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A B S T R A C T

We compared the suitability of several commonly applied digital soil mapping (DSM) techniques to quantify
uncertainty with regards to a survey of soil organic carbon stock (SOCS) in Hungary. To represent the wide range
of DSM techniques fairly, the followings were selected: universal kriging (UK), sequential Gaussian simulation
(SGS), random forest combined with kriging (RFK) and quantile regression forest (QRF). For RFK two different
uncertainty quantification approaches were adopted based on kriging variance (RFK-1) and bootstrapping (RFK-
2). The selection of the potential environmental covariates was based on Jenny's factorial model of soil for-
mation. The spatial predictions of SOCS and their uncertainty models were evaluated and compared using a
control dataset. For this purpose, we applied the most common measures (i.e. mean error and root mean square
error), furthermore, accuracy plot and G statistic. According to our results, QRF and SGS produced the best
uncertainty models. UK and RFK-2 overestimated the uncertainty whereas RFK-1 produced the worst uncertainty
quantification according to the accuracy plots and G statistics. We could draw the general conclusion that there
is a need to validate the uncertainty models. Furthermore, great attention should be paid to the assumptions
made in uncertainty modelling.

1. Introduction

Predictive soil maps suffer from different types of errors, where the
most common error sources could be the measurements, digitization,
typing, interpretation, classification, generalization and interpolation
(Heuvelink, 2014). Therefore, the quantification, visualization and
communication of the uncertainty of the digital soil mapping (DSM)
products would be indispensable to stakeholders (e.g. policy makers,
society etc.) as it has already been stressed by the GlobalSoilMap.net
initiative (Arrouays et al., 2014).

Nowadays, various approaches (e.g. geostatistical and machine
learning) are in use to model and quantify the uncertainty of DSM
products. Most of these approaches apply a probabilistic framework
within which the soil attribute of interest at a single location is regarded
as a realization of a random variable. The most commonly applied
geostatistical approach is the kriging variance that is jointly computed
with the kriging prediction (Webster and Oliver, 2007). Vaysse and
Lagacherie (2017) applied the kriging variance among others to con-
struct uncertainty models to various DSM products in France. Kempen
et al. (2014) applied the regression kriging variance to produce the 90%
prediction interval for topsoil clay map in the Netherlands.

Another frequently applied approach is the family of geostatistical
simulations that generates alternative and equally probable stochastic
realizations from a random function model to assess uncertainty
(Goovaerts, 1997). Via the generated stochastic realizations one is able
to assess and quantify uncertainty. For example, Heuvelink et al. (2016)
applied sequential Gaussian simulation to model the spatial variability
of various soil properties over Europe. Szatmári et al. (2015) tested a
sequential stochastic simulation approach based on regression kriging
to model the spatial uncertainty of soil organic matter content in a small
catchment area, Hungary. Poggio and Gimona (2014) used a 3D
GAM+GS algorithm (i.e. generalized additive models with Gaussian
simulation) to create a 3D soil organic carbon stock model for Scotland.
We have to note if the same model is assumed, the predictions and the
prediction intervals produced by a simulation approach should con-
verge to those produced by kriging as the number of simulated reali-
zations is increased.

Machine learning algorithms (MLA) are becoming more common in
DSM because of the computational power availability (Rossiter, 2018).
However, the quantification of uncertainty by MLA is quite novel.
Vaysse and Lagacherie (2017) applied quantile regression forest to
model the uncertainty of various DSM products in France. Furthermore,
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Rudiyanto et al. (2016) applied the same technique to produce the 90%
prediction interval to their peat thickness maps over some Indonesian
peatlands. At the same time, a great effort was made to model and
quantify the prediction uncertainty by alternative approaches. For ex-
ample, Viscarra Rossel et al. (2015) elaborated an uncertainty quanti-
fication algorithm based on bootstrapping, where the resulting pre-
diction realizations were used to predict and then quantify the
uncertainty for the Australian 3D soil grid. Padarian et al. (2017) ap-
plied this approach for the Chilean soil grid. Malone et al. (2011) ela-
borated an empirical method whereby the prediction intervals are de-
fined from the distribution of model errors. The feature space was
partitioned into clusters (with a fuzzy k-means routine) which share
similar error model.

When a geostatistical model is used to represent the residual var-
iation, a parametric model must be assumed. The most common choice
is a multivariate normal model but the normality assumption can be
relaxed by applying a parametric (e.g. logarithmic) or non-parametric
(e.g. normal scores) transformation to the data prior to model estima-
tion.

