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Abstract—The operation with the limited resources requires
optimization. Also in an island mode on board energy system or in
the large power system the optimal power generation distribution
between the operating units is crucial for increase the success of
the mission or for the protection of the environment or decrease
the costs. A method for generator scheduling and simultaneous
allocation of reserves is proposed in this article. Based on the
decomposition and piecewise linear approximation of generation
characteristics, we formulate the optimization framework in a
distributed manner, making the utilization of parallel computing
power possible. We define a finite number of operation modes
for each generator, and analyze the feasibility and resulting cost
of their possible combinations. Secondary and tertiary reserves
are also allocated in the process. A simple heuristic is introduced
to reduce the number of operating profiles taken into account.

I. INTRODUCTION

It is well known that the market share and significance of
renewable technologies in the electric power industry have
been largely increased [1], and significant efforts were done to
effectively integrate these resources into the existing systems
[2l], [3]. However, as detailed in [4], the great majority of
these renewable resources are variable generators having an
availability limit that changes through time and cannot be pre-
dicted with perfect accuracy. This variability and uncertainty
add to the existing variability and uncertainty of the current
systems (eg. uncertain domestic demand), and these additional
issues imply unique characteristics and may change the way
that system operators maintain a reliable power system.

As long as technically efficient and economically feasible
methods for energy storage [S], [6] are not available in
industrial scale, the only way to handle these uncertainty issues
is the application of system level resources or, in other words,
ancillary services [7], [8].

On the other hand, the question how the available power
system resources and infrastructure can be utilized in the most
economic way is analyzed since the middle of the 20th century
[9]. This topic has multiple aspects.

Not only in the power system but also in the aircrafts are
several generators. Typically two integrated drive generators
supply normally the plane and a third auxiliary generator can
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replace either main generator (e.g. in an aircraft A320). In
the Boeing 787 the number of the generators are doubled so
we count 4 pieces at engine side and 2 more auxiliary units.
The optimal load distribution in normal and emergency case
is crucial.

Optimal power flow (OPF) methods aim to optimize the
operation of electric power generation, transmission, and dis-
tribution networks subject to demand values or functions and
transmission and generation system constraints. The literature
of OPF is enormous, for recent surveys see [10l], [L1], [12].
Typical examples when the optimization procedure includes
integer variables as well are optimal transmission switching
(OTS) and network topology optimization, [13]], [14]], [15].

The optimal scheduling (OS) of generators, also known
as unit commitment (UC) [16] has also a significant size of
literature, for surveys see [17]], [18]], [L9]. An integer approach
to the problem is described in [20]. Thermal production
requirements may be also taken into account [21].

OPF, OTS and OS in general are complex nonlinear large-
scale problems. In such cases, decomposition methods [22]
may greatly increase the computational efficiency of solution
concepts, even when the price is that only sub-optimal re-
sults are obtained. There is a significant amount of results
corresponding to the decomposition and decentralization of
OPF [23]], [24], [25], [26] and OTS in literature. These papers
approach the problem by decomposing the computations cor-
responding to regions. Such methods receive more and more
attention nowadays, as the computing power of parallelized
architectures increase [27].

In the terms of OS, the increasing importance of system
level resources proposes new challenges and calls for novel
solutions. Frameworks which allocate energy production and
reserves simultaneously may help reserve-production capable
power plants to an increased vindication of their potential: In
these frameworks it is immediately taken into account that
as they produce energy, they create the potential of reserve
allocation as well and in the same time.

In the conference article [28]] a model has been introduced in
which generation values of generators were optimized over a



set of time intervals in a distributed way implicitly accounting
for the requirements of reserve allocation as well. This ap-
proach divided the operation range of generators into disjoint
sub-regions and assigned modes of operation (MoO) to them.
A MoO profile was defined as a sequence of possible MoOs
(a MoO for each time period) for each generator. Considering
possible and not possible MoO changes corresponding to
consecutive time periods on the one hand and power and
reserve demands on the other, a set of top-level feasible
MoO profiles may be determined. For each of these top-
level feasible MoO profiles, the optimization may be carried
out independently (thus in a parallel fashion), considering
the availability of the required reserves as set of inequality
constraints.

