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ÖSSZEFOGLALÓ. Kapcsolatot vezetünk le a divergenciára vonatkozó Babuška-Aziz 
és a kapcsolódó Friedrichs-Velte egyenl�tlenségben szerepl� optimális 
tartományspecifikus konstansok és a gradiensre vonatkozó kib�vített Poincaré 
egyenl�tlenségben szerepl� megfelel� konstans között. Ugyanezzel a módszerrel 
igazolunk egy új, a rotációra vonatkozó kib�vített Poincaré egyenl�tlenséget és 
kapcsolatát a rotációra vonatkozó Babuška-Aziz egyenl�tlenséggel. 

ABSTRACT. We derive connections between optimal domain specific constants 
figuring in the Friedrichs-Velte inequality for conjugate harmonic functions, in the 
Babuška-Aziz inequality for the divergence and in the improved Poincaré 
inequality for the gradient. With the same method we obtain for spatial domains an 
improved Poincaré inequality for the rotation in connection with the corresponding 
Babuška-Aziz inequality. 

�� �������������

In [11] Friedrichs proved an inequality between the norms of square integrable conjugate 
harmonic functions on planar domains. Horgan and Payne [13] discovered that a smooth 
simply connected planar domain supports the Friedrichs inequality if and only if it supports 
the Babuška-Aziz inequality for the divergence [3], which ensures the stable solvability of the 
divergence equation in an appropriate function space on the domain. Moreover, they proved 
an important equation involving the optimal domain specific constants figuring in the 
corresponding inequalities. Velte [21] generalized this connection for smooth simply 
connected spatial domains and for the Babuška-Aziz inequality for the rotation using another 
variant of the Friedrichs inequality. Costabel et al. [6] proved that this connection between the 
Friedrichs-Velte and Babuška-Aziz inequalities and constants remains valid without any 
smoothness assumptions on the domain and can be further generalized for differential forms 
on arbitrary dimensional domains, see [7]. 

These inequalities and constants are not only of theoretical but also of practical interest 
for the numerical solutions of problems in fluid dynamics and elasticity, see [8,19,20] and 
references therein. Despite of their importance exact values of these constants are known in a 
few cases [11,21], altough the inequalities are proved to be valid on general classes of 
domains. Shapiro [18] proved the Friedrichs inequality for planar domains satisfying an 
interior cone condition, Acosta et al. [1] established the Babuška-Aziz inequality for the 
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divergence in the class of John domains, which is a generalization of the class of domains 
satisfying an interior cone condition. Recently Jiang et al. [15] proved that the validity of the 
Babuška-Aziz inequality is equivalent to the John condition and to the validity of an improved 
Poincaré inequality [14] provided the domain satisfies the separation property (which 
condition is fulfilled for any simply connected plane domain). 

In this paper we focus rather on the constants than on the inequalities itself. Motivated by 
a result in [10] we establish a connection between the optimal constant in the improved 
Poincaré inequality and the Friedrichs-Velte constant, which connection implies the 
simultaneous validity of the corresponding inequalities. With the same method using the 
Friedrichs constant connected to Babuška-Aziz constant for the rotation we derive an 
improved Poincaré inequality using the rotation instead of the gradient. 

In section 2 we formulate the notation and the preliminaries. Next in section 3 we derive 
the main result, Theorem 3.13, which states that domains satisfying the Hardy inequality 
simultaneously support the Friedrichs-Velte and the improved Poincaré inequalities. As a 
byproduct we obtain upper estimations for the constant in the improved Poincaré inequality 
for star-shaped domains using known upper estimations for the Friedrichs-Velte constants 
from [6,13,17]. We also discuss geometric conditions for the problem domain in order to 
satisfy the conditions of Theorem 3.13. 

��  ��������������	����������	������

In this paper � denotes a bounded domain in ��. Let ����� be the usual space of square 
integrable functions over �. The norm and the integral mean on � of � 	 ����� are 
�
� �
� ���  and �� � �

�� �� , respectively. ����� denotes the Sobolev space of functions with 

�� 	 ������. Its subspace ������ is the closure of smooth functions with compact support in 

� under the norm 
�
�� � � �� � ����  of �����. �� � 
��
 denotes the seminorm on 
������ equivalent to the ��-norm. 

