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Abstract. Let us consider a non-self mapping 7 : A — B, where A and B are two nonempty
subsets of a metric space (X,d). The aim of this paper is to solve the nonlinear programming
problem that consists in minimizing the real valued function x —> d(x, T x), where T belongs
to a new class of non-self mappings. In especial case, existence and uniqueness of fixed point for
Kannan type self mappings are also obtained.
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1. INTRODUCTION

Let A and B be two nonempty subsets of a metric space X. A non-self mapping
T : A — B is said to be a contraction if there exists a constant r € [0, 1), such that
d(Tx,Ty) <rd(x,y), for all x,y € A. The well-known Banach contraction prin-
ciple states that if A4 is a complete subset of X and T is a contraction self-mapping,
then the fixed point equation 7'x = x has exactly one solution.

The Banach contraction principle is a very important tools in nonlinear analysis
and there are many extensions of this principle; see, e.g., [13] and the references
therein.

Let (X,d) be a metric space. A self-mapping 7 : X — X is called Kannan map-
ping if there exists « € [0, %) such that

d(Tx.Ty) <ald(x.Tx)+d(y.Ty)].

for all x,y € X. We know that if X is complete metric space, every Kannan self-
mapping defined on X has a unique fixed point ([12]). Note that, the notion of
contraction mappings and Kannan mappings are independent. That is, there exists
a contraction mapping, which is not Kannan and a Kannan mapping, which is not a
contraction. Therefore, we cannot compare these two class of mappings directly.

Recently, Kikkawa and Suzuki in [14], established the following fixed point the-
orem, which is an extension of Kannan’s fixed point theorem.
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Theorem 1 ([14]). Define a non-increasing function ¢ from [0, 1) into (%, 1] by

1 if 0<r<-L,
§0(r) = 1 . 1 V2

¥r lf \—5 <r< 1.
Let (X,d) be a complete metric space and let T be a self-mapping on X. Let o €
[0, %) and put r = 12, €[0,1). Assume that

o(r)d(x,Tx)<d(x,y) implies d(Tx,Ty)<a[d(x,Tx)+d(y,Ty)],

forall x,y € X. Then T has a unique fixed point 7 and lim,, T" x = z holds for every
x e X.

It is interesting to note that the function ¢(r) defined in Theorem 1 is the best
constant for every r (see Theorem 2.4 of [14]).

2. PRELIMINARIES

Consider the non-self mapping 7' : A — X, in which A4 is a nonempty subset of a
metric space (X, d). Clearly, the fixed point equation 7'x = x may not have solution.
Hence, it is contemplated to find an approximate x € A such that the error d (x, T x) is
minimum. Indeed, best approximation theory has been derived from this idea. Here,
we state the following well-known best approximation theorem due to Kay Fan.

Theorem 2 ([8]). Let A be a nonempty compact convex subset of a normed linear
space X and T : A — X be a continuous mapping. Then there exists x € A such that
lx—Tx|| =dist(Tx,A) :=inf{||Tx—a| :a € A}.

A point x € A in the above theorem is called a best approximant point of T in A.
The notion of best proximity point for non-self mappings is introduced in a similar
fashion:

Definition 1. Let A and B be nonempty subsets of a metric space (X,d) and
T : A — B be a non-self mapping. A point p € A is called a best proximity point of
T if

d(p,Tp) =dist(A,B) :={d(x,y):(x,y) € AX B}.

In fact, best proximity point theorems have been studied to find necessary condi-

tions such that the minimization problem

mind(x, T x), (2.1)
xeA

has at least one solution.

Best proximity point theory is an interesting topic in optimization theory which
recently attracted the attention of many authors (see for instance [ -9, 16]).

Let A and B be two nonempty subsets of a metric space (X,d). Let us fix the
following notations which will be needed throughout this article:

Ag:={xe€A:d(x,y)=dist(A,B) forsome Yy e B},
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Bo:={yeB:d(x,y)=dist(A,B) forsome xe€ A}.
It is easy to see that if (A, B) is a nonempty and weakly compact pair of subsets of a
Banach space X, then (Ag, Bo) is also nonempty pair X .
The notion of proximal contractions was defined by Sadiq Basha, as follows.

