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Abstract. This paper covers several topics that involve symmetries of differential equations:
from the connection between Lie symmetries and Jacobi last multiplier with a detour to the
inverse problem of calculus of variations, to the importance of maximal group of Noether sym-
metries on the road from classical to quantum mechanics.
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1. INTRODUCTION

Symmetries are everywhere, yet symmetry is an ambiguous word and can be mis-
leading. The symmetries that are the subject of this paper are the Lie symmetries
admitted by a differential equation, those symmetries that generate a Lie algebra.
Sophus Lie himself provided a link between his namesake symmetries and the solu-
tions of a differential equation, or its conservation laws by means of the Jacobi last
multiplier [29]. Lie symmetries are also related to the inverse problem of calculus of
variations because of the properties of the Jacobi last multiplier. Since conservation
laws can be obtained without even a Lagrangian, the importance of Noether sym-
metries seems to be diminished, yet we have recently linked them to the problem of
quantization [11, 36–38].

In the next section, we will recall the main properties of the Jacobi last multiplier,
its connection to Lie symmetries, and the inverse problem of calculus of variations,
namely the possibility of finding one (or more) Lagrangians.

In section 3, the extraordinary journey taken by three Lie symmetries, i. e.,

�1 D @x � @y ; �2 D x@x C y@y ; �3 D x2@x � y2@y ; (1.1)

a representation of sl.2;R/, is narrated. It begins with the hydrodynamic equations
as formulated by Riemann and ends with the Schrödinger equation. We anticipate
that during this journey, more Lie symmetries will be picked up and consequently
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a representation of sl.3;R/ is obtained. Also the Schwarzian derivative [14] and
Calogero’s goldfish [4, 35] are encountered.

2. LIE SYMMETRIES, JACOBI LAST MULTIPLIER, LAGRANGIANS

The method of the Jacobi last multiplier� [15–17] and [18]� provides a means to
determine all the solutions of the partial differential equation

Af D
nX

iD1

ai .x1; : : : ; xn/
@f

@xi
D 0 (2.1)

or its equivalent associated Lagrange’s system

dx1
a1

D dx2
a2

D : : : D dxn
an

: (2.2)

In fact, if one knows the Jacobi last multiplier and n � 2 functionally independent
solutions, then the last solution can be obtained by a quadrature. The Jacobi last
multiplier M is given by�

@.f; !1; !2; : : : ; !n�1/

@.x1; x2; : : : ; xn/
DMAf; (2.3)

where

@.f; !1; !2; : : : ; !n�1/

@.x1; x2; : : : ; xn/
D det

0
BBBBBBBB@

@f

@x1
� � � @f

@xn
@!1

@x1

@!1

@xn
:::

:::
@!n�1

@x1
� � � @!n�1

@xn

1
CCCCCCCCA
D 0 (2.4)

and !1; : : : ; !n�1 are n � 1 solutions of (2.1) or, equivalently, first integrals of
(2.2) independent of each other. This means that M is a function of the variables
.x1; : : : ; xn/ and depends on the chosen n � 1 solutions, in the sense that it varies as
they vary. The essential properties of the Jacobi last multiplier were proven by Jacobi
himself and they are:

�Many authors have dealt with the Jacobi last multiplier, and an up-to-date (2004) nearly complete
list can be found in [34]. It ranges from the 1871 paper by Laguerre [27] and the seminal 1874 paper by
Lie [29] to the 2003 review paper by Berrone e Giacomini [2]. A missed reference in [34] is Section 2.11
in the 2001 book by Goriely [10].

�An English translation is now available [19].
�
M is not zero, yet connects two quantities that are zero.
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(a) If one selects a different set of n�1 independent solutions �1; : : : ; �n�1 of equa-
tion (2.1), then the corresponding last multiplier N is linked to M by the rela-
tionship

N DM
@.�1; : : : ; �n�1/

@.!1; : : : ; !n�1/
:

(b) Given a non-singular transformation of variables

� W .x1; x2; : : : ; xn/ �! .x01; x
0
2; : : : ; x

0
n/;

then the last multiplier M 0 ofA0F D 0 is given by:

M 0 DM
@.x1; x2; : : : ; xn/

@.x01; x
0
2; : : : ; x

0
n/
;

whereM obviously comes from the n�1 solutions ofAF D 0which correspond
to those chosen forA0F D 0 through the inverse transformation ��1.

