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Abstract 

Aluminium scrap is a raw material of growing importance in the production of aluminium and its alloys. 

Due to the thermodynamic properties, melting the recycled metal of high specific surface generates signif-

icant amounts of dross consisting of an oxide matrix and a large proportion of entrapped liquid metal. This 

heterogeneous material is usually processed by a thermo-mechanical treatment with the addition of a large 

amount of NaCl-KCl based salt to recover the entrapped metal. The residual dross is currently considered 

as waste, and it is usually disposed of despite of its potentially valuable metallic and non-metallic compo-

nents. We have examined the structure and composition of different residual dross types applying instru-

mental techniques and chemical leaching tests. The results pointed out the possibility of utilizing the chlo-

ride and the oxide components and removing the still remaining metals. A method of hydrometallurgical 

processing has been examined for the recycling of the basically NaCl-KCl salt content leaving a residue 

which may be suitable as an additive to rough ceramic materials used in the construction industry. 
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1. INTRODUCTION 

The restructuring of the Hungarian aluminium industry in the last decade to cut the primary pro-

duction and to become based on primarily secondary raw materials was a pioneering change in a 

country of significant bauxite resources and a long tradition of primary technology development. 

The change corresponds to a global tendency indicated by the steady increase in the share of the 

secondary based aluminium production, currently approaching a global 35%. This share in Hun-

gary is well beyond 70%, as primary metal – from import - is only used for technological reasons 

in the metallurgical production of the required compositions of usually low Fe and Si aluminium 

alloys. The global share of scrap as a raw material for aluminium production is expected to rise 

further, as re-melting consumes 95% less energy than primary production and the amount of scrap 

generated is increasing. Obsolete scrap, recycled from consumption represents a growing share 

in the charge of melting. It causes an increased dross formation in the usually applied gas fired 

melting furnaces because the thicker non-metallic surface layers on the usually large specific sur-

face area entails higher degree of oxidation during melting (HAN et al. 2003). The molten drops of 

the metal are more isolated and the dispersed particles of the metal – implying larger specific sur-

faces – are faster oxidised. The oxidation of aluminium and – especially – of magnesium, a common 
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alloying component, is highly exothermic, possibly causing an extreme local superheating which, 

in turn, results in an increased rate of oxidation. TÓTH et al. (2013) have shown the significance 

of metal losses by dross formation. The highly negative Gibbs free energy change (< –900 kJ/mol 

O2) associated with the oxidation of aluminium at the typical temperature (~750 oC) of melting 

results in an extremely high stability of its native oxide. Magnesium has an even more negative 

Gibbs free energy (< –1000 kJ/mol O2) related to its oxidation at this temperature (GILCHRIST 

1979). Oxidation is also highly likely by the main furnace gas components, CO2 and H2O arising 

from natural gas combustion. Therefore, oxidation during melting cannot be avoided, and the 

principal oxide component of the dross is Al2O3 and MgO or the spinel compound MgAl2O4 when 

melting of AlMg alloys. The latter compound causes a great structural changes, resulting in higher 

dross volumes. Due to the great exothermic heat of aluminium oxidation (< 1100 kJ/mol O2), the 

surface of the melt can be superheated and such solid phases as AlN and Al4C3 can be also formed.  

The oxides of aluminium and also of magnesium do not form a protective slag layer as they 

are solid at the temperature of aluminium melting. Although they have higher densities than that 

of the molten metal, their fine particular shape and the high surface tension results in the formation 

of the physically heterogeneous dross layer at the surface of the melt (HO and SAHAI 1990). The 

oxides represent a direct loss of the metal, but even more molten metal is entrapped physically in 

the heterogeneous dross layer, usually removed manually from the surface of the metal bath after 

melting. The structure of the aluminium dross is generally characterised by oxide particles and 

scales stuck together by the partly frozen metal. The metallic content of the dross may reach as 

high as 70–80% by weight, which is usually removed by a thermo-mechanical treatment (TÓTH 

et al. 2013) in a converter-type rotary furnace applying significant addition of NaCl-KCl based 

salts. Salt addition efficiently serves the separation and disintegration of the oxide coatings and 

to prevent excessive re-oxidation of the molten metal phase. The metal recovery by the hot pro-

cessing is shown in Figure 1.  

