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Abstract. The structure of higher order iterated tangent bundles is studied. Canonical affinors
and canonical vector fields on these bundles are geometrically described and differential operat-
ors are introduced. Furthermore, possibilities of a generalization of Lagrangian and Hamiltonian
formalisms are investigated and a procedure of the Hamiltonization is demonstrated.
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INTRODUCTION

Differential geometry provides a good framework for studying Lagrangian and
Hamiltonian formalisms of classical mechanics. The approach using semisprays in
the place of differential equations brings forth results effectively. Sprays were in-
troduced in the paper of Ambrose et al., [2], for homogeneous second-order differ-
ential equations. Grifone’s results, [6], make it possible to evaluate a unique Euler-
Lagrange vector field solving fundamental dynamic equations and to construct a con-
nection from a Lagrangian in such a way that the solutions of these equations and
the paths of the connection are the same. There are two natural generalizations of
the tangent bundle TM . The first one is represented by tangent bundles of higher
order T rM and corresponds with the classical higher-order calculus of variations.
Over the past years, results have been published of de León et al., [3], dealing with
semisprays and mutual relations on T rM and motivated by mechanics. The second
generalization is represented by higher order iterated tangent bundles. In this paper,
we start an investigation into the possibilities of an application of the above approach
in this case. First of all, it is necessary to build up a good grounding in a calculus
accompanied by a discussion of the structure of iterated tangent bundles. Algeb-
raic properties of investigated higher-order objects are described by Weil algebras
as well as by their simplicial structure. The starting points of this interesting view
are summarized in the book by White, [19]. The extensive applicability of affinors
and generalized Liouville’s vector field in differential geometry and mechanics is
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also known. We construct canonical affinors and vector fields on
�

T rM comparing
them with the classification of natural objects on Weil bundles due to Kolář in [7,10].
The techniques of finding natural objects are also studied in [9]. Next, we introduce
differential operators on a bundle in question. Our definition is a generalization of
so-called Tulczyjew’s differential operator though our concept is related more signi-
ficantly to a certain sequence of canonical vector fields. The correspondence between
such sequences and ways of differentiating through so-called holonomizing projec-
tions is one of the main results of this paper. The new results dealing with the formal-
isms of mechanics are contained in Section 3. They represent a generalization of the
Legendre–Ostrogradskii transformation for the case of iterated tangent bundles. By
this, we have introduced Langrangian and Hamiltonian formalism on iterated struc-
tures.

1. ITERATED TANGENT BUNDLES

1.1. Preliminaries and motivation

Let M , N be two smooth manifolds, dimM D m, dimN D n. As usually,
we denote by J ra .M;N / the set of all r–jets from M to N with the source a 2

M . J ra .M;N / is a smooth manifold. The manifold J 10 .R;M/ is just the tan-
gent bundle TM on M . So, we consider �1WTM ! M the tangent bundle of
a smooth m-dimensional manifold M . Further, the second iterated tangent bundle
T TM D T .TM/ obtained by the additional application of the functor T possesses
the following bundle structures: �2WT TM ! M , �11 WD �1TM WT .TM/ ! .TM/,

1�
1WD T�1M WT .TM/ ! T .M/. Given some local coordinates xi on M , let us de-

note xi ; yi the induced coordinates on TM and xi ; yi ; X i ; Y i the induced coordin-
ates on T TM . Then �2W .xi ; yi ; X i ; Y i / 7! .xi /, �11 W .x

i ; yi ; X i ; Y i / 7! .xi ; yi /,

1�
1W .xi ; yi ; X i ; Y i / 7! .xi ; X i /.
For the mechanical interpretation, we recall Tulczyjew’s example of the bundle

T TM presented in the monograph of Abraham and Marsden, [1]. The equilibrium
configuration of an elastic beam in a Euclidian space with no external forces is a
straight line l . Small deflections induced by external forces and torques can be rep-
resented by points of a plane M perpendicular to the line l . The distance measured
along l from an arbitrary reference point is denoted by s. We select a section of the
beam corresponding to an interval �s1; s2� and assume that the external forces and
bending torques are applied to the ends of the section. The configuration manifold of
the section of the beam is the product TM � TM with coordinates .xi ; yi ; Nxi ; Nyi /,
i D 1; 2. In the limit s2 ! s1, the configuration manifold is the bundle T TM with
coordinates .xi ; yi ; X i ; Y i /.
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If we generalize, we obtain the (r th) iterated tangent bundle
�

T rM D T : : : T� �� �
r times

M D J 10 .R; J
1
0 .: : : .J

1
0� �� �

r times

.R;M// : : : //

by the multiple application of J 10 .

