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Abstract. We will consider the definition of the degree r of geodesic mobility of a Riemannian
manifold and will prove that the well-known results on the geodesic mobility are essentially local.
In the last section of our paper, we will prove that the geodesic mobility of an n-dimensional
closed, simply-connected Riemannian manifold with positive constant sectional curvature satis-
fies the identity r = (n + 1)(n + 2)/2,n > 2.
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1. INTRODUCTION

The solving of the problem of geodesic mapping of Riemannian manifolds was
started by Levi-Civita (see [5]) who studied the trajectory equivalence of dynamical
systems. The definition of the degree of geodesic mobility of a Riemannian manifold
was introduced by Sinyukov (see [12, p. 137], see [2,8], [11, p. 168]) as a numerical
characteristic of the cardinality of the geodesic class. The method for finding the
degree of geodesic mobility is based on an analysis of the integrability conditions
of fundamental equations of geodesic mappings (see [12, pp. 137-147]). Interesting
results of global geodesic mappings for special Riemannian manifolds are formulated
in papers [1,6-11].

In this paper, we will prove that the well-known results on the geodesic mobility
are essentially local and that the geodesic mobility r of an n-dimensional closed,
simply-connected Riemannian manifold with positive constant sectional curvature
satisfies the identity

r=(m+1)n+2)/2.

2. THE DEGREE OF GEODESIC MOBILITY

Suppose that (M, g) is an n-dimensional Riemannian manifold and V is the Levi-
Civita connection corresponding to the metric tensor g = (g;;),n > 2.
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A mapping of the Riemannian manifold (M, g) to a Riemannian manifold (M’, g’)
is called geodesic if it takes every geodesic of (M, g) to a geodesic of (M’, g’).

It is well known (see, for example [12, p. 137], [8], [11, p. 168]) that the Rieman-
nian manifold (M, g) admits a geodesic mapping if and only if there exists a covariant
regular symmetric tensor field @ = (a;;) on this manifold such that

Viaij = Aigjk +Ajgik 2.1

where A; = % Vi(tracega). If A; = 0, then the geodesic mapping is called trivial.

The equations (2.1) have been completed by Sinyukov to a system of differential
equations of Cauchy type in covariant derivatives (see [12, p. 134]; [8]; [11, p. 168]).
In particular, Sinyukov has proved that if the system of differential equations (2.1) is
a totally-integrable system of differential equations in a neighborhood of an arbitrary
point of Riemannian manifold (M, g), then (M, g) is a manifold of constant curvature
(see [12, p. 138]).

The degree of geodesic mobility r of an n-dimensional Riemannian manifold
(M, g) is the dimension of linear space of solutions of system of differential equations
(2.1). The notion of geodesic mobility of a Riemannian manifold was introduced by
Sinyukov (see [12, p. 137], [8]). From Sinyukov’s theorem, we conclude that the #-
dimensional Riemannian manifolds of constant curvature and only these manifolds
have the maximal degree r = (n + 1)(n 4+ 2)/2 forn > 2.

On the other hand, an arbitrary Riemannian manifold has mobility no smaller than
1, because system (2.1) has at least one solution of the form a = « g for an arbitrary
real constant ¢ on this manifold. Therefore, we can conclude that 1 < r < (n +
1)(n + 2)/2 for any n-dimensional Riemannian manifold (M, g).

The result formulated in Sinyukov’s theorem and other results on the geodesic
mobility (see [11, pp. 147-149]) are essentially local. For example, we consider an
n-dimensional hyperbolic space, which is a Riemannian manifold (M, g) of constant
negative curvature. In this case, we have r = (n+ 1)(n +2)/2. If we factorize hyper-
bolic space by a suitable discrete group of motions (see [13]), we obtain a compact
manifold of constant negative curvature.

It is well known (see [7]) that on a compact Riemannian manifold with non pos-
itive constant curvature, any tensor field a = (a;;) satisfying the equations (2.1) has
the trivial form a = const- g. Therefore, this manifold does not admit a “globally
defined” non-trivial geodesic mapping, i.e. r = 1. Finally, we can conclude that the
number r = (n + 1)(n + 2)/2 is a local numerical characteristic of the cardinality
of the geodesic class of a hyperbolic space. On the other hand, if we consider the
number r as a global numerical characteristic of the cardinality of the geodesic class
of a compact hyperbolic space, then r = 1.

3. THE MAIN THEOREM

In this section, we shall prove the main proposition of our paper.
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Theorem. Let (M, g) be an n-dimensional closed and simply-connected Rieman-
nian manifold with positive constant sectional curvature and r be the degree of
geodesic mobility as a global numerical characteristic of the cardinality of the geode-
sic class of (M, g). Then

r=(m+1(n+2)/2.

Proof. Let R**1 be an (n+1)-dimensional Euclidean space endowed with the in-
ner product (-,-). If {x%} for e, B,y = 1,...,n,n + 1 are Cartesian orthogonal
coordinates in R?*! then

gn - (X1)2 NS (xn)Z + (xn+1)2 =1
is a unit sphere in R”*1. If the sphere $” is represented locally by x* = f%(u¥) in
terms of its local coordinates {u*} , then putting S = 0xx® for 0 = 3/ duk, we

can define the second fundamental form of the sphere $” by the Gauss equations (see

[14])
G =VifE =0 - g2k g £ r)

where V; is the van der Waerden—Bortolotti covariant differentiation along $”, F]’f

are the Christoffel symbols of the metric tensor g;; = f* fjﬁ gap On 5", Fﬂ‘"y are
the Christoffel symbols of the metric tensor g on a (n+1)-dimensional Euclidean
space. In a Cartesian orthogonal system, gog = 8opg and I é"y = 0, where 44 is
Kronecker’s delta.

It is well known that $” is a totally umbilical submanifold and hence fl‘]" = gi;jN%,

where N* = —x® are the components of the unit normal vector N € C®(T'$")~+.

If A = (Agp) is a constant symmetric tensor, then we can define a tensor field
a = (a;;) on $" by the following identities a;; = Aqp /;* ij . Applying Vj to these
identities, we obtain

Viaij = (Y Aap) 21 + Aap (12 ISP + £ DD
= Aap N fF gitc + NP £2 g0

If we suppose that A; = A gN* f B , then we can rewrite the last equations in the

following form

Viaij = Aigjk + Aj&ik
which shows that $” admits a globally defined geodesic mapping because a = (a;;)
is a tensor field globally defined on $”.

The number of independent components of the constant symmetric tensor A =
(Agp) is equal to (n + 1)(n + 2)/2. Therefore, we can determine a sharp upper
bound on the degree of geodesic mobility r as a global numerical characteristic of
the cardinality of the geodesic class for a unit sphere $”. In addition, we recall that
Hopf has shown (see [3, 4]) that a closed, simply-connected Riemannian manifold
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with constant sectional curvature 1 is necessarily isometric to the unit sphere $”,
equipped with its standard metric. This finishes the proof. U
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