    

Figure 1 

Thermo-mechanical treatment of the aluminium dross to recover the entrapped metal (a – dross 

charging, b – processing, c – tapping and retaining the residue, d – removing the residual dross) 

a) b) c) d) 



164                                                                               Tamás Kékesi 

 

The heterogeneous material is heated by the jet flame of an oxy-fuel burner mounted in the 

lid, while the oxide structure is broken by the rotary movement of the furnace drum and the inter-

mittently applied pushing force exerted by the plunging tool used in the tilted position of the 

furnace.  

The tapped metal is aluminium, containing the less reactive alloying components, while Mg is 

lost by selective oxidation generating extra heat. As most of the entrained metal content can be 

recovered by this process, the residual dross usually consists of mostly the oxides and the salt com-

ponents, accompanied by a low (2–10%) concentration of metal. The amount of this residual dross 

may be ~ 5 % of the produced metal, depending on the Mg content of the grades, reaching levels 

measured in thousands of tons in Hungary. As no significant metallic value can be recovered from 

it, and its oxide and chloride components cannot be utilised in this form, the major part of it is 

disposed of at landfill sites. In order to make the residue also useful it is imperative to separate the 

salt and the oxide constituents. The recovered salt can be recycled to the thermo-mechanical treat-

ment of the primary aluminium dross. The salt-free final residue, containing mostly the oxides and 

a minor amount (a few per cent) of the aluminium metal could be utilized in different industrial 

technologies as: 

• slag forming agent in steel making (where the remaining Al content is also of benefit for the 

reducing effect) 

• additive to special cements and concrete (to improve thermal insulating properties) 

• additive to asphalt (to increase wear resistance) 

• additive to produce glass foams (a novel structural material for heat insulation) 

• ceramic production  

 

However, all these novel applications would require an almost complete elimination of the chloride 

components from the residual dross (XIAO et al. 2005). The remaining aluminium content may be 

useful (as in steel making slag modification) or harmful (as in ceramic production), or indifferent in 

small quantities covered by a thick and firm oxide layer (as in the other noted potential applications). 

In order to meet the requirements of utilization the salt removal is a commonly critical condition, 

which, at the same time, may also serve the economy of dross processing by recycling.  

The basically chloride salt content of the residual dross may be dissolved by pure water at ordi-

nary temperatures. The obtained brine can be evaporated to yield the NaCl-KCl salt for recycling. 

The minor CaF2 component - also present originally - may not be recovered, but can be supplied 

when the proper NaCl/KCl ratio is reset for the repeated application. Thus water leaching should be 

the fundamental initial step in a hydrometallurgical processing scheme after crushing and fine grind-

ing the residual dross (“salt cake”) from the thermo-mechanical treatment of the primary melting 

dross. The preliminary grinding step may be followed by a physical separation of the larger malle-

able particles containing a predominant metallic core, or added directly to the leaching step to pro-

duce a brine of approx. 25% saturation for efficient dissolution, but also subsequently an energy 

saving removal of water by evaporation. Side reactions occurring as a result of the high-temperature 

treatment of the dross may occur, producing some noxious gases too: 

AlN + 3H2O = Al(OH)3 + NH3                                                                    (1) 

AlN + NaOH +H2O = NaAlO2 + NH3                                                              (2) 

Al4C3 + 12H2O = 4Al(OH)3 + 3CH4                                                               (3) 
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If acidic or alkaline solutions are present, the minor metallic aluminium content may also be dis-

solved:  

2Al +3H2SO4 = Al2(SO4)3 + 3H2                                                                  (4) 

Al +NaOH + H2O = NaAlO2 + 1.5H2                                                             (5) 

The reactions above – especially the last two – are exothermic, which will beneficially increase 

the temperature. These effects may also be present if the residual dross is disposed of in the envi-

ronment. 