1.2. Iterated tangent bundles and nonholonomic tangent bundles

The functor QJ r is defined recurrently as QJ 1 D J 1 and
QJ r.M;N / D J 1.M; QJ r�1.M;N //:

We obtain nonholonomic jets in the sense of Ehresmann, [5]. If we take the subset
of nonholonomic jets of QJ r.R;M/ with the source 0 2 R, we have a nonholonomic
tangent bundle of order r QT rM D QJ r0 .R;M/.

There is a subtle difference between the nonholonomic tangent bundle and the
iterated tangent bundle. We can see it through the following definition of the natural
equivalence (see Kolář, [8]) �r W QT r !

�

T r . We define it by induction. For r D 1,
�1 is the identity. Let tu denote the translation on R

k transforming 0 into u. If
�r�1WR! QJ r�1.R;M/ is a section, then

�r�1.u/WD �r�1.u/ � j
r�1
0 .tu/ 2 QT r�1M:

Hence, �r�1.�r�1.u// 2
�

T r�1M and we define

�r.j
1
0 �r/WD j 10 �r�1.�r�1.u//:

Thus, local coordinates of
�

T rM correspond to the local coordinates of QT rM . For
more details about local expressions, see [15].

1.3. Weil bundles

We only remark that
�

T r and QT are examples of Weil (i. e. product preserving)
functors. We refer to [9] for a good introduction to the theory of Weil bundles.

1.4. Simplicial structure

For specifications of many general results dealing with Weil bundles, we often
need a clear description of them in local coordinates. The use of simplices introduced
in White’s book, [19], solves this problem adequately just for the case of iterated
tangent bundles. We remark that it is also possible to use a more general concept of
so-called colored simplices for a wide class of Weil bundles, [13]. A .r � 1/-simplex
is the collection of all non-empty subsets of the set of vertices f1; : : : ; rg. An h-face

h of the simplex, 0 � h � r �1, is a subset with hC1 elements. We shall designate

h as an ordered r-tuple with ap 2 f0; 1g, p D 1; : : : ; r and h C 1 of the elements
equals to unity. This corresponds to the subset containing each s such that as D 1.
The zero tuple is excluded. We write the composition of two disjoint faces 
h, 
c
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as 
h C 
c . An orientation for a given simplex is an ordering of the vertices. The
standard orientation is given by the arrangement f1; : : : ; rg. Hence we regard such
simplices as (standardly) oriented. On the other hand, if we define the simplex as
the collection of non-empty subsets of an set of r indistinguishable elements, it is no
orientation for it and we call it non-oriented.

White’s original procedure of associating simplices with iterated tangent bundles
consists in constructing vector spaces of functions from simplices to Rm, a definition
of a left action of the r th differential group on the fiber product of the frame bundle
and this space, etc. It is very exhaustive, but it is a rather long formal process and
we do not go into details here. Roughly speaking, it is essential that the local co-
ordinates correspond to faces of simplices in the following way. Given some local
coordinates xi on M and t on R, the iterated differentiation of xi .t/ determines the
induced coordinates xi ; yi
h ; h D 0; : : : ; r � 1 on

�

T rM D T : : : T� �� �
r times

M . In the face


h, the elements represent the order of the differentiation. Thus, as D 1 means the
differentiation d

dt
at the sth iteration.

1.5. Projections

For every s, 0 � s � r , we denote by �sW
�

T sM ! M the canonical projection to
the base. Further, we denote (the notation was first used in [11] for s D 2):
�s
b
WD �s�

T bM
W
�

T s.
�

T bM/ !
�

T bM the projection with
�

T bM as the base space;

such projections are sometimes called direct projections, e. g. in [17]. Iterated tan-
gent bundles together with direct projections represent a so-called full tangential res-
olution for a manifold M .

a�
sWD

�

T a�sW
�

T a.
�

T sM/ !
�

T aM the induced projection originating by the pos-
terior application of the functor

�

T a; these regular projections are sometimes viewed
only as “projections” (the inverted commas e. g. in [17]) or lateral projections (e. g.
in [16]).

a�
s
b
WD

�

T a�s�
T bM

the general case containing both previous cases; if a or b equals

zero, we do not write them.
Projections

�

T pM !
�

T qM are of a type a�
s
b

or they are a composition of projec-
tions of such types. The composition a1

�
s1
b1
�a2�

s2
b2

is defined only for a1Cb1Cs1 D
a2 C b2 and properties of it are derived in [14]. We note that there are also non-
simplificable compositions of projections of the type a�

s
b

.