The method proposed in this article assumes that the pro-
duction characteristics (in the terms of marginal cost) in each
MoO are linearly approximated, and these piecewise linear
functions are submitted to the transmission system operator
(TSO). Regarding the cost model of this article [28], we
have to emphasize that the majority of the corresponding
literature (eg. [29]]) assumes quadratic total cost, which is
usually approximated by piecewise linear functions, implying
a linear objective function.

On the other hand, it is widely accepted to assume a constant
and a variable component of generation cost. Regarding the
variable component, it is plausible to assume that the cost of
producing one unit of energy typically has a local minima
(at the maximal efficiency point) usually not at maximum
capacity.

In this paper we assume two components of the unit cost of
generation. First a term corresponding to constant cost, thus
described by a term proportional to % in the context of unit
cost, and a quadratic term in the form a + b(x — ¢)? (where x
denotes the produced quantity). The result of these two terms
is a nonlinear, dominantly decreasing function of the produced
amount, which we approximate with piecewise linear functions
in given intervals (MoOs). This approach, although allows a
more realistic consideration of production cost, results in a
nonconvex quadratic optimization problem regarding the total
cost, thus implying a more difficult computational task.

Start up/shutdown and ramp up/down costs are considered
in this approach in the terms of MoO changes: A total cost of
a profile in this model depends on

o the exact generation values corresponding to the time
periods,

« changeover costs - corresponding to ramp up and ramp
down, and start-up -, defined by the MoO profile.

As the variables of the problem are the production or power
inlet values, a linear transmission constraint corresponding to
a DC load flow model can be easily considered, if the param-
eters of the transmission network are known (a demonstrative
example shows this issue in the paper [28] ). We assume that
the thermal and other technological limitations implying load
gradient constraints may be addressed as possible/not possible
changes of MoOs in consecutive time periods.

symbol
n number of generating units
T number of macro-periods
H number of micro-periods in a macro-period
iy number of possible MoOs of generator j
a, B parameters of the piecewise
linear functions approximating the unit cost
D!, pz Upper and lower bounds of the
production of generator j in mode %
s the price demand for reserve b of
generator j (b € {s+, s—, t+, t—}
T maximal available reserves of generator
7 in MoO ¢
o,y parameters of the piecewise linear functions
defining the available reserve amounts
as function of actual produced power
d(tr) power demand in micro-period ¢y,
d’(t) | reserve demand of type b in micro-period t

TABLE I
PARAMETERS OF THE MODEL

In the current paper, to avoid the computational explosion
of integer variables in the case of multiple periods and
plants, we extend the concept described in [28] by introducing
macro- and micro-periods: Each macro-period is composed of
a finite and equal number of micro-periods. MoO changes are
allowed only between macro-periods, but power and reserve
demands are defined on the level of micro-periods, thus the
production values and the values of allocated reserves have to
be determined for each micro-period, considering the actual
MoO profile.

Furthermore, while the method proposed in [28] only en-
sured that the required reserves for each period are available in
the case of the MoO profile in question, the method proposed
in this article also allocates secondary and tertiary reserves
considering the reserve price offered by the generator.

II. THE OPTIMIZATION FRAMEWORK
A. Notations of the model

The notations of parameters and variables of the model are
summarized in tables [I] and [[I] respectively.

s+, s—, t+, t— denote the various types of reserves:
secondary positive, secondary negative, tertiary positive and
tertiary negative.

B. Macro- and Micro-periods

We assume that each generator defines for itself a set of
finitely many modes of operation (MoOs), each corresponding
to a given interval of the production range. The significance
of these MoOs are as follows. We assume that

e For each MoO ﬁz s B{ , and Fi are defined.

e In any MoO the production cost of one unit of energy
and the available reserve production values are approxi-
mated by linear functions of the actual production value.
While the real production curve is nonlinear, during the
optimization, only the piecewise linear approximations
are taken into account. Furthermore, we assume that the



symbol
mZ mode of operation of generator j
in the macro-period ¢
c{ (p?) | production price per unit of generator j in MoO i.
C’é (tx) | generation cost of generator j in micro-period ¢y
Cg(tk) reserve cost of generator j in micro-period t
7 (te) the amount of reserve type b allocated to
generator j in the k-th micro-period
of the macro-period ¢ b € {s+, s—, t+, t—}
P (tr) power production value of generator j
in micro-period %
¢ MoO profile
CL(®) changeover costs of generator j
in the case of the MoO profile ¢

TABLE II
VARIABLES OF THE MODEL

difference between the real, nonlinear characteristics and
the linear approximation represents the margin of the
generator as well (see the appendix for examples).

o When calculating dispatch in consecutive periods, start-
up and ramp-up/down costs are considered and reim-
bursed to generators based on change of MoOs.