Definition 2.1. The domain � � ��  (� � ���) supports the Friedrichs-Velte inequality if 
there is a positive constant � depending only on the domain � such that for every pair of 
square integrable conjugate harmonic functions � and � there holds 

 
�
� � �
�
� provided �� � �. (1) 

The least possible constant in (1) is denoted by �� and is called the Friedrichs-Velte constants 
of the domain � . Conjugate harmonic means in Definition 2.1. the Cauchy-Riemann 
equations 

 �� � ��� (2) 

with ��� ����  ��� for planar domains and the Moisil-Teodorescu equations 

 !"# � � �� and $%& � � � (3) 

for spatial domains. The normalization �� � �  means that �  belongs to the orthogonal 
complement of the kernel of the gradient in �����. The inequality (1) was investigated by 
Friedrichs [11] and Shapiro [18] for planar domains and then by Velte, [21] for simply 
connected spatial domains with sufficiently smooth boundary. Velte [21] also formulated 
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another related inequality for simply connected spatial domains estimating the norm of the 
vector valued function � in (3) as 

 
�
� � �'
�
� provided � � ( �)� � � for every ) 	 ����� (4) 

This normalization means that the solution � of (3) belongs to the orthogonal complement 
of the kernel of !"# in �����*. On simply connected domains it is equivalent to $%& � � � in 
the domain and � ( � � � on the boundary where � denotes the unit normal vector. 

The exact value of the Friedrichs-Velte constant does not depend on the size of � only on 
its shape. Its value is known only for a few domains, [6,13,17] contain useful estimations for 
the class of star-shaped domains. Costabel [7] developed a generalization of the Friedrichs-
Velte inequality for differential forms which generalization incorporates also the unification 
of (1) and (4) along with (2) and (3) and it is valid at least in the class of Lipschitz domains. 

As observed in [6,13,21] the Friedrichs-Velte inequalities and constants are closely 
related to the Babuška-Aziz inequality and to the corresponding domain specific constants. 

Definition 2.2. The domain � � �� (� � ���) supports the Babuška-Aziz inequality for the 
divergence if there is a positive constant + depending only on the domain � such that for 
every � 	 ����� with �� � � there is a � 	 ������� such that $%& � � � and 

 ��� � +
�
�. (5) 

The least possible constant in (5) is denoted by +� and is called the Babuška-Aziz constant for 
the divergence of the domain. +� , - was proved for bounded Lipschitz domains in [3] and 
was generalized for John domains in [1]. 

The inequality (5) can be formulated as ��� � +
$%& �
�  for every function �  in the 
orthogonal complement of the kernel of the divergence in ������� . Similarly there is a 
Babuška-Aziz inequality for the rotation: 

 ��� � +.
!"# �
� (6) 

provided �  is in the orthogonal complement of the kernel of the rotation in ������* . 
According to [6,7,21] there also hold 

 +� � / � �� and +.� � / � �'� (7) 

for any planar or spatial domain the constants being simultaneously finite or infinite. 
The third class of inequalities utilized in this paper is the class of the improved Poincaré 

inequalities. 

Definition 2.3. The domain � � ��  (� � ��� ) supports supports the improved Poincaré 
inequality if there is a positive constant 0  depending only on the domain �  and on the 
exponents 1, 2 and 3 such that 

 
�  ��
45���6 � 0
7�8��
49���6  (8) 

holds for every � 	 ���:;<��� such that 7�8�� 	 �=���� , where 7��>� � $%?#�>� ��� is the 
distance of > 	 � to the boundary. 
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It was proved in [4] in case 2 � 3 for domains whose boundary is locally the graph of a 
Hölder continuous function of order 1  and it was generalized in [14] for � � 1 � / , @
2�/  1� , � and 2 � 3 � �=

�A=��A8� in a class of domains including John-domains. 

In case 1 � � and 3 � 2 � � one has the classical Poincaré inequality but in this paper we 
utilize the case 3 � 2 � � and 1 � / in the form 

 
�  ��
� � 0�
7���
�  (9) 

wherein the improved Poincaré constant 0�  of �  is the least possible positive constant 
satisfying (9). For bounded simply connected planar domains it was proved in [15] that the 
domain supports the Babuška-Aziz inequality (5) iff it supports the improved Poincaré 
inequality (9) and iff � is a John domain. For more general domains there are additional 
properties needed in order to have equivalence between �  being a John domain and � 
supporting the inequalities (5) and (9), c.f. [15]. 