Definition 2 ([15]). Let (A, B) be a pair of nonempty subsets of a metric space
(X,d). A mapping T : A — B is said to be a proximal contraction if there exists a
non-negative real number o < 1 such that, for all uy,u2,x1,x2 € 4,

du1,Txy1)=dist(A,B)

= d(uq, < ad(x1,x7).
d(uyz, Txp) =dist(A,B) (u1,u2) < ad(x1,x2)

Definition 3 ([15]). Let A, B be two nonempty subsets of a metric space (X,d).
A is said to be approximatively compact with respect to B if every sequence {x,} of
A satisfying the condition that d(y, x,) — D(y, A) for some y € B has a convergent
subsequence.

Next theorem is the main result of [15].

Theorem 3. Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X,d) such that Ao is nonempty and B is approximatively compact with re-
spect to A. Assume that T : A — B is a proximal contraction such that T (Ag) C By.
Then T has a unique best proximity point.

‘We mention that in [10], the current author extended Theorem 3 and established
a best proximity point theorem under weaker conditions with respect to Theorem 3,
due to Sadiq Basha (see Theorem 2.1 and Corollary 2.1 of [10]).

In this article, we introduce a new class of mappings called weak proximal Kannan
non-self mappings and obtain a similar result of Theorem 1 for this new class of non-
self mappings.

3. MAIN RESULTS

To establish our main results, we introduce the following new class of non-self
mappings.
Definition 4. Define a strictly decreasing function 6 from [0, %) onto (%, 1] by
O(r)y=1-r.

Let (A, B) be a nonempty pair of subsets of a metric space (X,d). Let o € [0, %)
and put r := ;2. Then 7' : A — B is said to be a weak proximal Kannan non-self
mapping if for all u,v,x,y € A with

du,Tx)=dist(A,B) & d(v,Ty)=dist(A,B),
we have
O(r)d*(x,Tx) <d(x,y) implies d(u,v) <a[d*(x,Tx)+d*(y,Ty)]. (@3.1)
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The notion of proximal Kannan non-self mapping can be defined as below.

Definition 5. Let (4, B) be a nonempty pair of subsets of a metric space (X,d).
Then 7' : A — B is said to be a proximal Kannan non-self mapping if there exists
a €0, %) such that for all u,v,x,y € A with

du,Tx)=dist(A,B) & d(v,Ty)=dist(A,B),
we have
d(u,v) <ald*(x,Tx)+d*(y,Ty)].

It is clear that the class of weak proximal Kannan non-self mappings contains
the class of proximal Kannan non-self mappings as a subclass. Also, the class of
proximal Kannan non-self mappings contains the class of Kannan non-self mappings.

We now state our main result of this article.

Theorem 4. Let (A, B) be a nonempty pair of subsets of a complete metric space
(X,d) such that Ao is nonempty and closed. Assume that T : A — B is a weak
proximal Kannan non-self mapping such that T(Ao) C Bo. Then there exists a unique
point x* € A such that d(x*,Tx*) = dist(A, B). Moreover, if {x,,} is a sequence in
A such that d(xp+1,Txy) = dist(A, B), then x, — x*.

Proof. Assume xg € Ag. Since T (Ag) € By, there exists x1 € Ao such that
d(x1,Txo) =dist(A, B). Again, since Tx; € By, there exists x, € Ao such that
d(x2,Tx1) =dist(A, B). Continuing this process, we can find a sequence {x,} in
Ag such that

d(xp+1,.Txy) =dist(A,B), forall n € NU{0}. (3.2)
Thus,
d(x0,Tx0) <d(x0,x1) +d(x1,Tx0) = d(x0,x1)+dist(A,B),
and so,

d(x1,Tx¢) =dist(A, B),

0(r)d*(xo,Txo) < d*(xo,Tx0) < d(xo, &
(r)d ™ (x0,Tx0) = d™(x0,Tx0) <d(xp,x1) d(x2. Txy) = dist(A. B).

