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Abstract. In this paper we deal with the second order divergence form operators L
with coefficients satisfying the vanishing mean oscillation property and we prove some
regularity results for a solution to Lu = div f , where f belongs to homogeneous Herz
spaces with variable exponents K̇α,q(·)

p(·) .
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1 Introduction

Throughout the paper let us assume that Ω is a bounded open subset of Rn, n ≥ 3, with a
sufficiently smooth boundary, namely ∂Ω ∈ C1,1, and let us also consider the divergence form
elliptic equation

Lu :=
n

∑
i,j=1

(aijuxi)xj = div f , a.e. in Ω. (1.1)

Problems related to divergence form elliptic equations have a long history. The first studies
deal with the following problem:{

Lu = −div A∇u = f in Ω,

u = 0 on ∂Ω,

where Ω, as before, is a bounded open subset of Rn and A = A(x) = (aij(x)) is a n× n matrix
of real-valued, measurable functions that satisfies the ellipticity condition

λ|ξ|2 ≤ 〈Aξ, ξ〉 ≤ Λ|ξ|2, 0 < λ < Λ, ξ ∈ Rn.

If A is continuous and ∂Ω ∈ C2,α then, the classical Lp theory is treated in Gilbarg and
Trudinger [12]. Miranda [18] showed that if n ≥ 3, ∂Ω ∈ C3 and A ∈W1,n(Ω), then any weak
solution of Lu = F, f ∈ Lq(Ω), q ≥ 2, is a strong solution and

‖D2u‖L2(Ω) ≤ C(‖ f ‖Lq(Ω) + ‖u‖L1(Ω)).
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In the context of non-divergence form elliptic operators, a similar problem was considered
by Chiarenza and Franciosi [5]. They produced that if n ≥ 3, Ω is bounded and ∂Ω ∈ C2,
then the non-divergence form equation tr (AD2u) = f , with f ∈ L2(Ω) and A in a suitable
vanishing Morrey space, has a unique solution u satisfying ‖u‖W2,2(Ω) ≤ C‖ f ‖L2(Ω). This
result was generalized by Chiarenza, Frasca and Longo [7], who showed that if f ∈ Lp(Ω),
1 < p < ∞, then the same equation has a unique solution satisfying ‖u‖W2,p(Ω) ≤ C‖ f ‖Lp(Ω).
These results were further generalized by Vitanza [25, 26].

Divergence form equations of the form div A∇u = div F were considered by Di Fazio [11]
who used the methods in [6, 7]. In [11] the author obtained some regularity results in the
framework of Lp spaces in the case aij ∈ VMO (see Section 3 for definitions). Furthermore,
Ragusa in [20,21] extended the results by Di Fazio studying the interior Lp,λ-regularity under
the same assumptions on the coefficients. As a consequence of the Lp,λ-theory, Ragusa ob-
tained some C(0,α)-regularity properties for a solution of the Dirichlet problem associated to a
divergence form elliptic equation.

We say that a function u ∈W1K̇α,q(·)
p(·) is a solution of (1.1) if

∫
Ω

n

∑
i,j=1

aijuxi χxj dx = −
∫
Ω

n

∑
i=1

fiχxi dx, ∀χ ∈ C∞
0 (Ω).

In the last years there has been an increasing interest in the study of functional spaces
with variable exponents; many authors deal with the boundedness of integral operators in
such spaces and this speculation is of independent interest. However, it is also interesting the
applications of the boundedness properties of singular integral operators to the new regularity
theory of partial differential equations, possibly with discontinuous coefficients.

This scientific note is a first step in the study of regularity properties of solutions to diver-
gence form elliptic equations with discontinuous coefficients in the context of homogeneous
Herz spaces with two variable exponents.

Precisely, the goal of this paper is to prove that a solution of (1.1) satisfies some regularity
properties, being f = ( f1, . . . , fn) such that, for every i = 1, . . . , n, fi belongs to the homo-
geneous Herz space K̇α,q(·)

p(·) for suitable constant α and functions p, q and the coefficients aij

belonging to VMO∩ L∞(Ω).
The functional class where the coefficients of the principal part belong is defined in the

classical paper [24] by Sarason as a proper subspace of the John–Nirenberg space BMO [13]
whose BMO over a ball vanishes as the radius of the ball goes to zero.