Remark 2.4. As proved in [5] for convex domains in arbitrary dimensions the constant 0 in 
(8) can be estimated from above by a scalar multiple of the product B����8$%CD����A�8, 
where B��� and $%CD��� denote the eccentricity and the diameter of �, respectively. This 
estimator is independent of $%CD��� only for 1 � / in which case the improved Poincaré 
constant 0� in (9) can be estimated by a scalar multiple (depending only on the dimension �) 
of B����. Hence if one wants to derive a correspondence between the diameter invariant 
Friedrichs-Velte constant and the improved Poincaré constants then one has to choose 1 � / 
in (8). E 

!� "���	��������	��		���#	�����������

In this section, motivated by Theorem 5.1 an Theorem 5.3 in [10], we derive connections 
between the Friedrichs-Velte and improved Poincaré inequalities and constants. 

Lemma 3.1. If the domain � � �� (� � ���) supports the improved Poincaré inequality (9) 
with the constant 0�, then it also supports the Friedrichs-Velte inequality (1) with the constant 

 �� � F0�. (10) 

Proof. Let � and � be conjugate harmonic functions in the sense of (3) on the spatial domain 
� supporting the improved Poincaré inequality. We develop the norm on the right-hand side 
of (9): 


7���
� � G 7�� ����
� G 7���� ( !"# ��

� G � ( !"#�7������
@@@@@@@@@@@@@@@@@@@@@@@@@@@@

� G � ( �7��7� H ���
� G �7��� ( �� H �7���

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 

We estimate by the Cauchy-Schwarz inequality and we also use �7� � / for the boundary 
distance function of � valid a.e. in �. 

 I� �7��� ( �� H �7��� I � � J� 7����� K
L
M ( J� ��� K

L
M
. (11) 
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There follows 

 
7���
� � � ( 
�
 ( 
7���
. (12) 

By the improved Poincaré inequality there follows 

 
�  ��
� � 0�
7���
� � F0�
�
� , (13) 

which implies (10) for the Friedrichs-Velte constant �� of the domain. 
For planar domains the above proof remains valid with minor changes using the Cauchy-

Riemann equations (2) instead of (3). E 

Remark 3.2. Theorem 5.1 in [10] formulates a similar result between the Babuška-Aziz 
constant for the divergence and the improved Poincaré constant for arbitrary dimensional 
domains, however, with another dimension dependent constant which value is not specified. 
This reads with the notation of Lemma 3.1 

 N/ � �� � O�P/ � N0�Q. (14) 

Altough Lemma 3.1 is proved only for planar and spatial domains but we now have an 
explicit constant in the inequality estimating �� by 0� from above. E 

Remark 3.3. In the proof of Lemma 3.1 we used �7� � /  for the boundary distance 
function valid a.e. in �. The proof remains valid using instead of 7� another weight function 
R with bounded gradient on �, �R � O and with zero boundary values on �� (appropiate 
solution of the eikonal equation). However, in this case one has to use another weighted 
Poincaré inequality instead of (8) and one has another constant in (10) instead of 4. E 

Remark 3.4. The constant 4 in (10) can be improved, for example for convex polygons one 
has more: �� � 0�. In order to prove this we consider first that by [12] every convex polygon 
has a unique mother body (skeleton) consisting of line segments which are subsets of 
bisectors of angles between appropriate two sides of the polygon. The convex polygon � has 
a partition along this mother body � � S �TT . We have �7� � / and U7� � � in each 
subpolygon �T hence there follows 

 U�7�� � � ��7�� � �7�U7� � �  

for the Laplacian of the square of the boundary distance function of � in each subpolygon �T. 
On the boundary of each subpolygon �T  we have 

VWX
V�Y Z � because � is convex. By partial 

integration we have on each �T 

 � 7�����Y � � 7��U J�� ��K�Y � � 7�� [7� V\
V�Y  �

VWX
V�Y]^�Y � �

�� ��U�7�� ��Y   

for a conjugate harmonic pair �� � ��� . Now summing up all these equations some 
boundary terms cancel out and we obtain 

