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Abstract. In this paper, we consider a conformal mapping between two nearly quasi-Einstein
manifolds Vn and NVn. We find some properties of this transformation from Vn to NVn and some
theorems are proved.

2000 Mathematics Subject Classification: 53B20; 53C25

Keywords: Nearly quasi-Einstein manifold, conformal mapping, conharmonic mapping, �.Ric/-
vector field

1. INTRODUCTION

A non-flat n-dimensional Riemannian or a semi-Riemannian manifold .M; g/,
.n > 2/ is said to be an Einstein manifold if the condition

S.X; Y / D
r

n
g.X; Y / (1.1)

holds onM , where S and r denote the Ricci tensor and the scalar curvature of .M; g/,
respectively. Einstein manifolds play an important role in Riemannian Geometry, as
well as in general theory of relativity. For this reason, these manifolds have been
studied by many authors.

A non-flat n-dimensional Riemannian manifold .M; g/, .n > 2/ is defined to be a
quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the following condition

S.X; Y / D ag.X; Y /C bA.X/A.Y / (1.2)

where a; b 2 R and A is a non-zero 1-form such that g.X;U / D A.X/ for all vector
fields X on M , [5]. Then A is called the associated 1-form and U is called the
generator of the manifold. Also M. C. Chaki and R. K. Maity [2] studied the quasi-
Einstein manifolds by considering a and b as scalars such that b ¤ 0 and U as a unit
vector field.

A non-flat n-dimensional Riemannian manifold .M; g/, .n > 2/ is called a nearly
quasi-Einstein manifold if its Ricci tensor S of type (0,2) is not identically zero and
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satisfies the following condition

S.X; Y / D ag.X; Y /C bE.X; Y / (1.3)

where a and b are non-zero scalars and E is a non-zero symmetric tensor of type
(0,2), [4]. Then E is called the associated tensor and a and b are called the associ-
ated scalars of M . An n-dimensional nearly quasi-Einstein manifold is denoted by
N.QE/n. An example of N.QE/4 has been given in [4].

Putting X D Y D ei in (1.3), we get

r D naC b QE: (1.4)

Here r is the scalar curvature of N.QE/n and QE D E.ei ; ei / where feig, i D

1; 2; ::; n is an orthonormal basis of the tangent space at each point of the manifold.
In this paper, we investigate a conformal mapping between two nearly quasi-

Einstein manifolds.

2. CONFORMAL MAPPINGS OF NEARLY QUASI-EINSTEIN MANIFOLDS

In this section, we suppose that Vn and NVn, (n > 2) are two nearly quasi-Einstein
manifolds with metrics g and Ng, respectively.

Definition 1. A conformal mapping is a diffeomorphism of Vn onto NVn such that

Ng D e2�g (2.1)

where � is a function on Vn. If � is constant, then it is called a homothetic mapping.
In local coordinates, (2.1) is written as

Ngij .x/ D e2�.x/gij .x/; Ngij D e�2�gij : (2.2)

Besides those equations, we have the Christoffel symbols, the components of the
curvature tensor, the Ricci tensor, and the scalar curvature, respectively

N� h
ij D � h

ij C �hi �j C �hj �i � �
hgij ; (2.3)

NRh
ijk D Rh

ijk C �hk�ij � �
h
j �ik C gh�.��kgij � ��jgik/

C�1�.�
h
kgij � �

h
j gik/; (2.4)

NSij D Sij C .n � 2/�ij C .�2� C .n � 2/�1�/gij ; (2.5)

Nr D e�2� .r C 2.n � 1/�2� C .n � 1/.n � 2/�1�/; (2.6)

where Sij D R�
ij�, r D S��g

�� , �i D @�
@xi

D ri�; �
h D ��g

�h and

�ij D rjri� � ri�rj�; (2.7)

�1� and �2� are the first and the second Beltrami’s symbols which are determined
by

�1� D g��r��r��; �2� D g��r�r�� (2.8)
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where r is the covariant derivative according to the Riemannian connection in Vn.
We denote the objects of space conformally corresponding to Vn by a bar, i. e., NVn. If
NVn is a N.QE/n, then we have, from (1.3), (2.2), and (2.5),

Nb NEij D bEij C .n � 2/�ij C .�2� C .n � 2/�1� C a � Nae2� /gij : (2.9)

Definition 2. A vector field � in a Riemannian manifoldM is called torse-forming
if it satisfies the condition rX� D �X C �.X/� where X 2 TM , �.X/ is a linear
form and � is a function, [12]. In the local transcription, this reads

ri�
h D � �hi C �h�i (2.10)

where �h and �i are the components of � and �, and �hi is the Kronecker symbol. A
torse-forming vector field � is called recurrent if � D 0; concircular if the form �i is
a gradient covector, i. e., there is a function  .x/ such that � D d .x/; convergent,
if it is concircular and � D const � exp. /:

Therefore, recurrent vector fields are characterized by the following equation

rX� D �.X/�: (2.11)

Also, from the Definition 2., for a concircular vector field �, we get

.rY �/X D �g.X; Y / (2.12)

for all X; Y 2 TM: A Riemannian space with a concircular vector field is called
equidistant, [10, 11].