There are proposed technologies (OLPER and KASPAR 1994) which are assumed to offer 99% 

recovery of the salt and a low (< 0.2 %) chloride content in the final residue, and the harmful 

gases evolved during the hydrometallurgical treatment are combusted. The generated heat of dis-

solution can be utilized for the evaporation of water. Although the proposed hydrometallurgical 

process may seem straightforward, there remain the questions of dissolution kinetics, efficiency 

of solid/liquid separation by decantation or filtering, solubility of metals, the application of acid 

or alkaline media, purity of the solid residue and the efficiency of evaporation. These questions 

required clarifications by fundamental experiments.  

 

2. EXPERIMENTAL MATERIALS AND PROCEDURE 

The raw materials for the experimental examinations were collected from the accumulated resid-

ual dross at an industrial site of the thermo-mechanical treatment of aluminium melting dross. 

There are basically two different extreme types that can be distinguished also by sight. One being 

light and the other dark in colour. Applying a special method (KULCSÁR and KÉKESI 2017) for 

determining the metal content (broken down into physically obtainable in the molten form or 

coarse pieces after granulating the hot treated residue, and the hidden metal content in the sepa-

rated fine fraction after grinding), it has been pointed out that the lighter material had a metal 

content of 9.9%, and it was a mere 1.1 per cent in the fine (< 250 µm) fraction obtained after 

grinding. Whereas these values were 13.6 and 4.5 per cent in the dark material. No metal could 

be melted out of either samples whereas - after granulating the hot material in water - grinding 

and classifying resulted in a fine fraction of ~90% from both materials. The characteristic images 

and the relevant Energy Dispersive X-ray (EDS) and the X-ray Diffraction (XRD) spectra are 

shown in Figure 2 and 3. 

Figure 2 

The macro (a), the EDS (b) and the XRD spectra of the light coloured residue  

from the thermo-mechanical treatment. 

a) b) c) 
Al 

O 

Na 
Mg 
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Figure 3 

The macro (a), the EDS (b) and the XRD (c) spectra of the dark coloured residue  

from the thermo-mechanical treatment. 

The EDS spectra reveal that the light coloured dross residue mainly consists of aluminium oxide, 

while the dark residue exhibits a relatively large proportion of the salt components and probably 

more metallic aluminium. However, the electron beam cannot penetrate below an oxide layer 

thicker than ~ 5 µm, thus not all the particles consisting of a metallic core can be detected as 

metal. The analytical method based on the collected volume of the H2 evolved from reactions (4-

5) could reveal the real metal content hidden under the oxide coatings of the fine particles 

(KULCSÁR and KÉKESI 2017). Shown by the XRD spectra, α-Al2O3 is dominant in the light col-

oured dross residue. The dominance of the simple oxides in the light coloured dross residue indi-

cates the higher temperature probably reached during the thermo-mechanical treatment, which 

also enhances the evaporation of especially KCl and Mg and could cause the formation of AlN. 

However, the remaining NaCl and KCl salt content is significantly higher in the dark dross residue 

and the MgAl2O4-spinel component is also more evident.  

Apart from the extreme types of the residual dross, samples were collected from the common 

grey coloured dross residues obtained from the industrial thermo-mechanical processing of pri-

mary dross batches generated in the melting of aluminium alloys of different Mg concentrations. 

The XRD spectra obtained with the residual dross samples from the thermo-mechanical pro-

cessing of primary dross batches obtained from the melting of low and medium Mg containing 

aluminium alloys are compared in Figure 4.  

The visual appearances of the two residual dross samples are quite similar, but the XRD spec-

tra reveal some differences. The major phases found are marked in either or both diagrams in 

Figure 4. It is obvious that due to the Mg alloying in the metal, the spinel MgAl2O4 phase appeared 

in the residual dross, while the salt and metallic Al content diminished. It can be attributed to the 

exothermic reaction of Mg oxidation during the hot dross treatment. 

Suggested by the observed compositions of the raw materials, it was preferred to use the pri-

marily the dark coloured extreme type dross residue and that related to the treatment of the dross 

related to the low-Mg aluminium alloy in the hydrometallurgical processing experiments. These 

cases offered the highest concentrations of the salt and the metal to be recycled or eliminated. 