 
7���
� � � ���  _ � 7��� VWXV�Y^�YT .  
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Using 
VWX
V�Y Z � on the boundaries of the subpolygons, there follows 

 
7���
� � 
�
�  

which gives �� � 0�. E 
Lemma 3.1 says that each domain which supports the improved Poincaré inequality also 

supports the Friedrichs-Velte inequality.  
In order to prove the reverse direction we use 
• the equality +� � / � �� proved in [6,7] stating the simultaneous finiteness of the 

Friedrichs-Velte and the Babuška-Aziz constants for a domain � without assuming 
any boundary regularity and 

• Theorem 5.3 in [10], in which the finiteness of the improved Poincaré constant was 
proved assuming the finiteness of the Babuška-Aziz constant +�  provided the 
domain � also supports a Hardy type inequality involving the boundary distance 
function. 

 
Definition 3.5. The bounded domain � � �� supports the Hardy inequality if there is a finite 
positive constant H depending only on � such that 

 � `M
WXM� � �� ����  (15) 

holds for every � 	 ������ . The Hardy constant ��  of the domain is the least positive 
constant � for which (15) holds. 

Lemma 3.6. If the domain � � ��  (� � ���) supports the Friedrichs-Velte inequality (1) 
with the constant �� and the Hardy inequality (15) with the constant ��, then it also supports 
the improved Poincaré inequality (8) with the constant 

 0� � ���/ � ���. (16) 

Proof. The proof is due to Durán [10], Theorem 5.3, which we reproduce here for the 
convenience of the reader using the notation of the present paper. Given � 	 ����� with zero 
integral mean �� � � let � 	 ������� such that 

 $%& � � � and 
��
� � +�
�
�. (17) 

Using the Hardy inequality (15) there follows 

 
�
� � � � $%& �� �  � � ( ��� � a \
WXa ( 
7���
 � ��

L
M
��
 ( 
7���
. (18) 

Using now the Babuška-Aziz inequality there follows 

 
�
� � ��
L
M+�

L
M
�
 ( 
7���
 (19) 

which gives (16) utilizing +� � / � ��. E 
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Remark 3.7. Lemma 3.6 means that �� , - is sufficient for an estimation of the improved 
Poincaré constant by the Friedrichs-Velte constant. Example 4.1 in [15] shows that the 
validity of the Hardy inequality (15) is not necessary for such an estimation. E 

The proofs of Lemma 3.1 and Lemma 3.6 are applicable with minor changes for the other 
Friedrichs-Velte inequality (4) and for the Babuš ka-Aziz inequality (6) for the rotation. 

Lemma 3.8. If the domain � � �* supports the Hardy inequality (15) and the Friedrichs-
Velte inequality (4) with the finite constants �� and �'�, respectively, then there is a finite 
positive constant 0'�depending only on � such that the inequality 

 
�
� � 0' 
7� !"# �
� (20) 

is valid for every � in the orthogonal complement of the kernel of !"# in �� ���*. Moreover, 
we have 0'� � ��P/ � �'�Q for the least possible constant 0'  in (20). 
Proof. The proof is essentially the same as that of Lemma 3.6. First use +.� � / � �'�, see 
[7,21]. By the Babuška-Aziz inequality for the rotation there exists R 	 ������* such that 

 !"# R � � and 
�R
� � +.�
�
�. (21) 

There follows by the Hardy inequality (15) 

 
�
� � � � !"#R� � � R !"# �� � a bWXa ( 
7� !"# �
 � ��
L
M
�R
 ( 
7� !"# �
. (22) 

Substituting now the Babuška-Aziz inequality for the rotation gives 

 
�
� � ��
L
M+.�

L
M
�
 ( 
7� !"# �
, (23) 

from which the statement of the lemma follows. E 

Remark 3.9. In the improved Poincaré inequality (9) the function �  ��  belongs to the 
orthogonal complement of the kernel of the gradient, hence (9) can be also stated as 
�
� �
0�
7���
�  for every � 	 �cd! ��� . The previous Lemma 3.8 formulates an analogous 
inequality for the rotation instead of the gradient, hence (20) can be seen as an improved 
Poincaré inequality for the rotation. According to [7] we have �'� , - at least for Lipschitz 
domains, for which the Hardy constant �� is also finite [16], hence (20) is valid for spatial 
Lipschitz domains. E 

Remark 3.10. In two dimensions we have 
7���
 � 
7����
 , hence the improved 
Poincaré constant for the vector-curl �� (adjoint of the scalar rotation) coincides with the 
usual Poincaré constant for the gradient. For planar domains the Friedrichs-Velte constants �� 
and �'� are equal as well. E 

The counterpart of Lemma 3.1 is the following. 