The aim of our study was to evaluate and compare the uncertainty
modelling capabilities of some frequently applied approaches in detail.
For this purpose we applied an independent control dataset, which was
not used in DSM. In this study we applied the following DSM techni-
ques: (1) universal kriging, (2) sequential Gaussian simulation, (3)
random forest combined with kriging and (4) quantile regression forest.
All the selected techniques apply a probabilistic framework to model
and quantify the uncertainty at a prediction location. However, the
selected algorithms use different approaches to do that. For example,
universal kriging uses its kriging variance to model the uncertainty,
whereas sequential stochastic simulation applies simulated values to
produce the model of uncertainty. Therefore, an additional objective of
our paper was to discuss the pros and cons of the selected approaches in
the light of our results.

We selected the soil organic carbon stock (SOCS) as the target
variable. In this study, we applied the specifications of the Global Soil
Organic Carbon (GSOC) mapping campaign (Yigini et al., 2018), which
was launched by the Global Soil Partnership. In brief, the main goal of
the campaign was to develop a global soil organic carbon stock map for
the topsoil layer. The GSOC concept builds on official national datasets,
therefore, a bottom-up (country-driven) approach is pursued. The area
of Hungary (93,030 km2) was the target domain of our study.

2. Theory

2.1. Spatial prediction and its uncertainty

The spatial variation of soil properties can be described and mod-
elled in terms of a deterministic component and a stochastic compo-
nent:

= +Z m εu u u( ) ( ) ( ), (1)

where Z is the soil property, m is the deterministic part describing
structural variation, ε is the stochastic part consisting of random var-
iation that could be spatially correlated and u is the vector of the
geographical coordinates. DSM techniques are in use to predict the
values of a given soil property in an area of interest. However, no map is
error free (Heuvelink, 2014) (i.e. the predicted values could be slightly
different from the true values), where the error is defined as the dif-
ference between the true and predicted value of a soil property. In fact,
the error is not known spatially exhaustively (Heuvelink, 2014). Actu-
ally, we are uncertain about the error (and the true value). It is not the
given soil property that is uncertain, it is our knowledge that is un-
certain about the given soil property. Hence, uncertainty is a term ex-
pressing our imperfect knowledge in describing an environmental ob-
ject, property or process and we aware of that (Bárdossy and Fodor,
2004). In this study, we adopt a probabilistic way to model and

quantify the uncertainty at a prediction location, where we will con-
sider the unknown value z(u) as a realization of a random variable Z(u).
The (cumulative) distribution function of the random variable Z(u)
fully models the uncertainty because it gives the probability that the
unknown is no greater than any given threshold z, that is

= ≤F z Z zu u( ; ) Prob{ ( ) }, (2)

We will consider Eq. (2) as the model of uncertainty at the predic-
tion location u. The aim is to produce such a model for each prediction
location. For this purpose, either parametric or non-parametric ap-
proaches can be applied. In the case of parametric approaches, an
analytical model defined by a few parameters is commonly adopted,
whereas in the cases of non-parametric ones, the model of uncertainty is
described by an empirical distribution function.

2.2. DSM algorithms for prediction and uncertainty quantification

In this study, we applied the following DSM techniques: (1) uni-
versal kriging, (2) sequential Gaussian simulation, (3) random forest
combined with kriging and (4) quantile regression forest. The listed
techniques are well-known and frequently applied algorithms in DSM.
Therefore, just a brief introduction of the listed algorithms will be
provided here. More details on them are given in the cited papers and
textbooks.

Universal kriging (UK), also termed regression kriging or kriging with
external drift (Hengl et al., 2004), combines regression of the target soil
variable on environmental covariates with kriging of the regression
residuals (Hengl et al., 2007). In terms of Eq. (1) the deterministic
component is modelled by a multiple linear regression whereas the
stochastic part of variation is modelled by kriging using the regression
residuals. For the residuals we assume that they are multivariate
normal. The parameters of the UK estimator and the variogram of the
stochastic component are estimated by REML (residual maximum
likelihood) (Lark, 2012). The prediction variance of UK is the sum of
the estimation variance of the deterministic component and the pre-
diction variance of the kriged residuals (i.e. kriging variance) (Hengl
et al., 2007, Eq. (6)). Therefore, it reflects the position of unsampled
locations in both geographic and feature space. By means of UK pre-
diction and its variance a parametric model of uncertainty can be
produced with the assumption of normality. It is a full and mathema-
tically concise model since a normally distributed random variable is
fully determined by its mean and variance.