MoOs are assigned to macro-periods, but the power output
of generators is calculated for each micro-period. In other
words during a certain macro-period, the upper and lower
limits of production are fixed for each generator, but within
these bounds the particular production values are potentially
different for each micro-period in the macro-period.

Macro-periods may be considered as typical daytime load-
periods as shoulder or peak load, while micro-periods can be
viewed as hours.

In the following the variable ¢ without subscript refers
to macro-periods, and with subscript, as tj, refers to the
k-th micro-period of the t¢-th macro-period (¢t € [1,...,T],
ke[l,..H).

We assume that for each generator, at any ¢ only one MoO
may be active.

domity=1 Wt

An MoO profile ¢ collects the m7(t) values as ¢;; =
m? (t). Furthermore, while formally m7 (¢) is a binary vector of
size nJ , we also may refer to it shortly. If the generator j has
4 MoOs and we say m’(t) = 3 we mean m’(t) = [0 0 1 0].

In the following we formalize the details of the MoO

approach, and define further assumptions of our model.

C. Modeling Assumptions

The modelling assumptions are basically the same as in
[28]. We assume that generators provide the parameters about
their production characteristics to the transmission system
operator (TSO). Linear functions describe the unit cost of
production for each MoO as

cl(p) = ol + By’ (1)

while the total cost may be calculated as a quadratic function
of p’:

CE(t) = el (v () (1) @)
The reserve cost may be similarly calculated as
Chlte) =Y mry (t) 3)
b

and the maximal reserve to be assigned to a generator is
constrained by the inequality (eg. in the case of negative
tertiary reserve)

Tg— = 53‘? + ’Yzjtfpj “4)

Regarding the cost of MoO changes, we us suppose that if
generator j changes its MoO from k to [, the changeover cost
emerging at the generator, which has to be covered by the TSO
is denoted by CZ,(k,1). As mode O corresponds to shutdown
state, these matrices include the start-up costs as well.

Furthermore we assume nonelastic, prior given demand and
reserve requirements for each time period ¢;. The objective is
to minimize generation cost, including the generators’ margins
and reserve costs.

D. The optimization process

The optimization process consists of the following steps

« Based on the initial MoOs, and possible changeovers of
the generators, the TSO determines the set of all possible
MoO profiles for the given horizon (T macro-periods).
Let us denote a MoO profile by ¢

o From the set of possible MoO profiles, the TSO deter-
mines the set of the top-level-feasible MoO profiles. Later
we detail which constraints limit the set of top-level-
feasible MoO profiles. _

o The TSO determines the p(t;) and 7} (t;) values for all
generators for all top-level-feasible MoO profiles for all
ti in a parallel way. In general, it is not sure that all,
or moreover any subproblem defined by a particular top-
level-feasible MoO profile will be feasible in the terms
of the p!(ty) and r)(t) values, but in this paper we
assume that at least one feasible MoO results in a feasible
subproblem. As we will see this assumption is supported
by the case study.

e The TSO examines the solutions corresponding to the
feasible MoOs, and calculates the total cost, which is the
sum of the production (or generation) costs (Cg) defined
by the p; values resulting from the low level optimization,
the reserve costs (C'r) implied by the r(t)) values, and
the changeover costs C'co determined by the actual MoO
profile.

We call a ¢ profile feasible, if its top-level-feasible, and also
feasible for all ¢, in the terms of p/ (¢),) and ry (t4). In the final
step The total cost of the MoO profile ¢ may be calculated as

C(¢) = Ca(9) + Cr(9) + Cco(9) (5)



where
Calg) = > ChLitr) => " Chtr)
Jite itk
Coo(d) = Y Clolk,Do(t, §)(k)o(t+1,5)(1) (©6)
RN
where j € {1,...,n}, t € {1,..,T -1}, k,l € {1,....,n™}.