It is worth pointing out that preparatory to the study of the desired regularity properties
is the boundedness of singular integral operators with Calderón–Zygmund kernels and their
commutators.

In order to prove our regularity results we need similar results in the framework of Herz
spaces with variable exponents and use the technique adopted in [6, 7].

In the next section we collect some definitions on Lebesgue spaces with variable expo-
nent and homogeneous Herz spaces with two variable exponents. In Section 3 we give a
brief exposition of two fundamental assumptions on the coefficients of the differential oper-
ator under consideration. Namely, we introduce the John–Nirenberg class of function with
bounded mean oscillation and the Sarason class of functions with vanishing mean oscillation.
In Section 4 we show some technical tools concerning the boundedness of fractional integral
operators and commutators having variable kernels in the framework of variable exponent
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Herz spaces. In Section 5 we prove the regularity, in variable exponent Herz spaces, for the
first order derivatives of the solutions to elliptic equations in divergence form.

2 Homogeneous Herz spaces with variable exponent

Let Ω be a measurable set in Rn. We firstly recall the definition of the Lebesgue spaces with
variable exponent. For a deeper discussion of Lebesgue spaces with variable exponent we
refer the reader to [9]. We recall [15, 16, 22, 23] for recent developments and applications of
nonstandard functional classes.

Definition 2.1. Let p(·) : Ω → [1, ∞[ be a measurable function. Let us set the Lebesgue space
with variable exponent Lp(·)(Ω) as follows

Lp(·)(Ω)=

{
f : Ω→ Rn : f is measurable and

∫
Ω
| f (x)|p(x)dx<+∞ for some constant η>0

}
.

and the space Lp(·)
loc (Ω) is defined by

Lp(·)
loc (Ω) =

{
f is measurable : f ∈ Lp(·)(K) for all compact subsets K ⊂ Ω

}
.

The Lebesgue spaces Lp(·)(Ω) is a Banach space respect to the Luxemburg–Nakano norm
defined by

‖ f ‖Lp(x)(Ω) = inf

{
η > 0 :

∫
Ω

(
| f (x)|

η

)p(x)

dx ≤ 1

}
.

We would like to point out that if the function p(x) = p0 is a constant function, then
Lp(·)(Rn) is Lp0(Rn). This implies that the Lebesgue spaces with variable exponent generalize
the usual Lebesgue spaces. Moreover, we observe that Lp(·)(Rn) have many properties in
common with the classical Lebesgue spaces.

Throughout this paper we set

p− = ess inf {p(x) : x ∈ Ω}, p+ = ess sup {p(x) : x ∈ Ω}

and denote by P(Ω) the set of all measurable functions p(x) satisfying p− > 1 and p+ < ∞,
P0(Ω) the set of all measurable functions p(·) such that p− > 0 and p+ < ∞.

Remark 2.2. Given a function p(·) ∈ P0(Rn), let us set the space Lp(·)(Rn) as

Lp(·)(Rn) =

{
f
∣∣∣ | f |p0 ∈ Lq(·)(Rn) for some p0 : 0 < p0 < p− and q(x) =

p(x)
p0

}
and we consider the following quasinorm on this space

‖ f ‖Lp(·)(Rn) = ‖ | f |
p0 ‖1/p0

Lq(·)(Rn)
.

Let us recall the Hardy–Littlewood maximal operator

M( f )(x) = sup
B3x

1
|B|

∫
B

| f (y)|dy,

where B ranges in the class of the spheres of Rn. Let us denote by B(Ω) the set of all functions
p(·) ∈ P(Ω) such that M is bounded on Lp(·)(Ω).
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Definition 2.3. Let us consider p(·), q(·) ∈ P(Ω). The mixed Lebesgue sequence space with
variable exponent `q(·)(Lp(·)) is the set of all sequences { f j}j∈N of measurable functions on Rn

such that

‖{ f j}j∈N‖`q(·)(Lp(·)) = inf

{
η > 0 : Q`q(·)(Lp(·))

({
f j

ζ

}
j∈N

)
≤ 1

}
< ∞,

where

Q`q(·)(Lp(·))({ f j}j∈N) =
∞

∑
j=0

inf

ζ j > 0 :
∫

Rn

 | f j(x)|

ζ
1

q(x)
j


p(x)

dx ≤ 1

 .