Lemma 3.11. If the domain � � �* supports the inequality (20) for every � in the orthogonal 
complement of the kernel of the !"# in �� ���* with the least possible positive constant 0'�, 
then it also supports the Friedrichs-Velte inequality (4). Moreover, we have �'� � F0'�. 
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Proof. The proof is similar to that of Lemma 3.1. Let �  and �  be conjugate harmonic 
functions on the spatial domain �  in the sense of the Moisil-Teodorescu equations (3) 
normalized such that � lies in the orthogonal complement of the kernel of the !"# in �� ���*. 
We develop the norm on the right-hand side of (20) using �7� � / a.e. in �. 

 

7� !"# �
� � � 7�� !"# ��� � � 7���� ( !"# �� � � � ( $%&�7�� !"# ���

� � ��7��7� (� !"# � � �
�
 ( 
7� !"# �
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
  

This implies by (20) 

 
�
� � F0'�
�
� (24) 

which means the Friedrichs-Velte inequality (4) with �'� � F0'�. E 

Remark 3.12. Considering the similarities between the proofs of Lemma 3.6 and Lemma 3.8 
and between their reversed counterparts Lemma 3.1 and Lemma 3.11 they could be possibly 
unified in the framework of [7] provided there is a usable version of the utilized Hardy and 
improved Poincaré inequalities for differential forms.  However, the investigation of this is 
beyond the scope of the present paper. E 

As a consequence of these lemmata we obtain the following 

Theorem 3.13. If the bounded domain � supports the Hardy inequality (15), then � supports 
the Friedrichs-Velte (1) and (4) and simultaneously the Babuška-Aziz inequalities (5) and (6) 
if and only if �  supports the improved Poincaré inequalities (9) and (20), respectively. 
Moreover, we have 

 
�
e �� � 0� � ���/ � ��� and 

�
e�'� � 0'� � ��P/ � �'�Q (25) 

for the domain spacific constants in the corresponding inequalities. E 

Remark 3.14. Theorem 3.13 opens the possibility to obtain upper estimates for the improved 
Poincaré constant 0� using known exact values or estimates for the corresponding Friedrichs-
Velte and the Hardy constants. Such upper estimates for �� of a star-shaped planar or spatial 
domain are given in [6,13,17] which upper estimates depend on the eccentricity of the domain 
with respect to the center of the star-shapedness. As shown in [5] the Poincaré constant (9) of 
a convex domain can be estimated by its eccentricity B , i.e. 0� � OB�  for some positive 
constant O. According to Theorem 6.2 in [6] and Theorem 3.13 this remains valid for a planar 
star-shaped domain as well because its Hardy constant is at most 16, see [2]. 

 0� � /fPB � NB�  /Q� � fFB�, (26) 

where B � g
h for the domain � star-shaped with respect to a disc of radius i and contained in a 

concentric disc of radius j. E 
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Remark 3.15. As one sees the improved Poincaré inequalities imply the corresponding 
Friedrichs-Velte and Babuška-Aziz inequalities without any condition on the domain, the 
validity of the Hardy inequality is required only for the reverse implication. Finiteness of the 
Hardy constant was proved in [16] and [4] for Lipschitz and for Hölder domains, respectively. 
For upper estimations of the Hardy constant in terms of geometric characteristics of the 
domain c.f. [9] and the references given there. E 

$� "��������
��	������

The main result of this paper is twofold. First, we proved by esimating the corresponding 
domain specific constants by each other that planar and spatial domains satisfying the Hardy 
inequality simultaneously support the Friedrichs-Velte inequality, the Babuška-Aziz 
inequality for the divergence and the improved Poincaré inequality for the gradient. This 
enables us to extend the validity of known upper estimates for the Friedrichs-Velte constants 
for the improved Poincaré constant for the gradient. Second, in the three dimensional case we 
derived with the same method a novel improved Poincaré inequality for the rotation. 
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