1.6. Structure of subbundles

For s D 1; : : : ; r and ! D 1; : : : ; s, let us denote by
!

T sM the subset of all
Z 2

�

T sM satisfying the !-condition

!�1�
1
s�!.Z/ D k�1�

s
s�k.Z/
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for all k, ! � k � s. Of course,
!

T sM has a bundle structure (moreover, it is a Weil
bundle, because it preserves products) and there are canonical inclusions

1

T sM � � � � �
s

T sM

and
s

T sM D
�

T sM . Indeed, if we take f WN ! M , then
�

T sf W
�

T sN !
�

T sM

and
�

T sf .
!

T sN/ D
!

T sM . In the jet formulation, we easily see, that
1

T rM coincides
with semi-holonomic tangent bundle of order r . Furthermore, we can even regard
1

T rM as the holonomic tangent bundle of order r because, in the special case of one-
dimensional velocities, the difference has only a formal character. For details, see

e. g. [14] and [15]. We shall write NT rM instead
1

T rM .

1.7. Simplices and Weil algebras associated with subbundles

It is known that h-faces, h D 1; : : : ; r � 1, i. e. the coordinates, indices of them
have the same number of units, identify in NT rM . Analogously, the !-condition
implies the identification of coordinates with the same number of units in first r �
! C 1 indices and with identical rests.

In other words, we have for
!

T rM , 1 < ! < r two subsimplices: the non-oriented
.r � !/-simplex and the oriented .! � 2/-simplex. Faces 
h induce faces N
v, 
w in
these subsimplices, vCwC 1 D h; we write 
h D . N
v; 
w/. As we show, we obtain

directly the Weil algebra
!

D
r of the Weil bundle

!

T rM . Evaluating the product of two
elements and matching the coefficients, we obtain generating equations for the ideal
i as X

N
v

X
�2P. N
v;2/

t . N
v1 ;
w1 /t . N
v2 ;
w2 / D
X
N
v

X
�2P. N
v;2/

t . N
v;
w/

for all decompositions of 
w to 
w1 , 
w2 (where P. N
v; 2/ is the set of all decompos-
itions of v-face to 2 faces N
v1 ; N
v2 , v1 C v2 C 1 D v, i. e., we sum as to all such
decompositions � 2 P. N
v; 2/) and

t . N
v1 ;
w1 /t . N
v2 ;
w2 / D 0

for non-disjoint faces 
w1 , 
w2 or for v1 C v2 > r � ! � 1. Then

!

D
rD R�t
0 ; : : : ; t
r�1 �=i:

1.8. Holonomizing projections

The sequence of functors
1
! T s � � � � �

s
! T s is respected, be it any choice of

projections
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as�1
�1
bs�1

W
�

T sM !
�

T s�1M; : : : ; a1�
1
b1
W
�

T 2M !
�

T 1M as we see in the following
diagram:

: : :

��
3

T 3M

a2
�1
b2

�� !!C
CC

CC
CC

C : : :

��
2

T 2M

a1
�1
b1

�� !!C
CC

CC
CC

C

2

T 3M

a2
�1
b2

�� !!C
CC

CC
CC

C : : :

��
1

T 1M

�1}}{{
{{
{{
{{

1

T 2M
a1
�1
b1

oo
1

T 3M
a1
�1
b1

oo : : :oo

M

We define the holonomizing projection �W
s

T sM !
1

T sM (with respect to the projec-
tions as�1

�1
bs�1

W
�

T sM !
�

T s�1M; : : : ; a1�
1
b1
W
�

T 2M !
�

T 1M ) by

a1
�1b1 � � � � � as�1

�1bs�1 � � D a1
�1b1 � � � � � as�1

�1bs�1

and it is expressed by the composition of slanting arrows in the diagram.

Altogether, we have s� holonomizing projections
s

T sM !
1

T sM .