(c) One can prove that each multiplier M is a solution of the following linear partial
differential equation:

nX
iD1

@.Mai /

@xi
D 0I (2.5)

vice versa, every solution M of this equation is a Jacobi last multiplier.
(d) If one knows two Jacobi last multipliers M1 and M2 of equation (2.1), then their

ratio is a solution ! of (2.1), or, equivalently, a first integral of (2.2). Naturally,
the ratio may be quite trivial, namely a constant. Vice versa, the product of a
multiplier M1 times any solution ! yields another last multiplier M2 DM1!.

Since the existence of a solution/first integral is consequent upon the existence of
symmetry, an alternative formulation in terms of symmetries was provided by Lie
[29, 30]. A clear treatment of the formulation in terms of solutions/first integrals and
symmetries is given by Bianchi [3]. If we know n � 1 symmetries of (2.1)/(2.2), say

�i D
nX

jD1

�ij .x1; : : : ; xn/@xj ; i D 1; : : : ; n � 1; (2.6)

a Jacobi last multiplier is given by M D ��1, provided that � 6D 0, where

� D det

0
BBB@

a1 � � � an
�1;1 : : : �1;n
:::

:::

�n�1;1 � � � �n�1;n

1
CCCA : (2.7)

There is an obvious corollary to the results of Jacobi mentioned above. In the case
that there exists a constant multiplier, the determinant is a first integral. This result is
potentially very useful in the search for first integrals of systems of ordinary differ-
ential equations. In particular, if each component of the vector field of the equation
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of motion is missing the variable associated with that component, i. e., @ai=@xi D 0,
the last multiplier is a constant, and any other Jacobi last multiplier is a first integral.

Another property of the Jacobi last multiplier is its (almost forgotten) relationship
with the Lagrangian, L D L.t; x; Px/, for any second-order equation

Rx D �.t; x; Px/ (2.8)

i. e. [18, Lecture 10], [52]

M D @2L

@ Px2 (2.9)

where M DM.t; x; Px/ satisfies the equation
d
dt
.logM/C @�

@ Px D 0: (2.10)

Then, equation (2.8) becomes the Euler–Lagrangian equation:

� d
dt

�
@L

@ Px

�
C @L

@x
D 0: (2.11)

The proof is given by taking the derivative of (2.11) by Px and showing that this yields
(2.10). If one knows a Jacobi last multiplier, then L can be obtained by a double
integration, namely,

L D
Z �Z

M d Px
�

d Px C `1.t; x/ Px C `2.t; x/; (2.12)

where `1 and `2 are functions of t and x which have to satisfy a single partial differ-
ential equation related to (2.8) [40]. As it was shown in [40], `1; `2 are related to the
gauge function G D G.t; x/. In fact, we may assume

`1 D
@G

@x
;

`2 D
@G

@t
C `3.t; x/; (2.13)

where `3 has to satisfy the partial differential equation mentioned andG is obviously
arbitrary.

It was shown in [39] that Jacobi last multiplier yields the Lagrangian for any equa-
tion of even order�

u.2n/ D F.x; u; u0; u00; : : : ; u.2n�1//; (2.14)

since it can be derived from the following formula

M 1=n D @2L

@.u.n//2
; (2.15)

whereM is the Jacobi last multiplier of equation (2.14) and L is its Lagrangian. This
formula was given by Jacobi himself in [17] p. 364.

�We use a prime to indicate the derivative with respect to x.
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We recall that Fels has proven [7] that the Lagrangian is unique in the case of
fourth-order equation if it exists. In the case of equations of sixth and eighth order,
the uniqueness was proven by Juráš [20].

In [47], Tonti provided a brief historical survey of the inverse problem of calculus
of variations. He begins with the year 1887 when both Helmholtz [13] and Volterra
[50] published their work. Unfortunately, no mention is made of Jacobi’s work. That
historical survey should have at least begun — if not with the year 1845 when Jacobi’s
paper [17] was published in Crelle’s journal — with the year 1884 when Jacobi’s
Dynamics Lectures delivered at the University of Königsberg in the Winter Semester
1842–1843, were finally published [18] with a foreword by Weierstrass.

As pointed out by Tonti [47], many authors have dealt with the inverse problem of
calculus of variations by either using a formal approach or an operatorial approach
following on the steps of either Helmholtz or Volterra, for example, [1,31,43,46,48,
49] and many others.

We do not underestimate the research of these very distinguished authors. Yet,
when feasible — a single equation, a non-dissipative system [41] — we prefer to fol-
low Jacobi since his last multiplier has a direct link to conservation laws and symmet-
ries that are the essential elements that, in our opinion, make the difference between
a mathematical abstraction and a physical concreteness.