We observe that for q+ < ∞, we obtain

Q`q(·)(Lp(·))({ f j}j∈N) =
∞

∑
j=0
‖| f j|q(·)‖

L
p(·)
q(·)

.

Let Bk = {x ∈ Rn : |x| ≤ 2k}, Ck = Bk \ Bk−1, χk := χCk , k ∈ Z.

Definition 2.4. Let α ∈ Rn, q(·), p(·) ∈ P(Rn). The homogeneous Herz space with variable
exponent K̇α,q(·)

p(·) is defined as follows:

K̇α,q(·)
p(·) =

{
f ∈ Lp(·)

loc (Rn \ {0}) : ‖ f ‖
K̇α,q(·)

p(·)
< ∞

}
,

where

‖ f ‖
K̇α,q(·)

p(·)
= ‖{2kα| f χk|}k∈N‖`q(·)(Lp(·))

= inf

{
η > 0 :

∞

∑
k=−∞

∥∥∥∥∥
(

2kα| f χk|
η

)q(·)∥∥∥∥∥
L

p(·)
q(·)

≤ 1

}
.

It is easy to see that K̇0,q(·)
p(·) (Rn) = Lp(·)(Rn).

In the sequel we use the following result.

Lemma 2.5 ([10]). Let ph ∈ B(Rn) for h = 1, 2, then there exist constants 0 < th1, th2 < 1 and
C > 0 such that for all balls B ⊂ Rn and all measurable subset R ⊂ B,

‖χR‖Lph(·)(Rn)

‖χB‖Lph(·)(Rn)

≤ C
(
|R|
|B|

)th1

,
‖χR‖Lp′h(·)(Rn)

‖χB‖Lp′h(·)(Rn)

≤ C
(
|R|
|B|

)th2

,

where with p′h(·) is the conjugate exponent function defined as

1
ph(x)

+
1

p′h(x)
= 1, x ∈ Rn.
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3 Calderón–Zygmund operators, BMO and VMO spaces

In the sequel we make use of Calderón–Zygmund operators and their commutators (see e.g.
[3, 4]).

Definition 3.1. Let T be a bounded linear operator from S(Rn) to S ′(Rn). We say that T is a
standard operator if it satisfies the following conditions:

• T extends to a bounded linear operator on L2(Rn),

• there exists a function K(x, y) defined on {(x, y) ∈ Rn ×Rn : x 6= y} such that

|K(x, y)| ≤ C
|x− y|n ,

where C > 0,

• 〈T f , g〉=
∫

Rn

∫
Rn

K(x, y) f (y)g(x)dx dy, for f , g∈S(Rn) such that supp( f )∩ supp(g) = ∅.

An operator T is called a γ-Calderón–Zygmund operator if K is a kernel satisfying

|K(x, y)− K(z, y)| ≤ C
|x− z|γ
|x− y|n+γ

,

|K(y, x)− K(y, z)| ≤ C
|x− z|γ
|x− y|n+γ

,

if |x− z| < 1
2 |x− y| for some γ ∈ ]0, 1].

The commutator of the Calderón–Zygmund operator is defined by

[b, T] f (x) = b(x)T f (x)− T(b f )(x).

In 1983, Journé proved that a γ-Calderón–Zygmund operator is bounded on Lp(Rn) (see
[14]). Coifman, Rochberg and Weiss in [8] proved that the commutator [b, T] is bounded on
Lp(Rn) for p ∈]0, 1[.

Kováčik and J. Rákosník in [17] introduced Lebesgue spaces and Sobolev spaces with
variable exponent. For a recent treatment of Lebesgue spaces with variable exponent, we refer
the reader to [9].

In the last decades, there was an increasing interest in the study of functional spaces having
variable exponent thanks to the wide variety of applications, for instance, in fluid dynamics
and differential equations.

In particular, Herz spaces play an important role in harmonic analysis. In this paper, we
apply to the theory of regularity of solutions to partial differential equations the main results
contained in [2] where the authors deal with the boundedness of Calderón–Zygmund operator
and their commutator on Herz spaces with two variable exponents p(·), q(·).