1.8.1. Example

For example, we take s D 3 and the direct projections �12 , �11 . If we have local
coordinates on

�

T 3M as xi ; yi100 D yi ; yi010 D X i ; yi110 D Y i ; yi001 D � i ; yi101 D

�i ; yi011 D � i ; yi111 D H i , the coordinate version of the previous diagram is:

: : :

��
.xyXY ���H/

�1
2�� ))SSS

SSS
SSS

SS
: : :

��
.xyXY /

�1
1�� ))SSS

SSS
SSS

SS
.xyyY ���H/

�1
2�� ))RRR

RRR
RRR

RR
: : :

��
.xy/

�1wwppp
ppp

ppp
p

.xyyY /
�1
1

oo .xyyYyY YH/
�1
2

oo : : :oo

.x/
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2. AFFINORS, VECTOR FIELDS AND DIFFERENTIAL OPERATORS

2.1. Canonical affinors

Let O�s denote a family of projections a1�
1
b1
W
�

T rM !
�

T r�1M , . . . , as�
1
bs
W
�

T rM !
�

T r�1M , 1 � s � r , a1 C b1 D � � � D as C bs D r � 1.

Lemma 1. Every family O�s determines a unique projection
�

T rM !
�

T r�sM .

Proof. The proof is easy from the simplicial point of view. The projections
�

T rM !
�

T r�1M mean projections of .r � 1/-simplex onto .r � 2/-faces. If we have s projec-
tions

�

T rM !
�

T r�1M , s < r , an .r � s � 1/-face or a projection
�

T rM !
�

T r�sM

is determined. If s D r , we have the projection �r W
�

T rM !M . �

For every such a family O�s , we have the canonical monomorphism

iWV O�s
�

T rM �! T
�

T rM

and the canonical epimorphism

sWT
�

T rM �! T
�

T r�sM � �

T r�sM

�

T rM

of vector bundles over
�

T rM , where V O�s means the verticality with respect to all
projections belonging to the family O�s and the fibration

�

T rM !
�

T r�sM is through
the determined projection from the previous lemma. There is also the canonical iso-
morphism (in fact the vertical lift)

hWT
�

T r�sM � �

T r�sM

�

T rM �! V O�s QT rM:

Since, by an affinor A on a manifold Y , we mean a (1,1)–tensor field, which we can
identify with a linear morphism AWT Y ! T Y over idM , the canonical affinor is
defined as

AWD i � h � s:

For fixed r , s we obtain
�r
s

�
affinors in this way. Particularly, for s D 1 we obtain

r affinors. We shall call them the primary affinors. We obtain all generators of
natural affinors (except the identical affinor) in this way, where by a natural affinor
on a natural bundle F over m-dimensional manifolds we mean a system of (1,1)–
tensor fields AM WTFM ! TFM for every m-dimensional manifold M satisfying
TFf � AM D AN � TFf for every local diffeomorphism f WM ! N . All natural
affinors on iterated tangent bundles are described in [12], where it is proved:

Proposition 1. All natural affinors on
�

T rM constitute a 2r -parameter family lin-
early generated by the identical affinor A0 and by affinors A
c , where 
c represent
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all c-faces, 0 � c � r � 1, which work in this way:

dyi
c D dxi

dyi
cC
h D dyi
h ; h � r � c � 2:

Indeed, we have 2r canonical affinors on
�

T rM including the identical affinor. It
is essential that the classification of all natural objects makes assurance double sure
that our list of canonical affinors is complete. Evidently,

A
h � A
c D A
hC
c

for disjoint faces 
h, 
c , elsewhere the composition vanishes. It follows that it is
possible to generate all canonical affinors by the iterations of primary affinors.

2.2. Canonical vector fields

Now we construct canonical vector fields on
�

T rM . For a projection a�
1
b
W
�

T rM !
�

T r�1M , let � denote the canonical section of the vector bundle T
�

T r�1M � �

T r�1M

�

T rM . The canonical vector field is defined as

�WD i � h � �:

We shall call such vector fields the primary vector fields. For the construction of
subsequent canonical vector fields, we apply canonical affinors to primary vector
fields.

We remark that a natural vector field on a natural bundle F over m-dimensional
manifolds is a system of vector fields �M WFM ! TFM for every m-dimensional
manifold M satisfying TFf � �M D �N � TFf for every local diffeomorphism
f WM ! N . The natural vector fields on F can be interpreted as so-called absolute
natural operators C1TM ! C1TFM transforming vector fields on M into vector
fields on FM . For more details about natural objects see [9]. Let us add that we
have entailed the geometrical interpretation of generators of natural vector fields by
our construction. Now, we take the sequence �1; : : : �r of canonical vector fields with
these properties:

(i) �1 is a primary vector field;
(ii) �sC1 is obtained from �s by applying a primary affinor (for every s D 1; : : : ; r �

1).