The set of top-level-feasible MoO profiles is restricted by
the following considerations:

o Changeover constraints, in other words MoO change
restrictions regarding consecutive macro-periods - con-
sidering two consecutive ¢-s, the MoO of any generator
may change only by one - eg. no transmission from MoO
1 to 7 4 2 is allowed.

o Possible compulsory standstill and operation period
lengths.

e Exclusion of infeasible MoO combinations. If the
total power demand at time t; is denoted by
d(ty), while the reserve demands are denoted by
A5t (ty), d* (tx), d" T (tx), d*~ (tg). Let us introduce the
following notations

d(t) = max d(ty) d(t) = mkin d(ty)
T (t) = maxd”( k) d°7(t) = mkaxds_(tk)
d(t) = max d'(ty) d'(t) = max A= (ty) (D)

In this case the following conditions have to be satisfied
for the top-level-feasibility of the MoO profile for all ¢
macro-period:

domity < Aty <> mi)p
im pl <
<Zm o
<Zm A <Zm 7,

where the first two rows on inequalities describe that the
maximal and minimal demand in a macro-period has to fall
between the maximal and minimal possible generation values
defined by the MoO, and the rest of the rows correspond to
the necessary conditions regarding the feasibility of reserve
allocations.

1) The low level optimization process: Considering every
top-level-feasible ¢, Ci is minimized under the constraints

ATt

o Production constraints implied by the MoOs:
Pl <P (t) <P Vit ®)

where the 7 values are depending on the actual MoO and
are straightforwardly determined by ¢ for each j and ¢.
o Reserve constraints: The amount of maximal allocated
reserve at tj (rj(ty))is a linear function of the actual
production value p’ (t;) for each b € {s+, s—, t+, t—}.

This linear function is depending on the actual MoO, as
described in Table I. and II.

o The total production value has to be equal to the power
demand in every micro-period (d(tx)).

o The total amount of allocated reserves have to meet the
demands in every micro-period for all types of reserve
(der (tk), ds— (tk), dtt (tk), dt= (tk))

As we can see the actual MoO profile implies inequality

type constraints, while the power and reserve demands imply
equality type constraints. The variable vector to be optimized

is
xp
T = TRs ()]
TRt

where

pl(ll) T5+(11) 7"%,(11)

: . -
1 rs(1m) re—(Lu)
];1((121;1)) TtlJr(ll) Ti+(21)

rp = . TRs = TRt =
; L (1m) r (Ty)
P'(a) r (1) (1)
P"(Tn) ri(1n) i (Th)
(10)

xp has the dimension n1l'm, while x is of dimension
dnTm.

We have to note that since there are negative slope linearities
present (in fact, they are dominantly negative sloped), the )
matrix of the quadratic objective function will not be positive
definite, thus the problem will not be convex, and solutions
may be suboptimal. This drawback is a tradeoff for achiev-
ing an efficient, and computationally feasible optimization
approach.

III. RESULTS

In this section we demonstrate the operation of the opti-
mization framework via the means of an illustrative example,
and analyze how the results scale up with the number of
macro-periods. We assume 5 generators/power plants whose
parameters are described in the Appendix at http://digitus.itk.
ppke.hu/~csercsik/SM/appendix.pdf.

A. Heuristic

One of the most challenging problem of the proposed
approach is the exponential growth of possible MoO profiles
with the increase of the number of macro-periods. A simple
heuristic may be introduced to exclude a large portion of the
possible profiles.

We may constrain the set of MoO profiles taken into account
with the assumption that if d(t) < d(t+1) & d(t) < d(t+1),
we consider only MoO profiles in which none of the operation
modes decrease as switching from ¢ to ¢ 4 1. In other words,
if the minimal and maximal demand are both increased in the
next macro-period, we do not allow the down-regulation of
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plants in the terms of MoOs. Naturally, we may introduce the
complement consideration as well in the case of decreasing
maximal and minimal demand.