It is a matter for historians alike to find out why Darboux [5], Helmholtz [13],
Koenigsberger himself� and many other successive authors, e. g., Douglas [6] and
Havas� [12], never acknowledged the use of the Jacobi last multiplier in order to find
Lagrangians of a second-order equation. Sonin did [45, p. 10], although very few
authors [26] cite his 1886 Russian paper.

Volterra knew Jacobi’s work, especially [18], which he mentions in 1887 in one of
his earlier works [50, p. 280]. Therefore, Volterra knew Lecture 10 of [18] since he
cites p. 78 of precisely this Lecture in [50]. Maybe he overlooked the following pages,
especially p. 82, where Jacobi wrote his formula (2.9) that links the last multiplier
to the Lagrangian of any second-order equation. Also, in his 1906 address at the
Congress of Italian Naturalists [51], Volterra wrote: una delle più celebri scoperte
del matematico Jacobi, quella del principio dell’ultimo moltiplicatore.�

�In 1902–1903, Koenigsberger wrote Helmholtz’s biography [24] — which in 1906 was (abridged)
translated into English with a Preface by Lord Kelvin [23] — after he wrote his 1901 book on Mechanics
[21]. Neither book cites the connection between Jacobi last multiplier and Lagrangians. In 1904,
Koenigsberger wrote Jacobi’s biography [22] where the Jacobi last multiplier is extensively described.

�Havas even cites the book by Whittaker [52] but only in connection with the formulation of Lag-
rangian equations.

�“One of the most celebrated discoveries by the mathematician Jacobi, that of the principle of the
last multiplier.” (tr. by MCN)
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3. FROM RIEMANN TO SCHRÖDINGER

In [8], it was found that the following linear second-order hyperbolic partial dif-
ferential equation

.x C y/2uxy C B1.x C y/.ux C uy/C B2u D 0; (3.1)

that encases the hydrodynamic equations as formulated by Riemann [8, 44] admits
the following Lie symmetries for general values of the parameters B1; B2:

�1 D @x � @y ; �2 D x@x C y@y ; �3 D x2@x � y2@y � B1.x � y/u@u;
�4 D u@u; �1 D f .x; y/@u;

(3.2)
where f .x; y/ is any solution to (3.1). We emphasize that �4 and �1 are the
symmetries that are always admitted by any linear homogeneous partial differen-
tial equation. It is obvious that taking the independent variables only in (3.2) al-
lows the identification of �1; �2; �3 with �1; �2; �3, respectively. We now assume
that y D y.x/ and search for an ordinary differential equation of second order, say
y00 D F.x; y; y0/, that admits the three Lie symmetries (1.1). We obtain� a family of
equations characterized by a parameter A, i. e.:

y00 D y0

x C y

�
A
p
y0 C 2y0 � 2

�
: (3.3)

It is known [28] that if we solve this equation for the parameter A, i. e.

A D y00.x C y/ � 2y02 C 2y0

y0
p
y0

; (3.4)

and then derive once with respect to x, a third-order equation is obtained, i. e.

y000 D 3y002

2y0
; (3.5)

that admits a six-dimensional Lie symmetry algebra [9] generated by

@x; x@x; x2@x; @y ; y@y ; y2@y : (3.6)

Equation (3.5) contains the Schwarzian derivative [14] and thus, it is connected to
both a linear second-order equation and a Riccati equation. In particular, the trans-
formation [14]

y D
Z

1

r2
dx C a3 (3.7)

yields r 00 D 0, so that r D a1x C a2; and the general solution to (3.3) is

y D � 1

a1.a1x C a2/
C a3; a3 D

2a2 � A
2a1

; (3.8)

where a1 and a2 are arbitrary parameters.

�We employ our own ad hoc interactive REDUCE programs [33] in order to find Lie symmetries.
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The calculation of the Jacobi last multiplier requires that the differential equation
(3.3) be written as a system of first-order equations (2.2), i. e.

dt
1
D dy
y0

D dy0

y0

xCy

�
A
p
y0 C 2y0 � 2

� ; (3.9)

then we can determine three Jacobi last multipliers for equation (3.3) by using the
determinant (2.7) and two of the symmetries (1.1), i. e.