In order to develop a satisfactory theory of regularity of solutions to linear elliptic differ-
ential equations, following the pioneering scientific note [6], we assume that the coefficients of
the differential operators under consideration belong to the Sarason class of functions having
vanishing mean oscillation. According to this requirement on the coefficients, we point out
that the coefficients could be discontinuous.

First of all, we recall the definition of BMO space, due to John and Nirenberg (see [13]).
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Definition 3.2. We define the space BMO(Rn) of functions having bounded mean oscillation
as

BMO(Rn) = {b ∈ L1
loc(R

n) : ‖b‖∗ < ∞},

where
‖b‖∗ = sup

B⊂Rn

1
|B|

∫
B
|b(x)− bB|dx,

where B ranges in the class of the balls in Rn and bB stands for the integral average of the
function b over the sphere B.

Let us consider in the next definition a proper subset of the space BMO, studied by Sarason
(see [24]).

Definition 3.3. We define the space VMO(Rn) of functions having vanishing mean oscillation
as

VMO(Rn) =

{
b ∈ BMO(Rn) : lim

r→0+
γb(r) = 0

}
,

where
γb(r) = sup

ρ≤r

1
|Bρ|

∫
Bρ

|b(x)− bBρ |dx

and Bρ varies in the class of ball in Rn having radius ρ. We say γb the VMO-modulus of the
function b.

In a similar way, we can define the spaces BMO(Ω) and VMO(Ω) of functions defined on
a domain Ω ⊂ Rn, replacing B and Bρ by the intersections of the respective balls with Ω.

It is worth pointing out that using the classical Poincaré inequality, it follows that
W1,n(Rn) ⊂ VMO and, further on, Wθ,n/θ(Rn) ⊂ VMO for 0 < θ < 1 as shows the func-
tion fα(x) = | log |x||α for 0 < α < 1. Straightforward calculations yield that fα ∈ VMO for
every α ∈ (0, 1), fα ∈W1,n for α ∈

(
0, 1− 1

n

)
, while fα /∈W1,n for α ∈

[
1− 1

n , 1
)
.

4 Fractional integral operators

In this section we state some useful results concerning the Calderón–Zygmund integral op-
erators on homogeneous Herz spaces with variable exponents. For the proofs we refer the
reader to [2].

Theorem 4.1. Suppose that p1 ∈ B(Rn), q1(·), q2(·) ∈ P(Rn) with (q2)− ≥ (q1)+. If−nt12 < α <

nt11, with t11, t12 as in Lemma 2.5, then the operator T is bounded from K̇α,q1(·)
p1(·) (Rn) to K̇α,q2(·)

p1(·) (Rn).

Theorem 4.2. Let b ∈ BMO(Rn). Suppose that p1(·) ∈ B(Rn), q1(·), q2(·) ∈ P(Rn) with (q2)− ≥
(q1)+. If −nt12 < α < nt11, with t11, t12 as in Lemma 2.5, then the commutator [b, T] is bounded
from K̇α,q1(·)

p1(·) (Rn) to K̇α,q2(·)
p1(·) (Rn).

In the sequel we use the above theorems with q1 = q2.
Next, we recall from [1] a useful result dealing with the boundedness of a particular frac-

tional integral operator that play an important role in the forthcoming study of the regularity
properties for solutions to equation (1.1).

In [1] the authors study several boundedness properties of fractional integral operators
having variable kernel and their commutators in the framework of variable exponent Herz
spaces. In the sequel let us denote by Sn−1 the unit sphere in Rn.
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Following [1], let 0 < µ < n and let Ω ∈ L∞(Rn)× Lr(Sn−1), r ≥ 1, be homogeneous of
degree zero on Rn. If

1. for any x, z ∈ Rn, we have Ω(x, λz) = Ω(x, z),

2. is finite the norm

‖Ω‖L∞(Rn)×Lr(Sn−1) := sup
x∈Rn

( ∫
Sn−1
|Ω(x, z′)|r dσ(z′)

) 1
r

,

we define the fractional integral operator with variable kernel TΩ,µ by

TΩ,µ f (x) =
∫

Rn

Ω(x, x− y)
|x− y|n−µ

f (y)dy.