Then we call this sequence the normal sequence of canonical vector fields. By some
combinatorics, we see that we have constructed r2r�1 canonical vector fields, which
we can order to r� normal sequences. We need the following assertion.

Proposition 2. Every normal sequence of canonical vector fields �1; : : : �r on
�

T rM determines a unique holonomizing projection �W
�

T rM ! NT rM .
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Proof. The normal sequence of canonical vector fields �1; : : : �r is given by a
primary vector field �1 and by primary affinors A2; : : : ; Ar , where �s D As.�s�1/

for s D 2; : : : ; r . Every such affinor has a form A
0 . We know that, for non-disjoint
faces 
h, 
c , the composition of affinors A
h � A
c vanishes. It follows that af-
finors A2; : : : ; Ar are different and are related to r � 1 different projections

�

T rM !
�

T r�1M . Further, the vector field �1 is also related to a projection
�

T rM !
�

T r�1M .
Of course, this projection is different from all those mentioned above: if not, the
application of such an affinor gives the zero vector field. So, we have r different pro-
jections

�

T rM !
�

T r�1M . Hence, we have families of projections O�s , s D 1; : : : ; r ,
which we construct gradually by adding projections related to A2; : : : ; Ar to the pro-
jection related to �1. In Lemma 1, it was proved that every family O�s determines a
unique projection

�

T rM !
�

T r�sM . We obtain projections
�

T rM !
�

T r�1M;
�

T rM !
�

T r�2M; : : : ;
�

T rM !
�

T 1M;
�

T rM !M

in this way. They determine uniquely projections
�

T rM !
�

T r�1M;
�

T r�1M !
�

T r�2M; : : : ;
�

T 2M !
�

T 1M;
�

T 1M !M:

We fix the choice of projections ar�1
�1
br�1

W
�

T rM !
�

T r�1M; : : : ; a1�
1
b1
W
�

T 2M !
�

T 1M (the projection
�

T 1M ! M is unique trivially). So, the holonomizing projec-
tion �W

�

T rM ! NT rM is determined, cf. Section 1.8. �

Remark 1. Conversely, every holonomizing projection determines a unique normal
sequence of canonical vector fields.

2.3. Differential operators

We introduce the following differential operator dT on
�

T rM related to a given
normal sequence of canonical vector fields �1; : : : �r . Let � be the holonomizing
projection with respect to bundle projections as�

1
bs
W
�

T sC1M !
�

T sM , s D 1; : : : ; r�

1 derived from �1; : : : �r (Proposition 2). Let  r W
r

T r M ! T .
�

T r�1M/, be the
mapping given by �.�r/ 7! j 10 �r�1. (See Sections 1.2 and 1.8 for the definitions of
�r and �.)  r can be viewed as a generalization of the map �r using by Tulczyjew
in [18]. Then, locally,

 r.x
i ; yiN
h/ D yiN
0

@

@xi
C yiN
1

X

0

@

@yi
0
C � � � C yiN
r

X

r�1

@

@yi
r�1
;

where N
0; : : : ; N
r�1 are the faces belonging to NT rM D �.
�

T rM/ and N
r is the face
with nothing but units. We use this map to construct the differential operator dT ,
which maps each function F on

�

T rM into a function dTF on
�

T rC1M , defined by

dTF.�rC1/ D dF.�r/. r � �.�rC1//:
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Since dT .FG/ D .dTF /G C F.dTG/, dT extends to p-forms on
�

T rM in such a
way that dT d D ddT . Further, d sT WD dT � dT� �� �

r times

.

Remark 2. As we have r� holonomizing projections related to r� normal sequences
of canonical vector fields, we have also r� operators dT , in other words r� ways of
differentiating. Nevertheless, a hard and fast rule of using them is respecting the
described correspondence. On purpose, we desist from more complicated denotation
with an indexing of dT purposely.

3. LEGENDRE–OSTROGRADSKII TRANSFORMATION

After preceding preparation, we can now formulate the foundations of formalisms
of mechanics on

�

T rM . Let us consider a Lagrangian LW
�

T rM ! R. For vector
fields �sW

�

T rM ! T
�

T rM , s D 1; : : : ; r from a normal sequence of canonical vector
fields, we have induced vector fields N�sW NT rM ! T NT rM such that N�s �� D T�� �s .
We define the energy as

EWD
X

�1;:::;�r

rX
sD1

.�1/s�1

.r � s/�s�
d s�1T . N�sL/ �L;

where
P

�1;:::;�r
denotes the sum over all normal sequences of vector fields.