As opposed to any kriging techniques, the main aim of sequential
Gaussian simulation (SGS) is to generate alternative and equally prob-
able stochastic realizations, which reproduce the model statistics (e.g.
histogram and variogram) rather than to minimize the local prediction
variance (Goovaerts, 1997). The SGS algorithm involves sequential
sampling of the N-point conditional cumulative distribution function of
the random function model that models the joint uncertainty at N lo-
cations (Goovaerts, 1997):

… … = ≤ … ≤F z z n Z z Z zu u u u( , , ; , , | ( )) Prob{ ( ) , , ( ) },N N N N1 1 1 1 (3)

where N is the number of the prediction locations and n is the number
of the observations. In practice, a one-point conditional cumulative
distribution function is modelled and sampled at each of the prediction
locations visited along a random path (Deutsch and Journel, 1998;
Goovaerts, 1997). The kriging prediction and its variance are in use to
construct the one-point distribution function at each prediction loca-
tion. To ensure the reproduction of model statistics each one-point
distribution function is made conditional not only to the observations
but all previously simulated values visited along a random path. If each
prediction location is visited and each has been given a simulated value,
then the resulting set of simulated values represents one stochastic
realization. Other realizations can be obtained by repeating the entire
sequential sampling process with possibly different random paths
(Deutsch and Journel, 1998; Goovaerts, 1997). A common approach in
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DSM is to use SGS for the stochastic component (i.e. second term on the
right-hand side of Eq. (1)) and add the generated realizations back to
the deterministic component (i.e. first term on the right-hand side of Eq.
(1)) (Poggio and Gimona, 2014). In that case, we assume that the re-
siduals are multivariate normal but we do not have any assumption
about the distribution of the target variable. However, Goovaerts
(1997, 388 p.) suggests to use SGS for the whole spatial modelling. We
applied the later approach in this study. In that case, the adopted
random function model to Z(u) is multivariate normal. This calls for a
priori transformation of the original z-data into y-data with a standard
normal cumulative distribution function (Deutsch and Journel, 1998;
Goovaerts, 1997). For this purpose normal score transform is commonly
applied, which is a type of quantile transformation based on Gaussian
anamorphosis. UK was connected to SGS, i.e. the UK algorithm was
used for characterizing the conditional cumulative distribution function
at each prediction location (Szatmári et al., 2015). The model of un-
certainty for a prediction location is given by the empirical distribution
function of the back-transformed simulated values at that location. The
spatial prediction for a prediction location is commonly identified by
the mean of the simulated values.

Random forest combined with kriging (RFK) can be considered as a
new “workhorse” in DSM (Keskin and Grunwald, 2018). In terms of Eq.
(1) the deterministic component is modelled by random forest (RF)
whereas the stochastic part of variation is modelled by kriging using the
computed residuals. The variogram of the stochastic component is es-
timated by Matheron's (1963) method-of-moments estimator. RF pro-
vides a prediction for the target soil variables via an ensemble of
classification or regression trees. The RF prediction is the conditional
mean that is approximated by the averaged prediction of the generated
trees. According to Hengl et al. (2015), some of the advantages of RF
over linear regression are as follows: it can fit complex non-linear re-
lationships and the correlation between the environmental covariates is
not a limiting factor. However, we must assume that the observations
are independent and the residuals are multivariate normal. In this
study, we applied two approaches to model and quantify the un-
certainty of the RFK prediction. These are based on (1) kriging variance
(Vaysse and Lagacherie, 2017) and (2) bootstrapping (Malone et al.,
2017; Viscarra Rossel et al., 2015). In the first approach, the kriging
variance of the stochastic part of variation and the RFK prediction
(RFK-1) described above are in use to model the uncertainty as in the
case of UK. However, this uncertainty model does not account for the
uncertainty in estimating the deterministic component. Therefore, there
is a need to assume that the varying local mean is exactly equal to the
RF prediction. In addition, we have to assume normality to be able to
construct a parametric model of uncertainty. For bootstrapping, the
approach involves repeated random sampling with replacement of the
observations. Using the bootstrap sample a RFK model is fitted and a
digital soil map is generated. By repeating the process of bootstrap
sampling and applying the RFK model, we are able to generate prob-
ability distribution of the prediction realizations from each model at
each prediction location (Malone et al., 2017). To produce a robust
prediction for the target soil variable the mean of the prediction rea-
lizations (RFK-2) is commonly computed and mapped. According to
Viscarra Rossel et al. (2015, Eq. (6)), the overall variance of the RFK
prediction is approximated by the sum of the mean squared error of the
spatial model, the average kriging variance of the residuals and the
variance of the generated prediction realizations. By means of the
average prediction realizations and the variance of the RFK prediction a
parametric model of uncertainty can be produced with the assumption
of normality.