Conformal mappings of Riemannian spaces (or semi-Riemannian spaces) have
been studied by many authors, [1,3,6,9]. In this section, we investigate the conformal
mappings of nearly quasi-Einstein manifolds preserving the associated tensor E.

Theorem 1. If Vn admits a conformal mapping preserving the associated tensor
E and the associated scalar b, then Vn is an equidistant manifold.

Proof. Suppose that Vn admits a conformal mapping preserving the associated
tensor E and the associated scalar b. Using (2.9), we obtain

.n � 2/�ij C .� C a � Nae2� /gij D 0 (2.13)

where � D �2� C .n � 2/�1� . In this case, we get

�ij D �gij (2.14)

where � D 1
n�2

. Nae2� � a � �/ is a function. Putting � D � exp.��/ and using
(2.7), (2.12) and (2.14), we get that Vn is an equidistant manifold. Hence, the proof
is complete. �
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Theorem 2. An equidistant manifold Vn admits a conformal mapping preserving
the associated tensorE if the associated scalars Na and Nb satisfy both of the conditions

Nb D b;

Na D e�2� .aC /;

where  D
�
n�1
n

�
�2 �2� C .n � 2/�1��.

Proof. Suppose that Vn is an equidistant manifold. Then, there exists a concircular
vector field � satisfying the condition (2.12), that is, we have

rj �i D �gij (2.15)

where �i � ri�: Putting � D � ln.��.x// and using the condition (2.5), we obtain

NSij D Sij C gij (2.16)

where  D
�
n�1
n

�
�2 �2�C.n�2/�1� ]. Considering (1.3) in (2.16) and using (2.2),

we get
Nae2�gij C Nb NEij D .aC /gij C bEij : (2.17)

Taking Na D e�2� .aC/ and Nb D b, (2.17) implies that NEij D Eij : This completes
the proof. �

The conharmonic transformation is a conformal transformation preserving the har-
monicity of a certain function. If the conformal mapping is also conharmonic, then
we have, [8]

ri�
i C

1

2
.n � 2/� i�i D 0: (2.18)

Theorem 3. Let Vn be a conformal mapping with preservation of the associated
tensor E and the associated scalar b. A necessary and sufficient condition for this
conformal mapping to be conharmonic is that the associated scalar Na be transformed
by Na D e�2�a.

Proof. Suppose that Vn admits a conformal mapping preserving the associated
tensor E and the associated scalar b. Using (2.7), (2.8) and (2.9), we obtain

.n � 2/rjri� � .n � 2/�i�j C �rh�
h C .n � 2/�h�h C a � Nae2� �gij D 0:

(2.19)

Multiplying (2.19) by gij , we get

rh�
h C

1

2
.n � 2/�h�h C

n

2.n � 1/
.a � Nae2� / D 0: (2.20)

If this mapping is conharmonic, using (2.18) in (2.20), we obtain Na D e�2�a: The
converse is also true. This completes the proof. �
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Definition 3. A '.Ric/-vector field is a vector field on an n-dimensional Rieman-
nian manifold .M; g/ and Levi-Civita connection r, which satisfies the condition

r' D �Ric (2.21)

where � is a constant and Ric is the Ricci tensor, [7]. When .M; g/ is an Einstein
space, the vector field ' is concircular. Moreover, when � D 0, the vector field ' is
covariantly constant. In local coordinates, (2.21) can be written as

rj'i D �Sij (2.22)

where Sij denote the components of the Ricci tensor and 'i D '�gi�.

Suppose that Vn admits a �.Ric/-vector field. Then, we have

rj�i D �Sij (2.23)

where � is a constant. Now, we can state the following theorem.

Theorem 4. Let us consider the conformal mapping (2.1) of a nearly quasi-
Einstein manifold Vn with constant associated scalars being also conharmonic with
the �.Ric/-vector field. A necessary and sufficient condition for the length of � to be
constant is that the trace of the associated tensor E of Vn be constant.