Since T is a weak proximal Kannan non-self mapping, we conclude that
d(x1,x2) <ald*(xo,Txo) +d*(x1,Tx1)]
< a[d(xo.x1) +d*(x1.Tx0) +d(x1,x2) + d* (x2.Tx1)]
= afd(x0,x1) +d(x1,x2)].
Therefore,

d(x1,x2) < ILd(xo,xl) — rd(xo,x1).
—
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Similarly, we can see that

O(r)d*(x1,Tx1) <d(x1,x2) & d(x2,Tx1) = dl:St(A’B)’
d(x3,Txy)=dist(A,B).
This implies that
d(x2,x3) < ald*(x1,Tx1) +d" (x2,Tx2)]
<ald(x1,x2) +d*(x2,Tx1) +d(x2,x3) +d*(x3,Tx2)]
= a[d(x1,x2) +d(x2,x3)].
So,
d(x2.x3) < %d(xl,xz) = rd(x1.x2) < r2d(x.x1).
Hence, by induction, we conclude that
d(xXn,Xn4+1) < r"d(xo,x1),
which implies that
221d(xXn, Xpt1) < X222 r"d(x0,x1) < 00.

That is, {x,} is a Cauchy sequence in Ag. Since Ag is closed and X is complete
metric space, we deduce that {x,} is a convergent sequence. Let x* € Ag be such
that x, — x*. We claim that x* is a unique best proximity point of 7. At first, we
prove that

d*(x*,Tx) <ad(x*,x), Vxe€ Ay with x # x*. (3.3)
Let x € Ag and x # x*. Since T'(Ag) C By, there exists y € Ag such that d(y,Tx) =
dist(A, B). By the fact that x,, — x*, there exists N1 € N such that

1
d(x,,x*) < gd(x,x*), Vn > Nj.
We now have
O(r)d™* (xn,Txp) <d*(xn.Txp) =d(xy, Txy)—dist(A,B)
<dxp,x*)+d(x*, xp41) +d(xnt+1,Txp)—dist(A, B)

2
= d(xn,x7) +d(x7 Xpg1) = 3d(x,x7)

1
=d(x,x*)— gd(x,x*) <dx,x*)—d(xp,x¥)
<d(xp,Xx).
Thus,

d(xp+1,Txy) =dist(A,B),

6™ Con. Toxn) Sd () & 3 0 dist(A, B).
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Again, since T is weak proximal Kannan non-self mapping we conclude that
d(xn41,y) Sefd™(xp, Txn) +d*(x,Tx)] < a[d(xn, Xn41) +d* (x, Tx)].
Thereby,
d(x*,Tx) = lim d(x,,Tx)
n—>oo
< lim [d(xp. Xn+1) +d(Xp+1.) +d(y,Tx)]
n—o0
< lim [(14+a)d(xp,Xp+1) +ad*(x,Tx)+d(y,Tx)]
n—->oo
< lim [(1 4+ a)r"d(x0,x1) +ad™(x,Tx)+dist(A, B)]
n—>oo
=ad*(x,Tx)+dist(A,B).

A

Then,
d*(x*,Tx) <ad*(x,Tx), Vxe€Ag, with x #x*.
That is, (3.3) holds. It now follows from (3.3) that
d*(xp, Txp) <d(xn,x*)+d*(x*,Txy,)
<d(xp,x*)+ad*(xp, Txp).
Thus,

O0(rYd™* (xn, Txy) = (1=r)d*(xp, Txp) < (1 —)d™*(xn, Txp) <d(xn,x%). (3.4)
On the other hand, since x* € Ag and T'(A4g) C By, there exists y* € By such that
d(y*,Tx*)=dist(A, B). Therefore,

d ,Txp)=dist(A,B),
01 (x Tn) < d g ) & L Do) = A1t )
d(y*, Tx*)=dist(A, B),
which implies that
d(xn+1,y") <a[d*(xn, Txy) +d*(x*, Tx™)]

<ald(xn. Xp+1) +d* (xp11,Txp) +d*(x*, Tx™)].

If in above relation n — 0o, we obtain
d(y*,x*) <ad*(x*,Tx")
=ald(x®,y*) +d*(y*, Tx")] = ad(x™, y").