Quantile regression forest (QRF) is a quite novel approach in DSM.
According to Meinshausen (2006), RF can give valuable information
not only about the conditional mean but also about the conditional
distribution of the target variable. The key difference between RF and
QRF can be summarized as follows (Meinshausen, 2006): for each node
in each tree, RF keeps only the mean of the observations that fall into

this node and neglects all other information, whereas QRF keeps not
just their mean but the value of all observations in this node. Based on
this information QRF can give the empirical distribution function,
which will be the model of uncertainty. QRF keeps the advantages of
RF. On the other hand, we have to assume that the observations are
independent as in the case of RF. In this study, we did not model the
stochastic part of variation (i.e. second term on the right-hand side of
Eq. (1)) by residual kriging.

2.3. Derivation of the 90% prediction interval

In DSM a common way to spatially explicitly visualize the un-
certainty of a spatial prediction is to map the upper and lower limit of
the 90% prediction interval (PI) (Arrouays et al., 2014; Heuvelink,
2014). This PI reports the range of values within which the true value is
expected to occur 9 times out of 10. If the uncertainty model is para-
metric and normally distributed, the lower and upper limit of the 90%
PI can be readily computed by subtracting and adding 1.64 times the
prediction standard deviation to the prediction. This can be used for UK
and both types of RFK. If the uncertainty model is non-parametric (i.e.
an empirical distribution function is given), the lower and upper limit
of the 90% PI can be identified by the 5th and 95th percentiles of the
empirical distribution function. This can be used for SGS and QRF.

2.4. Validation of uncertainty models

The uncertainty models can be validated by computing the actual
fraction of true values falling within symmetric PIs of varying width p.
A series of PIs can be readily derived by the − p(1 )

2
and + p(1 )

2
quantiles of

the distribution function (Goovaerts, 2005). If a set of control data and
independently derived distribution functions are available at some
control locations, the fraction is computed by

∑= ∀ ∈
=

ξ p
m

ξ p pu( ) 1 ( ; ) [0, 1]
i

m

i
1 (4)

with

= ⎧
⎨⎩

∈
ξ p

z p p
u

u
( ; )

1, if ( ) ( , ]
0, otherwise

i
i lower upper

(5)

where is the fraction for the PI of width p, ξ(ui;p) is the indicator
function, z(ui) is the true value, pupper is the upper limit of PI, plower is
the lower limit of PI and m is the number of control points. A graphical
way to check the performance of the uncertainty models is to plot
against p that is frequently referred to as accuracy plot (Deutsch, 1997;
Goovaerts, 2001), but also known as prediction interval coverage
probability plot (Malone et al., 2011; Shrestha and Solomatine, 2006).
Ideally, the observed fractions are equal to the expected fractions. If
they are lower than the expectations, then the uncertainty has been
underestimated. If they are higher, the uncertainty has been too liber-
ally estimated (i.e. overestimated). The closeness of the observed and
expected fractions can be assessed by the G statistic (Deutsch, 1997)
defined as

∫= − − −G a p ξ p p dp1 [3 ( ) 2][ ( ) ]
0

1

(6)

with

= ⎧
⎨⎩

≥a p ξ p p( ) 1, if ( )
0, otherwise (7)

where a(p) is the indicator function. The G value can be interpreted as
the higher the value the closer the observed and expected fractions.
Ideally, it is equal to 1.
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3. Materials and methods

3.1. Soil data

In this study, we derived the reference soil data from the Hungarian
Soil Information and Monitoring System (SIMS). SIMS contains 1236
monitoring sites (i.e. soil profiles) (Fig. 1). These soil profiles have 4859
genetic soil horizons altogether that have been defined according to the
Hungarian genetic soil classification system. We applied the measured
soil organic carbon content [%], bulk density [g·cm−3] and the “on-the-
field” estimated volume of stones [%] of each soil genetic horizon de-
termined in the starting year (i.e. 1992). These primary soil properties
were used for computing SOCS at the level of soil profile. The summary
statistics of the applied soil properties are presented in Table 1 re-
gardless of their vertical origins from the soil profile.