Proposition 3. The energy is a function on V O�2r�2 : : : V O�r
�

T rM .

Proof. L is a function on
�

T rM and N�sL is also a function on
�

T rM for an arbitrary
s D 1; : : : ; r . We transfer to the bundle

�

T rC1M by the application of dT . Since we
have

dTF D yiN
0
@F

@xi
C yiN
1

X

0

@F

@yi
0
C � � � C yiN
rC1

X

r

@F

@yi
r

for a arbitrary function F W
�

T rM ! R, we have yiN
0 ; : : : ; y
i
N
r

as coordinates on
�

T rM

and, in addition, we have only new coordinates yiN
rC1 , which are on
�

T rC1M . So,
we are on a vertical bundle, more precisely on the bundle, which is vertical with
respect to all r projections

�

T rM !
�

T r�1M . This verticality we have denoted V O�r .
Analogously, we obtain the verticality V O�rC1 by the application of d2T D dT � dT ,

etc. Finally, for d r�1T we are really on the bundle V O�2r�2 : : : V O�r
�

T rM . �

For every normal sequence of canonical vector fields we define the partial mo-
menta } N
h

i , h D 0; : : : ; r � 1 as

}
N
h
i WD

r�h�1X
cD0

.�1/c

.r � h � c � 1/�.hC c C 1/�
d cT

@L

@yiN
hCc

:
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If we evaluate all partial momenta for all normal sequences of canonical vector fields,
it is evident that we obtain partial momenta, indices of them are the same faces. We
define the (total) momenta p
hi , h D 0; : : : ; r � 1 as the sum of the partial momenta
with equal indices, i. e. p N
hi WD

P
}
N
h
i .

Paper [19] studies a so-called bundle of boundaries Br�1M . In the simplicial
language, we obtain it by removing the maximal face from the associated .r � 1/-
simplex. Geometrically,

Br�1M WD QT r�2M ! �
r

�

T r�1M

where QT r�2M ! �
r

denotes the fiber (Whitney) product over
�

T r�2M with respect

to r different projections
�

T rM !
�

T r�1M . It is known that
�

T rM ! Br�1M is the
affine bundle. We discover easily:

Proposition 4. The partial momenta represent local coordinates on T � NT r�1M .
The momenta represent local coordinates on T �Br�1M .

Proof. We recall that the classical way of defining the cotangent bundle is the
union of vector spaces over the reals, which are composed of differentials at a point
of a given manifold. So, the first part of the assertion follows immediately from the
definition of the partial momenta because the indices of which are the faces belonging
to NT rM D �.

�

T rM/. We see the second part equally clearly; it is sufficient to recall
the geometrical definition of Br�1M . �

The natural generalization of the Legendre transformation to higher-order theor-
ies is called the Legendre–Ostrogradskii transformation and it is well-known for the
bundle T rM ; it enables the Hamiltonization of mechanical problems (see, e. g., [4]).
If we take the two preceding assertions into this consideration, we have immediately
the main theoretical result:

Corollary 1. If L is a regular Lagrangian, then the introduced energy and mo-
menta enable the generalized Legendre–Ostrogradskii transformation

eLegWV O�2r�2 : : : V O�r
�

T rM ! T �Br�1M;

which is a natural generalization of the Legendre–Ostrogradskii transformation
LegWT 2r�1M ! T �T r�1M .

For the completion, we state the following essential formula.

Proposition 5. The local coordinate expression of the energy is

E D

r�1X
hD0

p

h
i y

i

h

�L:
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Proof. The equalities

E D
X

�1;:::;�r

rX
sD1

.�1/s�1

.r � s/�s�
d s�1T . N�sL/ �L

D
X

�1;:::;�r

rX
sD1

.�1/s�1

.r � s/�s�
d s�1T

�r�sX
hD0

yiN
h
@L

@yiN
hCs�1

�
�L

D
X

�1;:::;�r

r�1X
hD0

r�h�1X
cD0

.�1/c

.r � c � 1/�.c C 1/�
d cT

�
yiN
h

@L

@yiN
hCc

�
�L

D
X

�1;:::;�r

r�1X
hD0

yiN
h

r�h�1X
cD0

.�1/c

.r � h � c � 1/�.hC c C 1/�
d cT

�
@L

@yiN
hCc

�
�L

D
X

�1;:::;�r

r�1X
hD0

yiN
h}
N
h
i �L D

r�1X
hD0

p

h
i y

i

h

�L

lead one immediately to the formula given above. �

Example. We take
�

T 3M and m D 1 with local coordinates x; y100 D y; y010 D

X; y110 D Y; y001 D �; y101 D �; y011 D �; y111 D H . Given is also the Lag-
rangian L D .2y CX/�CH 2.