This deduces that d(x*, y*) = 0 or x* = y*. Hence x* is a best proximity point of
the mapping 7. The uniqueness of best proximity point follows from the condition
that 7' is weak proximal Kannan non-self mapping. That is, suppose that x}',xJ are
two distinct points in A such that d(x,Tx) = dist(A, B), fori =1,2. So,
d(x7,Tx])=dist(A,B),

0(r)d*(x}.Tx}) <d(x{.x3) &
(rd™(x7.Tx)) <d(x7,x5) d(x3,Tx})=dist(A,B),
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Then,
0<d(x}.x3) <ald*(xF.Tx})+d*(x3,.Tx3)] =0,

which is a contradiction. Hence, the best proximity point is unique.

The following corollaries are obtained from Theorem 4.

Corollary 1. Let (A, B) be a nonempty pair of subsets of a complete metric space
(X,d) such that Ay is nonempty and closed. Assume that T : A — B is a proximal
Kannan non-self mapping such that T (Ag) C Bo. Then there exists a unique point
x* € A such that d(x*,Tx*) = dist(A, B). Moreover, if {x,} is a sequence in A
such that d(xp+1,Txn) = dist(A, B) then, x, — x*.

Corollary 2. Let (A, B) be a nonempty pair of a complete metric space (X,d)
such that Ao is nonempty and closed. Assume that T : A — B is a Kannan non-
self mapping such that T(Ag) € Bo. Then there exists a unique point x* € A such
that d(x*,Tx*) = dist(A, B). Moreover, if {x,} is a sequence in A such that
d(xp41,Txp) =dist(A, B) then, x,, — x*.

Corollary 3. Let A be a nonempty and closed subset of a complete metric space
(X,d). Assume that T : A — A is a self mapping such that

O(r)yd(x,Tx) <d(x,y) implies d(Tx,Ty) <a[d(x,Tx)+d(y,Ty)],

for all x,y € A, where 0(r) is defined as in the Definition 4. Then T has a unique
fixed point x* € A. Moreover, if xo € A and we define x,+1 = T xp,, then x, — x*.

Corollary 4 (Kannan fixed point theorem). Let A be a nonempty and closed subset
of a complete metric space (X,d). Assume that T : A — A is a Kannan mapping.
Then T has a unique fixed point. Moreover, for each xo € A if we define xp4+1 =T xp
then the sequence {xn} converges to the fixed point of T.

Example 1. Suppose that X = R with the usual metric. Suppose that
A:=[0,2]1U{5} & B:=]3,4].

Then A and B are nonempty closed subsets of X and Ag = {2,5} and By = {3,4}.
Note that dist(A,B) = 1. Let T : A — B be a mapping defined as

7 .

7 if x=0,
T =42 " °

4 if x#0.

It is easy to see that 7' is weak proximal Kannan non-self mapping for each o €
[0, %). Indeed, it is sufficient to note that d(u,Tx) = dist(A, B), holds for u =5
and x € A —{0}. Therefore, Theorem 4 guaranties the existence and uniqueness of a
best proximity point for 7' and this point is x* = 5.
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Example 2. Suppose that X = R with the usual metric. Suppose that

1
A:=[0,—]U{l} & B:=[2,3].
0. 71U 1} 2.3]
Then A and B are nonempty closed subsets of X and dist(A,B) = 1. Define a

non-self mapping 7 : A — B as follows

2 if xeQnNA,

101
50 if XGQCHA.

T(x)=

Note that 7" is not continuous. We claim that 7 is Kannan nons-elf mapping with
o= % For this purpose, it is sufficient to consider two following cases.

Case 1. If x e QN A—{1}and y € Q° N A, then
1[101

ald*(x,Tx)+d*(y,Ty)] = 315

2 1
(x+y)]=> 3 > i =d(Tx,Ty).

Case 2. If x = 1 and y € Q€ N A4, then

1.51 1 101 1
*(x.T *P. TN = = [—=—y]> = x — > — =d(Tx.Ty).
ald™(x,Tx)+d™(y.Ty)] 3[50 y]_3><100>50 d(Tx,Ty)

It now follows from Corollary 2 that 7" has a unique best proximity point and this
point is x* = 1.

Remark 1. We mention that in [ 1 1] the author studied the existence of best proxim-
ity points in metric spaces with a partial order, where weak proximal Kannan non-self
mappings are satisfied only for comparable elements.
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