3.2. SOCS computation at the level of soil profile

We computed SOCS according to the GSOC specifications (Yigini
et al., 2018). The mandatory mapping depth was 0–30 cm, however,
there was an optional extension to organic soils (including peats),
where the recommended mapping depth was 0–100 cm. SOCS was

computed for each SIMS soil profile with the following equation:

= −SOCS SOC ·BD · VST TL(1 )· ,d d d (8)

where SOCSd [g·cm−2] is the soil organic carbon stock to given depth,
SOCd [%] is the soil organic carbon content for given depth, BDd

[g·cm−3] is the bulk density for given depth, VST [%] is the volume of
stones and TL [cm] is the thickness of soil layer. We transformed the
[g·cm−2] unit to [tons·ha−1] because later one is a more common and
convenient unit to express and interpret SOCS. Henceforth, the
[tons·ha−1] unit will be applied. Due to the different mapping depth
specification of GSOC, we carried out the computation of SOCS for
mineral and organic soils separately. In the case of mineral soils SOCS
was computed for the mandatory depth (i.e. TL was 30 cm), whereas for
organic soils SOCS was calculated for the recommended depth (i.e. TL
was 100 cm). We selected randomly 200 SIMS soil profiles as control
dataset that was not used in DSM. The aim of the control dataset was to
validate and compare the resulting uncertainty models.

3.3. Environmental covariates

The selection of the potential environmental covariates was based
on Jenny's (1941) factorial model of soil formation, which has been
formulated by McBratney et al. (2003). The applied environmental
covariates are summarized in Table 2 according to the scorpan's factors
(i.e. s: other soil properties, c: climate, o: organisms, r: topography, p:
parent material, a: age and n: geographical position). We applied the
genetic soil type map of Hungary as environmental covariate that in-
cludes 9 (higher order) soil types according to the Hungarian soil
classification system. We also used the available climatic data layers,
such as the long-term mean annual precipitation and temperature
(Table 2). Organisms were represented by satellite images that were
acquired by moderate-resolution imaging spectroradiometer (MODIS)

Fig. 1. Spatial position of the monitoring sites (n= 1236) of the Hungarian Soil Information and Monitoring System (SIMS).

Table 1
Summary statistics of soil organic carbon (SOC), bulk density (BD), volume of
stones (VST) and the computed soil organic carbon stock (SOCS).

Soil properties Unit Min Max Mean Median Std. dev.

SOC [%] 0.005 12.993 0.692 0.440 0.695
BD [g·cm−3] 0.700 1.910 1.430 1.440 0.148
VST [%] 0 99 0.025 0.000 0.118
SOCS [tons·ha−1] 0.000 367.800 50.260 46.100 34.100
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in 2012 and 2013. We applied the normalized difference vegetation
index, as well as the near infrared and red bands. The environmental
covariates related to the relief were derived from the digital elevation
model (DEM) of Hungary, such as the slope, topographic wetness index,
vertical distance to channel network and diurnal anisotropic heating
(Table 2). The parent material was represented by the geological map of
Hungary that includes 13 classes according to Bakacsi et al. (2014). The
geological map was converted to raster layer.

Due to the various data sources, the selected environmental cov-
ariates had different spatial resolutions (Table 2). Therefore, we re-
sampled them into a common reference system with 500m resolution.

3.4. Implementation of DSM algorithms

We applied each of the DSM techniques listed in Section 2.2. In
Fig. 2 we summarized our DSM activity. The computed SOCS has a
positively skewed distribution. The summary statistics of SOCS are
presented in Table 1.

In the case of SGS we used the normal scores for spatial modelling.
For UK, RFK and QRF the SOCS data was directly applied. We carried
out a principal component analysis on the continuous environmental
covariates (Table 2) because we could suspect there is a correlation
between the covariates. The resulting principal components were used
for UK and SGS to avoid multicollinearity in regression analysis. We
applied indicator transform to the categorical covariates (Table 2) to be
able to use them in regression analysis (Goovaerts, 1997; Hengl et al.,
2004). For RFK and QRF we applied the original environmental cov-
ariates listed in Table 2 and we generated 500 regression trees, re-
spectively. For each variogram we fitted a nested variogram model. The
first structure was a nugget model to describe discontinuity at the origin
(i.e. lag zero). The second structure was an isotropic spherical model,
which model type is frequently applied in soil science (Webster and
Oliver, 2007). By each DSM technique we performed spatial prediction.
By the SGS algorithm we generated 1000 alternative and equally

probable stochastic realizations that were back-transformed to the
original scale. For bootstrapping we generated 1000 bootstrap samples
and using these samples we derived 1000 prediction realizations. For
each spatial prediction we produced the model of uncertainty at each
prediction location then we derived and mapped the lower and upper
limit of the 90% PI.