 

b) 

O 

Na 

Mg 

Al 

Cl 

K 

Si 

c) a) 
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Figure 4 

The pictures and XRD spectra of the residue from the hot treatment of primary dross batches 

obtained from the melting of low (a) and medium high (b) Mg containing aluminium alloys 

 

The fine fraction (<250 µm) of the ground residual dross samples – obtained from the industrial 

thermo-mechanical processing of aluminium melting dross – were leached with distilled water 

and 16.3 m/m % sulphuric acid, respectively, followed by washing and solid/liquid separation 

steps organised in different procedures. Control tests of high dissolving power for aluminium-

oxide were carried out with 6 M NaOH too. Some pieces of equipment and the main steps of the 

laboratory leaching experiments are shown by Figure 5. 

 

      

Figure 5 

The main steps of the hydrometallurgical procedure (a – grinding, b – raw material, c – leaching,  

d – settling and washing, e – filtering, f –AAS analysis).  

a) 

b) 

a) b) c) d) e) f) 
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The applied sulphuric acid concentration corresponds to a 10 % by volume ratio, but beyond the 

convenience of preparation, it is preferred generally in hydrometallurgy (GILCHRIST 1979; BAR 

and BARKETT 2015). To examine the reaction rate, 10 g or 20 g samples, resp. were contacted 

with 100 cm3 of the solutions. It was a safe ratio to provide sufficient solubility. A horizontal 

shaking machine was used to provide a virtually homogeneous dispersion in reactor bottles of 

300 cm3 in volume. The kinetic experiments were carried out for various times, but further exam-

inations included set times of leaching (allowing equilibration). The larger scale experiments ex-

amining the elimination of the salt content in the various dross samples were carried out usually 

with 300 g material samples contacted with 500 cm3 of fresh solutions in each step of the complex 

hydrometallurgical procedure, applying 1000 cm3 reaction vessels (as shown in Figure 5c) for set 

total times allowing equilibrium dissolution at a shaking rate providing homogeneous dispersion. 

The concentrations of the chloride and the hydrogen ions were determined by classical titration, 

but the concentrations of the dissolved metals were analysed by Atomic Absorption Spectrometry 

(AAS). The results are given as yields of the indicated elements (or compounds) relative to the 

masses of the leached dross samples.  

In order to check the analytical results and to demonstrate the possible recycling of the salt 

content removed by leaching, the brine solutions obtained from the aqueous treatment were evap-

orated to dryness by the application of a rotary vacuum distilling equipment. The process and the 

resulted salt products are shown in Figure 6. 

    

Figure 6 

Salt recovery (a – rotary vacuum evaporation, b –  crystallized salt,  

c – drying in oven, d – products).  

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1. Basic studies on the leaching behaviour of the extreme dross types 

The kinetic characteristics of the dissolution process are illustrated by the yields of the analysed 

elements as functions of the time of leaching expressed in terms of the dissolved amount relative 

to the mass of the raw material. Although the principal aim is to recover the salt content, which 

can be achieved by applying water, it is of more information and interest to present the results of 

acid leaching. It is equally efficient in removing the chloride salts, but it may also dissolve the 

metallic aluminium content. Thus, beside showing the leaching behaviour, it may also reflect the 

a) b) c) d) 
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composition of the treated samples. These fundamental results obtained by water and acid leach-

ing of the extreme types of the residual dross are given by the kinetic curves shown in Figure 7. 

   

Figure 7 

Dissolution rates of Na, K, and Al by distilled water (a) and 16.3% H2SO4 (b,c) leaching from the 

 dark (a,b) and the light coloured (c)extreme-type dross samples obtained from the industrial hot 

treatment.  