Proof. We consider that the conformal mapping (2.1) of a nearly quasi-Einstein
manifold Vn admitting a �.Ric/-vector field is also conharmonic. In this case, com-
paring (2.18) and (2.23), we get

r D
.2 � n/

2�
� i�i (2.24)

where r is the scalar curvature of Vn. If Vn is of the constant associated scalars, from
(1.4) and (2.24), we find

QE D
1

b

�
.2 � n/

2�
� i�i � na

�
:

If the length of � is constant, then � i�i D c, where c is a constant. Thus, we can
see that QE is constant. The converse is also true. Hence, the proof is complete. �

3. AN EXAMPLE OF A NEARLY QUASI-EINSTEIN MANIFOLD

In this section, we consider a Riemannian metric g on R4 by the formula

ds2 D gijdx
idxj D .x4/

4

3 �.dx1/2 C .dx2/2 C .dx3/2�C .dx4/2 (3.1)

where i; j D 1; 2; 3; 4 and x1; x2; x3; x4 are the standard coordinates of R4. Then
the only non-vanishing components of the Christoffel symbols, the curvature tensor,
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the Ricci tensor and the scalar curvature are

� 1
14 D � 2

24 D � 3
34 D

2

3x4
; � 4

11 D � 4
22 D � 4

33 D �
2

3
.x4/

1

3 ;

R1441 D R2442 D R3443 D �
2

9.x4/2=3
;

R1221 D R1331 D R2332 D
4

9
.x4/2=3;

S11 D S22 D S33 D
2

3.x4/2=3
; S44 D �

2

3.x4/2
; r D

4

3.x4/2
:

(3.2)

Therefore R4 with the considered metric is a Riemannian manifold .M4; g/ of non-
vanishing scalar curvature. Let us now consider the associated scalars a, b, and the
associated tensor E as follows:

a D �
2

3.x4/2
; b D �

1

9x4
(3.3)

and

Eij .x/ D

(
�12.x4/1=3 for i D j D 1; 2; 3

0 for i D j D 4 and i ¤ j
(3.4)

at any point x 2 M . To verify the relation (1.3), it is sufficient to check the relations
Si i D agi i CbEi i , i D 1; 2; 3; 4 since for the other cases, (1.3) holds trivially. From
(3.2), (3.3), and (3.4), we obtain

R:H:S of S11 D ag11 C bE11 D
2

3.x4/2=3
D S11:

Similarly, S22, S33, and S44 are also satisfied. Hence, .M4; g/ endowed with the
metric (3.1) is a N.QE/4 with the conditions (3.3) and (3.4).

Let .M4; g/ endowed with the metric (3.1) be a conformal mapping with preser-
vation of the associated tensor E and the associated scalar b. Also, we choose � and
Na as follows:

� D ln.x1x2x3/; Na D �
2

3.x1x2x3x4/2
(3.5)

where x1; x2; x3 > 0. Now, we show that these choices satisfy Theorem 3.
From (3.5), we get ri� D @�

@xi
D �i D

1
xi

for i D 1; 2; 3 and �4 D 0. Moreover,
the only non-vanishing covariant derivatives of �i (i D 1; 2; 3; 4) are

r1�4 D r4�1 D �
2

3x1x4
; (3.6)

r2�4 D r4�2 D �
2

3x2x4
; (3.7)

r3�4 D r4�3 D �
2

3x3x4
; (3.8)
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and

r1�1 D �
1

.x1/2
; r2�2 D �

1

.x2/2
; r3�3 D �

1

.x3/2
: (3.9)

Using (3.6)–(3.9), we find

g11r1�1 C g11�1�1 D 0 (3.10)

and similarly the other cases hold. Therefore, the condition (2.18) is satisfied.
Moreover, from (3.3) and (3.5), we obtain

Nae2� D �
2

3.x1x2x3x4/2
� e2 ln.x1x2x3/ D �

2

3.x4/2
D a: (3.11)

From (3.10) and (3.11), we see that the equation (2.20) is satisfied. Hence, The-
orem 3 holds for .M4; g/ endowed with the metric (3.1) and the conditions (3.3) and
(3.5).

Now, we also show that .M4; g/ endowed with the metric (3.1) is not a quasi-
Einstein manifold.

If possible, we have Sij D agij C bAiAj ; where i; j D 1; 2; 3; 4: For i D j , we
get from this relation

Si i D agi i C bAiAi ; (3.12)
for all i D 1; 2; 3; 4: Since Si i ¤ 0 and gi i ¤ 0, we can choose a ¤ 0, b ¤ 0 and
Ai ¤ 0 for all i D 1; 2; 3; 4 such that (3.12) holds. However, for these values of a, b
and Ai and for i ¤ j , the equation Sij D agij C bAiAj cannot be satisfied because
for i ¤ j , Sij D gij D 0 but Ai ¤ 0.

Therefore, .M4; g/ is not a quasi-Einstein manifold. Thus, a N.QE/n is not ne-
cessarily a quasi-Einstein manifold.
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Füsun Özen Zengin
Istanbul Technical University, Faculty of Science and Letters, Department of Mathematics, Maslak,

34469 Istanbul, Turkey
E-mail address: fozen@itu.edu.tr

Bahar Kirik
Istanbul Technical University, Faculty of Science and Letters, Department of Mathematics, Maslak,

34469 Istanbul, Turkey
E-mail address: bkirik@itu.edu.tr