3.5. Comparison of spatial predictions and uncertainty models

We divided the evaluation and comparison procedure into two
parts. In the first part we evaluated and compared the errors of the
spatial predictions using the most common measures, i.e. mean error
(ME) and root mean square error (RMSE). The first one is commonly
referred to as bias whereas the second one is frequently referred to as
the spread of the error distribution. A reasonable goal for any DSM
work is to produce map with ME close to zero and RMSE as low as
possible. We applied the control dataset to compute these measures. In
the second part we validated the uncertainty models. First of all, we
compared the uncertainty models at a randomly selected control point,
where the true SOCS value was known. In the next step, we compiled
the accuracy plots for each DSM technique using the control dataset and
we computed the G statistics.

4. Results

4.1. DSM and uncertainty quantification

The R-squared values of the fitted multiple linear regression models
for UK and SGS are 0.24 and 0.31, respectively. In the case of RFK, the
R-squared value of the fitted RF model is 0.71, which is higher than the
previous ones. This can be explained by the suitability of RF for mod-
elling complex non-linear relationships.

In Fig. 3 we present the histograms of the computed residuals (i.e.
SOCS minus the deterministic model predictions). The computed re-
siduals for SGS are in the transformed units. In the case of SGS the
residual histogram shows a normal distribution that is appropriate for
the required normality assumption. For UK and RFK this assumption
does not appears to be appropriate because of the outliers.

We plot the omnidirectional variograms of the residuals, as well as
the fitted models in Fig. 4. The range values of the fitted models for UK,
SGS and RFK are 18.6 km, 38.1 km and 9.6 km, respectively. The nugget
to sill ratios are quite high (0.76, 0.83 and 0.78 for UK, SGS and RFK,
respectively). However, such high values are not rare in DSM (e.g.
Hengl et al., 2015; Vaysse and Lagacherie, 2017). We have to note that
the fitted models for UK and SGS differ significantly from each other,
which can be attributed to the normal score transform (Deutsch, 2002).

For each DSM technique we present spatial prediction, as well as the
upper and lower limit of the 90% PI in Fig. 5. We plot the width of the
90% PI for each DSM technique to inspect the different patterns of
uncertainty (Fig. 6). It is apparent that for RFK-1 the uncertainty is only
related to the configuration of SIMS points whereas for SGS and QRF
the uncertainty is related to size of the predictions and the covariates,
respectively. In the case of UK and RFK-2 the uncertainty accounts for
both the unexplained stochastic variation and the uncertainty in esti-
mating the deterministic model.

4.2. Performance of spatial predictions

In general, the computed biases are lower than zero (Table 3), i.e.
the applied DSM techniques a little bit underestimate SOCS. For RFKs
(i.e. RFK-1 and RFK-2) the computed biases are the closest to zero, in
addition the RMSE values are almost the lowest. This can be attributed
to the fact that RF often outperforms the regression techniques (Hengl
et al., 2015). Furthermore, the residuals were modelled by kriging that
minimizes the local error variance (Webster and Oliver, 2007). Ac-
cording to the error measures, RFKs outperformed UK, SGS and QRF.

Table 2
Summary of the applied environmental covariates.

Scorpan's
factors

Name Resolution Type

Soil Soil type map of Hungary 100m Categorical
Climate Long-term mean annual

evapotranspiration
100m Continuous

Long-term mean annual evaporation 100m Continuous
Long-term mean annual
precipitation

100m Continuous

Long-term mean annual temperature 100m Continuous
Organism Normalized difference vegetation

index (MODIS)
250m Continuous

Near infrared (MODIS) 250m Continuous
Red (MODIS) 250m Continuous

Relief Altitude 100m Continuous
Cross-sectional curvature 100m Continuous
Diffuse insolation 100m Continuous
Direct insolation 100m Continuous
Diurnal anisotropic heating 100m Continuous
Downslope curvature 100m Continuous
Local curvature 100m Continuous
Local downslope curvature 100m Continuous
Local upslope curvature 100m Continuous
Longitudinal curvature 100m Continuous
LS factor 100m Continuous
Relative slope position 100m Continuous
Slope 100m Continuous
Surface area 100m Continuous
Topographic position index 100m Continuous
Topographic wetness index 100m Continuous
Upslope curvature 100m Continuous
Vertical distance to channel network 100m Continuous

