonzero
function such that ˇ̌̌̌

ˇ̌f ..xm1 /ı/� mY
jD1

f .xj /

ˇ̌̌̌
ˇ̌� "

for all x1;x2; : : : ;xm 2 S .
Then either f is bounded or f is an m�ary homomorphism.
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