We have 12 canonical vector fields in 6 normal sequences:

�1 D y
@

@y
C Y

@

@Y
C �

@

@�
CH

@

@H
; �2 D y

@

@�
C Y

@

@H
; �3 D y

@

@H
; (1)

�1 D y
@

@y
C Y

@

@Y
C �

@

@�
CH

@

@H
; �2 D y

@

@Y
C �

@

@H
; �3 D y

@

@H
; (2)

�1 D X
@

@X
C Y

@

@Y
C�

@

@�
CH

@

@H
; �2 D X

@

@�
C Y

@

@H
; �3 D X

@

@H
;

(3)

�1 D X
@

@X
C Y

@

@Y
C�

@

@�
CH

@

@H
; �2 D X

@

@Y
C�

@

@H
; �3 D X

@

@H
;

(4)

�1 D �
@

@�
C �

@

@�
C�

@

@�
CH

@

@H
; �2 D �

@

@�
C �

@

@H
; �3 D �

@

@H
; (5)

�1 D �
@

@�
C �

@

@�
C�

@

@�
CH

@

@H
; �2 D �

@

@�
C�

@

@H
; �3 D �

@

@H
: (6)
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Every sequence determines a holonomizing projection � and it provides us with
dT and with N�s , s D 1; 2; 3. We have

N�1 D y
@

@y
C Y

@

@Y
C Y

@

@Y
CH

@

@H
; N�2 D y

@

@Y
C Y

@

@H
; N�3 D y

@

@H
(1)

and we evaluate
3X

sD1

.�1/s�1

.3 � s/�s�
d s�1T . N�sL/ D y

�
�C

1

3
RH
�
C Y

�
�
1

3
PH
�
CH

�1
3
H
�
:

PH , RH are new coordinates on
�

T 4M ,
�

T 5M , respectively. The expressions in the
brackets are the partial momenta. Analogously, we obtain

y
�
�
1

2
�C

1

3
RH
�
C �

�
y C

1

2
X �

1

3
PH
�
CH

�1
3
H
�
; (2)

X
�1
2
�C

1

3
RH
�
C Y

�
�
1

3
PH
�
CH

�1
3
H
�
; (3)

X
�1
2
�C

1

3
RH
�
C�

�
�
1

3
PH
�
CH

�1
3
H
�
; (4)

�
�1
3
RH
�
C�

�
�
1

3
PH
�
CH

�1
3
H
�
; (5)

�
�
�
3

2
�C

1

3
RH
�
C �

�
y C

1

2
X �

1

3
PH
�
CH

�1
3
H
�
: (6)

We sum the corresponding partial momenta to obtain the energy as

E D y
�1
2
�C

2

3
RH
�
CX

�
�C

2

3
RH
�
C �

�
�
3

2
�C

2

3
RH
�
C Y

�
�
2

3
PH
�

C �
�
2y CX �

2

3
PH
�
C�

�
�
2

3
PH
�
CH.2H/ � .2y CX/� �H 2:

The expressions in the brackets are the momenta p100 D p; p010 D q; p001 D

r; p110 D P; p101 D Q;p011 D R;p111 D � . We evaluate the Hamiltonian
H D yp CXq C �r C YP C �QC�RC 1

4
�2 � .2y CX/�.

Finally, let us consider the standard holonomic case. If we choose a holonomizing
projection �, e. g. �W .xyXY ��� H/ 7! .xyyYyY YH/, we have the Lagrangian
�.L/ D 3yY CH 2. We can evaluate energy (2y RH � 2Y PH CH 2) and Hamiltonian
(yp C YP C 1

4
�2 � 3yY ) in the classical way and verify that they represent the

holonomized E andH , respectively.
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[9] I. Kolář, P. W. Michor, and J. Slovák, Natural Operations in Differential Geometry. Springer
Verlag, 1993.
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