�12 D det

0
B@
1 y0 y0

xCy

�
A
p
y0 C 2y0 � 2

�
1 �1 0

x y 0

1
CA ; (3.10)

�13 D det

0
B@
1 y0 y0

xCy

�
A
p
y0 C 2y0 � 2

�
1 �1 0

x2 �y2 �2y0.x C y/

1
CA ; (3.11)

and

�23 D det

0
B@
1 y0 y0

xCy

�
A
p
y0 C 2y0 � 2

�
x y 0

x2 �y2 �2y0.x C y/

1
CA : (3.12)

Therefore, the three Jacobi last multipliers are:

JLM1;2 D
1

�12
D 1

y0.A
p
y0 C 2y0 � 2/

; (3.13)

JLM1;3 D
1

�13
D 1

y0.4y � Ay
p
y0 C 4xy0 C Ax

p
y0/
; (3.14)

JLM2;3 D
1

�23
D 1

y0.2x2y0 � 2y2 � Axy
p
y0/
: (3.15)

From property (d) in Section 2, we have that the ratio of two Jacobi last multipliers
is a first integral of equation (3.3) and, therefore, three first integrals can be obtained,
i. e.

Int1 D
JLM1;2

JLM1;3
D y0.4y � Ay

p
y0 C 4xy0 C Ax

p
y0/

y0.A
p
y0 C 2y0 � 2/

;

Int2 D
JLM1;2

JLM2;3
D y0.2x2y0 � 2y2 � Axy

p
y0/

y0.A
p
y0 C 2y0 � 2/

;

Int3 D
JLM1;3

JLM2;3
D y0.2x2y0 � 2y2 � Axy

p
y0/

y0.4y � Ay
p
y0 C 4xy0 C Ax

p
y0/
:
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Three Lagrangians L1;2, L1;3, and L2;3 can be obtained from (2.12) and the Jac-
obi last multipliers JLM1;2; JLM1;3; JLM2;3, respectively. Then, applying Noether’s
theorem [32] yields that each of them admits only one Lie symmetry among those
in (1.1) as Noether symmetry, and they are different from each other. In particular,
we obtain that L1;2 admits �1, L1;3 admits �2, and L2;3 admits �3. Since the ex-
pressions of those three Lagrangians are very long, we do not write them down here.
They are available in REDUCE format upon request.

If A D 0, then equation (3.3) becomes:

y00 D 2y0

x C y

�
y0 � 1� (3.16)

and admits five further Lie symmetries, namely,

�4 D
1

x C y

�
@x C @y

�
; �5 D

1

x C y

�
y@x � x@y

�
;

�6 D
xy

x C y

�
@x C @y

�
; �7 D

xy

x C y

�
x@x � y@y

�
;

�8 D
xy

x C y

�
x2@x C y2@y

�
:

(3.17)

This equation is related to Calogero’s goldfish [4], namely it is equation (24) in
[35] with a12 D �1 and w2 D �y.

The eight Lie operators �i ; i D 1; 8 generate an eight-dimensional Lie symmetry
algebra sl.3;R/ which implies that equation (3.16) is linearizable by means of a point
transformation [30]. In order to find the linearizing transformation, we have to look
for an abelian intransitive subalgebra of sl.3;R/ and, following Lie’s classification
of two-dimensional algebras in the real plane [30], we have to transform it into the
canonical form

@ Qy ; Qx@ Qy (3.18)

with Qy and Qx the new dependent and independent variables, respectively. We have
found two� such subalgebras, although they are obviously related since there exists
only one abelian intransitive subalgebra of sl.3;R/ [53]. One such subalgebra is that
generated by �4 and �10 D 2�5��1 while the other subalgebra is that generated by
�8 and �9 D �2�7 C �3. Then, it is easy to derive that

f�4; �10g H) Qx D y � x; Qy D �xy; (3.19)

while

f�8; �9g H) Qx D x � y
xy

; Qy D � 1

xy
: (3.20)

�Actually, there is also a third one, i. e., that generated by �7 and �1 � �5. The further analysis of
this case is analogous to the other two and we omit it here at the request of an anonymous Referee.
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Equation (3.16) becomes

d2 Qy
d Qx2 D 0 (3.21)

by means of both transformations.
We can also determine many Jacobi last multipliers for equation (3.16) by using

the determinant (2.7) with two of the Lie point symmetries �j ; j D 1; : : : ; 10. For
example:

JLM1;2 D
1

2y0.y0 � 1/ ;

JLM1;3 D
1

4y0.xy0 C y/
;

JLM2;3 D
1

2y0.x2y0 � y2/ ;

JLM1;8 D
.x C y/2

.y2 � x2y0/.x2y02 C y2y0 C 4xyy0 C x2y0 C y2/

JLM8;9 D JLM8;3 D
.x C y/2

.y2 � x2y0/3 ;

JLM4;10 D JLM4;5 D
.x C y/2

.1 � y0/3 ;

JLM1;9 D JLM3;10 D
1

2
JLM4;8 D

1

2

.x C y/2

.y0 � 1/.y2 � x2y0/.xy0 C y/
;

JLM4;6 D � .x C y/2

.1 � y0/2.xy0 C y/
;

JLM3;5 D
.x C y/2

.y0 � 1/.y2 � x2y0/2 :

We observe that

�67 D �68 D �78 D 0:

Then, it is easy to show [42] that f�6; �7; �8g are a representation of the complete
symmetry group of equation (3.16), i. e. the group of the symmetries which com-
pletely specifies the differential equation under consideration [25].