Parent material Geological map of Hungary 1:100,000 Categorical
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4.3. Comparison and validation of uncertainty models

At the randomly selected control point the uncertainty models for
UK and RFKs show a normal distribution (Fig. 7) that comes from our
assumption about the error distribution. For SGS and QRF the models
do not follow a normal distribution. In the case of QRF the distribution
is slightly negatively skewed whereas for SGS the distribution has a
longer tail for the high SOCS values (Fig. 7), which is an evidence of
positive skewness. Each of the computed 90% PIs encapsulates the true
SOCS value (Fig. 7). The width of the 90% PIs increases in the order
RFK-1 (42.4) < RFK-2 (84.9) < QRF (88.8) < UK (98.0) < SGS
(110.7).

In the next step, we validated the compiled 90% PI map (Fig. 5) for
each DSM technique. We examined at the control points that how many
times SOCS falls within the 90% PI. In Table 3 we summarizes the
observed fraction for each DSM technique. SGS properly estimates the
uncertainty because it yields the expectation. UK, QRF and RFK-2 too
liberally estimate the uncertainty and therefore the observed fractions

are higher than the expectation whereas RFK-1 underestimates the
uncertainty.

At the majority of the control points RFK-1 underestimates the un-
certainty and therefore the accuracy plot is below the x= y line
(Fig. 8). This is because only the kriging variance prevails the un-
certainty since we assumed that the trend prediction is certain. UK and
RFK-2 overestimate the uncertainty and therefore the accuracy plots are
above the x= y line (Fig. 8). In addition, we can state that they are too
far from the x= y line. SGS and QRF properly estimate the uncertainty
and therefore the accuracy plots are quite close to the x= y line
(Fig. 8). For QRF the computed fractions in p∈ [0.25,0.35] are some-
what lower than the expectations but the differences are almost negli-
gible.

The G statistics increase in the order of RFK-1 < UK < RFK-
2 < SGS < QRF (Table 3). For SGS and QRF the G statistics are close
to the expectation and therefore they yield the most reliable uncertainty
models. According to Goovaerts (2005), between two uncertainty
models with similar G statistics, the one with the smallest spread would

Fig. 2. Workflow. Abbreviations: PCA: principal component analysis, SGS: sequential Gaussian simulation, UK: universal kriging, RFK: random forest combined with
kriging, QRF: quantile regression forest and PI: prediction interval.
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be preferred. Hence, we plot the average range of the PIs that include
the true values for a series of probability values (Fig. 9). SGS provides
smaller spread for the lowest (i.e. p ∈ [0.01, 0.1]) and highest (i.e. p ∈
[0.8, 0.99]) probability values, whereas QRF gives smaller spread for
the middle ones. The highest difference between them occurs at
p=0.9, where SGS yields a shorter average range with 4.79
[tons·ha−1].

5. Discussion

Many papers and textbooks on geostatistics (e.g. Goovaerts, 1997,
1999; Journel and Rossi, 1989) do not recommend to apply the kriging
variance as a general measure of local accuracy because it is data-value
independent. Indeed, “we have seen that the kriging variance does not

directly depend on the data values used for the estimation: It is an
unconditional variance” (Chilès and Delfiner, 2012, 176 p.). This in-
dependence calls for the stringent assumption of homoscedasticity, i.e.
the error variance has to be independent from the actual data values
and it depends only on the data configuration (Goovaerts, 1997). This
could be unrealistic for some variables where the variance increases
according to the measured value (Lark and Lapworth, 2012; Manchuk
et al., 2009; Marchant et al., 2011), a situation referred to as propor-
tional effect.