B. Computational times
We assume the following demands

d(11 — 46) =[1229 1093 1043 951 1019 1227
1333 1467 1533 1583 1620 1608
1611 1600 1564 1559 1624 1643
1720 1729 1694 1701 1685 1610

Both positive and negative secondary reserve demands are
assumed to be equal to 5 % of the power demand for each
ti, and tertiary reserves are assumed being equal to 15 % of
the power demand. We assume that the initial MoO profile is
333 2 2.

The simulations to measure computational demands were
run in MATLAB with the OPTI toolbox [30]. The used
solver was CLP which has been shown to provide very good
results in the case of non-convex quadratic problems [31].
Table [[II| summarizes the performance data of the optimization
algorithm on a HP Z440 Workstation Intel Xeon CPU E5-1603
v3 Quad Core processor @ 2.8 GHz, 8 GB.

no parallel computing parallel comput-

ing

no. top-level fea- | comp. time [s] comp. time [s]
sible profiles
T=2 NH | 137 10.38 5.50
H 99 8.38 4.10
T=3 | NH [ 9819 3.504 -10° 1.532 -103
N H 1644 611 259
T=4 | NH [ 19614 no data 1.59 -10°
H | 10230 no data 5.36 -103
TABLE III

COMPUTATIONAL PERFORMANCE OF THE OPTIMIZATION FRAMEWORK.
NH - NO HEURISTICS, H - HEURISTICS

As we can see in Table [[II} considering 3 macroperiods, the
proposed heuristics and parallel computing together are able
to reduce computing time by 1 order of magnitude. Regarding
4 macroperiods, without parallel computing the computations
could not be performed (the program crashed), but applying
parallel computing and heuristics, the optimization takes about
1.5 hour.

We can see that the more complex cost model and the
implied non-convex QP results in computational times much
higher compared to a standard MILP approach [32].

IV. DISCUSSION

In this article we presented a decomposition method for the
OS problem by the means of introducing MoOs, and a two-
level optimization framework. The higher level of the algo-
rithm identifies the top-level-feasible MoO profiles considering
power and reserve demands and possible production levels
determined by the MoO profile. The low level optimization
process, which is solved in a parallel way for the top-level-
feasible MoO profiles determined by the higher level of the

process, optimizes the power generation and reserve allocation
values for each time period according to the constraints defined
by the actual profile.

A simple heuristic has been introduced to constrain the
number of top-level-feasible MoO profiles taken into account.

The proposed approach may be fit to other, different time
scale dispatch algorithms: If any of the PPs has already
long term contracts and its generation capacities are partially
engaged, it shall submit the piecewise linear approximation
only regarding its remaining capacities to the TSO. In this
case its number of possible operation modes (n,) may also
be decreased, since no shut-down mode is needed, which also
decreases the number of possible MoO profiles.

We demonstrated the functioning of the algorithm on a sim-
ple example (T=2), and analyzed its performance in the case
of larger problems (T=3,4), and compared the computational
performance with or without parallel computations and heuris-
tics. The results clearly show that the proposed method is able
to exploit the capabilities of the available parallel computing
power to significantly decrease computational times.

The higher level of the optimization procedure, where MoOs
are assigned to generators for each time step, is however
tangible for intuition and thus gives space for further heuristic
approaches. A possible approach for handling the complexity
problems may be the application of suboptimal solutions. If
the amount of top-level-feasible MoO profiles largely exceeds
the amount which can be efficiently handled, it may do matter
which MoO profiles are evaluated first. If eg. a total cost limit
is given under which the operation has to be ensured, not all
MoO profiles must be evaluated (if a suitable one is found,
the algorithm may stop).

The other benefit of the integer approach of the top level
procedure is that the MoO profiles may easily combined
with other discrete variables, as transformer tap settings or
FACTS states, which represent additional control input to the
system. Discrete variables corresponding to network topology
optimization may be integrated in the same way.

We have to note furthermore that although in the defined
framework ramp-up costs are only considered in the terms of
MoO changes, this assumption may be easily relaxed. Once
the production values for a given MoO profile are determined
by the low-level optimization, these costs may be calculated
and taken into account during the determination of the total
cost of the given MoO profile.
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