In [1] the reader find a general boundedness result for TΩ,µ.
In the sequel we use, in particular, the integral operator above with Ω ≡ 1 and µ = 1, then

we consider

T1,1 f (x) =
∫

Rn

| f (y)|
|x− y|n−1 dy.

Theorem 4.3. Let 1 − nt11 < α < nt12, q1(·), q2(·) ∈ P(Rn) such that (q2)− ≥ (q1)+. Let
p1(·) ∈ B(Rn) such that (p1)+ ≤ n and define the variable exponent p2(·) by 1

p1(x) −
1

p2(x) = 1
n .

Then, the operator T1,1 is bounded from K̇α,q1(·)
p1(·) (Rn) to K̇α,q2(·)

p1(·) (Rn).

5 Regularity for solutions to partial differential equations

In this section we are concerned with the divergence form elliptic equation

Lu :=
n

∑
i,j=1

(aij(x)uxi)xj = div f (x) (5.1)

in a bounded open set Ω ⊂ Rn (n ≥ 3), where:

(H1) f = ( f1, f2, . . . , fn) ∈ K̇α,q(·)
p(·) ;

(H2) aij ∈ L∞(Ω) ∩VMO, for every i, j = 1, . . . , n;

(H3) aij(x) = aji(x) for every i, j = 1, . . . , n and for a.a. x ∈ Ω;

(H4) ∃σ > 0 : σ−1|λ|2 ≤ aij(x)λiλj ≤ σ|λ|2, for every λ ∈ Rn and a.e. x ∈ Ω.

We say that a function u ∈W1K̇α,q(·)
p(·) is a solution of (5.1) if

∫
Ω

n

∑
i,j=1

aijuxi χxj dx = −
∫

Ω

n

∑
i=1

fiχxi dx, ∀χ ∈ C∞
0 (Ω).

We set

Γ(x, t) =
1

n(2− n)ωn

√
det{aij(x)}

(
n

∑
i,j=1

Aij(x)titj

) 2−n
2

,
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Γi(x, t) =
∂Γ(x, t)

∂ti
, Γij(x, t) =

∂2Γ(x, t)
∂ti∂tj

,

M = max
i,j=1,...,n

max
|α|≤2n

∥∥∥∥∂αΓij(x, t)
∂tα

∥∥∥∥
L∞(Ω×Σ)

for a.a. x ∈ Ω and for every t ∈ Rn \ {0} where Aij stand for the entries of the inverse
matrix of the matrix {aij(x)}i,j=1,...,n, and ωn is the measure of the unit ball in Rn.

It is well known that Γij(x, t) are Calderón–Zygmund kernels in the t variable.
Let r, R ∈ R+, r < R, and φ ∈ C∞

0 (R) be a standard cut-off function such that for every
BR ⊂ Ω,

φ(x) = 1 in Br, φ(x) = 0 ∀x /∈ BR.

Then, if u is a solution of (1.1) and v = φu we have

L(v) = div G + g

where we set

G = φ f + uA∇φ

g = 〈A∇u,∇φ〉 − 〈 f ,∇φ〉.

Let us make use of the integral representation formula for the first derivatives of a solution
of (5.1), proved in [19].

Lemma 5.1. Let, for every i = 1, . . . , n, aij ∈ L∞ ∩VMO(Rn) satisfy (H3), (H4), let u be a solution
of (1.1) and let φ, g and G be defined as above.

Then, for every i = 1, . . . , n we have

(φu)xi(x) =
n

∑
h,j=1

P.V.
∫

BR

Γij(x, x− y){(ajh(x)− ajh(y))(φu)xh(y)− Gj(y)}dy

−
∫

BR

Γi(x, x− y)g(y)dy +
n

∑
h=1

cih(x)Gh(x), ∀x ∈ BR,

setting cih =
∫
|t|=1 Γi(x, t)th dσt.

We are ready to prove our main result.