 

According to the plotted total metal concentrations, analysed by the AAS technique, the water 

leaching of the dark residual dross sample yielded an amount of ~ 40 % chloride salt removed, 

relative to the sample mass, which was ~ 48% according to the approximate argentometric anal-

ysis. The AAS based result is actually ~ 4% higher than the ~ 36% value obtained with sulphuric 

acid. It is not a significant difference, especially considering the heterogeneity of the mass of the 

powdery raw materials, but it indicates that water is not less efficient in dissolving the chloride 

salts than dilute sulphuric acid. However, the argentometric analysis of the acid solutions shows 

a higher chloride salt yield (of ~ 51 %) from the dark residual dross. Beyond the gradual degra-

dation of the AgNO3 test solution, the argentometric method is more likely to give positive errors 

in the acidic medium, where the potassium chromate indicator may be converted in a larger pro-

portion to the inert chromic acid form. On the other hand, water leaching of the light coloured 

dross material yielded only ~ 5 % salt recovery by AAS and 6.4% by the less accurate argentom-

etry. This corroborates the comparison of the two extreme residues by the relevant XRD spectra 

in Figures 2 and 3. The kinetic curves prove that the water leaching of the chloride salt can be 

completed within a few minutes. 

As expected, it is noticeable that applying the sulphuric acid solution, metallic aluminium can 

be recovered too. This result shows a ~ 6 % recoverable aluminium metal content in the dark 

sample, which was only 1.5% in the case of the light coloured dross. It corresponds to the results 

obtained by the special method (KULCSÁR and KÉKESI 2017) determining the metal content in 

the fine fraction of this dross type. The light coloured dross yielded significantly lower amounts 

of dissolved salts and aluminium, corroborating expectations based on analytical and instrumental 

examination results shown above. As the analysed concentrations of the examined metals in the 

solutions reach their stabilized values, it is indicated that the dissolution of aluminium by the acid 

a) b) c) 

dark residue, 

H2O 

light residue, 

H2SO4 

dark residue, 

H2SO4 
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leaching is completed within 60 minutes, while the total salt content is dissolved in less than 15 

minutes under the applied technical conditions.  

The compositions of the solid residues obtained after the 1 hour leaching treatments were dried 

at 105 oC and were analysed by the same instrumental techniques as applied for the raw materials. 

The SEM images revealed wrinkled surfaces of particles consisting of Al and O, indicating the 

presence of α-Al2O3, while the Na, K and Cl peaks disappeared from the EDS spectra of all the 

treated samples. Although these results already confirmed the successful removal of the salt com-

ponents, the remaining phases were also examined by XRD analysis. Because of the higher initial 

concentration of the salt components, the effects of leaching can be even more clearly demon-

strated by the solid residues from the hydrometallurgical treatment of the dark coloured residual 

dross obtained from the industrial thermo-mechanical processing. The phases detected in the solid 

samples after leaching the dark residual dross with water, sulphuric acid and – for reference – 

with NaOH are marked on the XRD spectra of Figure 8.  

  

 
Figure 8 

The XRD spectra of the solid residues obtained after 1 hour of leaching with water (a), 16.3% 

H2SO4 (b) and 6M NaOH (c) of the dark coloured residual dross samples from the industrial 

thermo-mechanical treatment. 

 

A comparison of Figures 3 and 8 shows that α-Al2O3 and the MgAl2O4 spinel are dominating in 

the solid residue after water leaching, as the previously dominant chloride salts have been re-

moved from the dark coloured residual dross. The XRD spectrum obtained after the sulphuric 

acid leaching is similar, indicating the high chemical stability of the α-Al2O3 and the MgAl2O4 

a) b) 

c) 
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compounds. At the same time the intensity of the AlN peaks are slightly higher when the acid was 

used instead of water for leaching. It shows that the unpleasant evolution of NH3 may be slightly 

depressed by the addition of sulphuric acid in the water for leaching the residual dross obtained 

from the high temperature thermo-mechanical treatment of the primary dross. The metallic Al 

phase still detected in the residue after water leaching is clearly removed by the acid treatment. 

The aggressive 6M NaOH solution – used as a reference - could even more efficiently dissolve 

the metallic Al, but it also involves a strong evolution of gas and heat, caused by the dissolution 

of metallic Al, producing H2 and the dissolution of AlN enhanced by NaOH according to Eq. (2), 

generating of NH3. This unfavourable reaction is proved as the AlN peaks are removed after the 

NaOH leaching. Small amounts of the additive CaF2, which is not dissolved either in water nor 

in the alkaline solution, may remain in the residue. However, it may be gradually converted to the 

sulphate by applying sulphuric acid, but a noticeable, though relatively slight dissolution of Ca 

may be noticed only during a subsequent water rinsing. 