We can now derive many Lagrangians for equation (3.16) from (2.12). In particu-
lar, the Lagrangian

L4;10 D
1

2

.x C y/2

1 � y0 (3.22)
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corresponds to the Jacobi last multiplier JLM4;10, and admits five Noether symmet-
ries and corresponding first integrals, i. e.

�4 H) xy0 C y

1 � y0

�5 H) �.y
0 � 2/x2y0 � 2xyy0 � .2y0 � 1/y2

.2.y0 � 1/2

�3�6 C 2�2 H) .y2 � x2y0/.y C xy0/

.3.y0 � 1/2

�9 H) �.y
2 � x2y02/2
4.y0 � 1/2

�1 H) y0.x C y/2

.y0 � 1/2 :

(3.23)

Also the Lagrangian

L8;9 D
1

2

.x C y/2

x4.y2 � x2y0/ (3.24)

admits five Noether symmetries and corresponding first integrals, i. e.

�10 H) .y0 � 1/2
4.y2 � x2y0/2

�3�6 C �2 H) .y C xy0/.y0 � 1/
3.y2 � x2y0/2

�7 H) .y C xy0/2

2.y2 � x2y0/2

�8 H) y C xy0

x2y0 � y2

�3 H) y0.x C y/2

.y2 � x2y0/2 :

(3.25)

Since equation (3.16) is related to the free-particle equation (3.21), then we can
derive the corresponding Schrödinger equation by means of the five Noether sym-
metries admitted by the Lagrangian L4;10 [11, 36–38] in spite of the fact that the
transformation (3.19) is not linear.

Indeed, we have determined a linear parabolic partial differential equation

�xx C 2�xy C �yy C 2i
�x.x C y/2 C i

x C y
�x C 2i

y.x C y/2 C i
x C y

�y D 0 (3.26)
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that admits the following Lie symmetries

�4; �5 C ixy�@� ; �3�6 C 2�2 C
1

4

�
x � y C ix2y2

�
�@� ; �9;

�1 C ixy�@� ; �@� ; �.x; y/@� ;
(3.27)

where �.x; y/ is any solution to (3.26). It is obvious that the Noether symmetries
(3.23) admitted by the LagrangianL4;10 of equation (3.16) correspond to the five Lie
symmetries of equation (3.26). We can also transform the parabolic equation (3.26)
into its canonical form with the help of MAPLE, i. e.

2i t C
1

.2q � t /2 qq C 2
iq.2q � t /2 � 1
.2q � t /3  q D 0 (3.28)

with q D y, t D y � x. A further trivial substitution, i. e.

 D
p
2q � t exp

�
� iq2

6
.4q � 3t/

�
	;

eliminates the first derivative  q in (3.28) and yields

2i	t C
1

.2q � t /2	qq �
�

2i
2q � t C

3

.2q � t /4
�
	 D 0: (3.29)

Another linear parabolic partial differential equation can be derived from the Lag-
rangian L8;9 and its admitted five Noether symmetries (3.25), i. e.

x4

y4
�xx C 2

x2

y2
�xy C �yy C

2

y5.x C y/

�
ix2 C 2ixy C iy2 C x4y C 2x3y2

�
�x

C 2

xy4.x C y/

��ix2 � 2ixy � iy2 C 2x2y3 C xy4
�
�y D 0 (3.30)

that admits the following Lie symmetries

�10 C
i C xy.y � x/

4x2y2
�@� ; �3�6 C �2; �7; �8; �3 �

i
xy
�@� ;

�@� ; �.x; y/@� ;

(3.31)

where �.x; y/ is any solution to (3.30). We can also transform the parabolic equation
(3.30) into its canonical form with the help of MAPLE, i. e.

2i t C
q6

.2C tq/2
 qq C

2q2

.2C tq/3

�
q3.3C tq/C i.2C tq/2

�
 q D 0 (3.32)

with q D x, t D x�y
xy

. A further trivial substitution, i. e.

 D
p
2C qt

q3=2
exp

�
i
6q3

.3tq C 4/

�
	;
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eliminates the first derivative  q in (3.32) and yields

2i	t C
q6

.2C qt/2
	qq C q

�
2i

2C qt
� 3q3

.2C qt/4

�
	 D 0: (3.33)

The journey is over.
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