Theorem 5.2. Let max{−nt12, 1− nt11} < α < min{nt12, nt11}, q1(·), q2(·) ∈ P(Rn) such that
(q2)− ≥ (q1)+. Let p1(·) ∈ B(Rn) such that (p1)+ ≤ n and define the variable exponent p2(·)
by 1

p1(x) −
1

p2(x) = 1
n . Let u be a solution of (1.1) and let us assume that conditions (H1)–(H4)

hold. Then, for every compact set E ⊂ Ω, there exists a positive constant c depending on n, p, q1, q2,
dist(K, ∂Ω) such that

‖∂xi u‖K̇α,q2(·)
p(·) (E)

≤ c
(
‖ f ‖

K̇α,q1(·)
p(·) (E)

+ ‖u‖
K̇α,q1(·)

p(·) (E)
+ ‖∂xi u‖K̇α,q1(·)

p(·) (E)

)
, ∀i = 1, . . . , n.

Proof. Let E ⊂ Ω be a compact set. Using the representation formula and the boundedness
results, we gain
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‖∂xh(φu)‖
K̇α,q2(·)

p(·) (E)
≤ ‖C[aij, φ]∂xh(uφ)‖

K̇α,q2(·)
p(·) (E)

+ ‖KG‖
K̇α,q2(·)

p(·) (E)

+ ‖T11g‖
K̇α,q2(·)

p(·) (E)
+ ‖G‖

K̇α,q2(·)
p(·) (E)

≤ c‖a‖∗‖∂xh(uφ)‖
K̇α,q2(·)

p(·) (E)
+ ‖G‖

K̇α,q1(·)
p(·) (E)

+ ‖g‖
K̇α,q1(·)

p(·) (E)

+ ‖G‖
K̇α,q2(·)

p(·) (E)
, (5.2)

where the norm ‖a‖∗ is taken in the set BR.
From the hypothesis (q2)− ≥ (q1)+, we get q2(·)

q1(·) ∈ P(R
n) and q2(·)

q1(·) ≥ 1. Then, for any

f ∈ K̇α,q1(·)
p(·) , we get

∞

∑
k=−∞

∥∥∥∥∥
(

2kα| f χk|
η

)q2(·)
∥∥∥∥∥

L
p(·)

q2(·)

≤
∞

∑
k=−∞

∥∥∥∥∥
(

2kα| f χk|
η

)q1(·)
∥∥∥∥∥

pk

L
p(·)

q1(·)

≤

 ∞

∑
k=−∞

∥∥∥∥∥
(

2kα| f χk|
η

)q1(·)
∥∥∥∥∥

pk

L
p(·)

q1(·)


p∗

≤ 1,

where

pk =


(

q2(·)
q1(·)

)
−

, 2kα| f χk |
η ≤ 1,(

q2(·)
q1(·)

)
+

, 2kα| f χk |
η > 1,

p∗ =

{
mink∈N pk, ∑∞

k=0 ak ≤ 1,

mink∈N pk, ∑∞
k=0 ak > 1.

This implies that K̇α,q1(·)
p(·) ⊂ K̇α,q2(·)

p(·) . From this embedding we obtain a refinement of the in-
equality (5.2) Taking into account that a ∈ VMO, we can choose the radius R of the ball BR

such that c‖a‖∗ < 1
2 . This remark allows us to write

‖∂xh(φu)‖
K̇α,q2(·)

p(·) (E)

≤ c‖a‖∗‖∂xh(uφ)‖
K̇α,q2(·)

p(·) (E)
+ ‖G‖

K̇α,q1(·)
p(·) (E)

+ ‖g‖
K̇α,q1(·)

p(·) (E)

= c‖a‖∗‖∂xh(uφ)‖
K̇α,q2(·)

p(·) (E)
+ ‖φ f + uA∇φ‖

K̇α,q1(·)
p(·) (E)

+ ‖〈A∇u,∇φ〉 − 〈 f ,∇φ〉‖
K̇α,q1(·)

p(·) (E)

≤ c
(
‖∂xh(uφ)‖

K̇α,q2(·)
p(·) (E)

+ ‖ f ‖
K̇α,q1(·)

p(·) (E)
+ ‖u‖

K̇α,q1(·)
p(·) (E)

+ ‖∂xi u‖K̇α,q2(·)
p(·) (E)

+ ‖ f ‖
K̇α,q1(·)

p(·) (E)

)
.

From the last inequality, we easily obtain the desired estimate.
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