In this study, RFK-1 produced contradictory results. On the one
hand, RFK-1 gave one of the best spatial predictions according to the
error measures (Table 3), on the other hand, RFK-1 underestimated the
uncertainty according to the accuracy plot and G statistic (Table 3 and
Fig. 8). RF often outperforms the most commonly applied trend

Fig. 5. Spatial predictions of soil organic carbon stock, as well as the upper and lower limit of the 90% prediction intervals. The unit of the maps is [tons·ha−1].
Abbreviations: UK: universal kriging, SGS: sequential Gaussian simulation, RFK-1 random forest combined with kriging (using kriging variance), RFK-2: random
forest combined with kriging (using bootstrapping) and QRF: quantile regression forest.
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estimation techniques (Hengl et al., 2015). Furthermore, the residuals
are modelled by kriging that minimizes the local error variance
(Webster and Oliver, 2007). As a consequence, RFK-1 is designed to
provide the most accurate prediction at an unsampled location. How-
ever, the uncertainty was prevailed by the kriging variance because we
assumed that the trend prediction is certain. The kriging variance re-
flects only the position of unsampled locations in geographical space
without any reflection about their position in feature space. Therefore,

the assumption about the certainty of the RF prediction is too opti-
mistic, which is a serious shortcoming of RFK-1 in point of uncertainty
quantification. In addition, the average width of the 90% PI for RFK-1
was the lowest (Fig. 6). This could be misleading if one is looking for
that algorithm, which provides the lowest uncertainty around a pre-
diction.

SGS modelled properly the uncertainty (Table 3 and Fig. 8). How-
ever, all geostatistical simulations are computationally intensive and
the generated stochastic realizations require massive storage capacity.
Furthermore, using a simulation algorithm one will face a lot of pre-
and post-processing steps (Geiger, 2012; Goovaerts, 2005) that make
them not so attractive. In this study the pre- and post-processing of SGS
was the most extensive (Fig. 2). In theory, SGS should provide
equivalent result with UK if we apply SGS (1) directly or (2) to the
stochastic part of variation (i.e. second term on the right-hand side of
Eq. (1)). In both cases, the original (i.e. untransformed) data can be
used to generate stochastic realizations because there is no assumption
about the distribution of Z(u). However, we applied Goovaerts' (1997,
388 p.) approach in this study, i.e. we relaxed the normality assumption
by applying a normal scores transform prior to estimating our model.
This is the reason why SGS and UK did not produce equivalent results.

QRF estimated properly the uncertainty (Table 3 and Fig. 8). One of
the main drawbacks of QRF is that it is computationally intensive and

Fig. 6. Width of the 90% prediction intervals. The unit of the maps is [tons·ha−1]. Abbreviations: UK: universal kriging, SGS: sequential Gaussian simulation, RFK-1:
random forest combined with kriging (using kriging variance), RFK-2: random forest combined with kriging (using bootstrapping) and QRF: quantile regression
forest.

Table 3
Performance of the applied digital soil mapping techniques for spatial predic-
tion and uncertainty quantification. Abbreviations: ME: mean error, RMSE: root
mean square error, PI: prediction interval, UK: universal kriging, SGS: se-
quential Gaussian simulation, RFK-1: random forest combined with kriging
(using kriging variance), RFK-2: random forest combined with kriging (using
bootstrapping) and QRF: quantile regression forest.

UK SGS RFK-1 RFK-2 QRF

Error
ME −0.62 −0.62 −0.28 −0.19 −0.41
RMSE 25.63 25.53 25.05 24.89 24.86

Uncertainty
Observed fraction in the 90% PI 0.96 0.90 0.76 0.94 0.93
G statistics 0.87 0.95 0.80 0.89 0.97
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therefore, a great attention must be paid to the optimization of the
application of QRF (Vaysse and Lagacherie, 2017). As opposed to the
geostatistical algorithms, the modelling effort (e.g. pre-processing of
environmental covariates to decrease multicollinearity, normal score
transform, variogram modelling etc.) is reduced (Fig. 2) that makes
QRF attractive. For QRF we did not model the stochastic part of var-
iation (i.e. second term on the right-hand side of Eq. (1)) by residual
kriging because this was beyond the scope of this study. Therefore, the
applied QRF algorithm does not capture the auto-correlated error.

6. Conclusions

Our case study illustrated the importance of confirming that the
assumptions made in uncertainty modelling and quantification are
appropriate. Furthermore, there is a need to validate the resulting un-
certainty models. For this purpose, accuracy plot and G statistic can be
applied. In addition, we pointed out that the methods (i.e. UK and
RFKs) which based upon a multivariate normal model were not ap-
propriate to model and quantify the uncertainty of SOCS spatial pre-
diction in Hungary. For this purpose, the two methods (i.e. SGS and
QRF) which supported non-normal variation were more appropriate.
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simulation and QRF: quantile regression forest.
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