The above results prove that the residual dross – obtained from the thermo-mechanical treat-

ment of the primary dross of aluminium melting – may be successfully prepared for any further 

applications by a hydrometallurgical treatment. The simplest and cheapest treatment with water 

can remove the chloride salts. Applying dilute H2SO4, which is another inexpensive option, Al 

and some other metallic components may also be eliminated. The process may consist of single 

or multiple steps of leaching, washing, solid/liquid separation and a final rinsing filtration. It is 

important to minimize the necessary process steps and to include the best suitable ones. 

 

3.2. Hydrometallurgical purification of the usually obtained dross type 

The technological examinations, carried out with a residual dross from the industrial thermo-me-

chanical treatment of the primary melting dross containing a metallic phase of low-Mg alloyed 

aluminium, were carried out with water, sulphuric acid and NaOH reagents in multiple leaching 

steps followed by repeated washing with distilled water, solid/liquid (S/L) separation by decanta-

tion or filtering and the final filtering was continued by rinsing with distilled water. In these ex-

periments the starting material was always 300 g and each step involved 500 cm3 of the fresh 

solution added. According to Figure 7, the chloride salts are dissolved almost instantaneously 

from the previously examined extreme-type residual dross samples. However, this had to be con-

firmed with the average-type of the residual dross examined in the here presented purification 

experiments. The results, confirming the same behaviour, are shown by the relative kinetic curves 

of Figure 9a. Here, the deviation from the average concentration in the solutions obtained after 

various times of leaching are plotted. While NaCl and KCl are dissolved after a few minutes 

completely, a slowly developing Al dissolution can also be observed, which can be attributed to 

reaction (1), although the maximum Al concentration was just around 50–100 mg/dm3. It also 

implies that a very short water leaching can be applied to remove enough chloride salt before a 

significant volume of NH3 is evolved. Figure 9b shows that changing the S/L mass/volume ratio 

(g dross/cm3 water) from 10:100 through 100:100 did not have any appreciable effect. The solu-

bility and the dissolution rate of NaCl and KCl are high. Figures 9c and 9d show the results of 

repeated leaching steps with water lasting each for 10 minutes. The subsequent washing steps 

were carried out in a wide vessel agitated by manual shaking and the S/L separation applied was 
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simple settling and decanting. The final step was vacuum filtration combined with water rinsing 

(thus doubling the collected volume of the solution in this step).  

    

Figure 9 

Dissolution of the common type of the residual dross by applying only water (a, b – deviation 

from the average of all the solutions, c – yield distribution among steps, d – pH of the solutions) 
 

 

Most of the chloride salt content is dissolved in the first leaching step. However, the imperfect 

S/L separation by simple settling and decantation left a considerable amount of the liquid phase 

behind in the settled thick sludge in each step, therefore the salt content in the subsequent solutions 

could not be reduced efficiently. Even the last rinsing filtration – after six steps - could still re-

move some significant portion of the salt content. The alkaline pH generated is a result of the 

dissolution of AlN according to Eq. (1). Still applying the simple settling and decantation for 

separating the obtained solution in each step, Fig. 10.a shows the yields of the dissolved metals 

by water leaching and subsequent washing steps, as well as by the final rinsing filtration. As the 

S/L separation was still very rough, significant portions of the water-soluble NaCl and KCl were 

carried over among the subsequent steps. As water leaching did not result in any Al dissolution, 

AlCl3 was not found to be present at a recognisable level in the common type of the residual dross, 

however the presence of AlN was confirmed by the alkalinity of the solutions obtained. In order 

to check the tendencies determined by the AAS analysis of the solution samples, the rest of the 

solutions were evaporated and the dissolved NaCl-KCl salt was crystallized and weighed. As 

shown in Fig. 10c, it yielded similar tendencies of salt removal in the multiple step procedure, 

although due to significant losses, the total yield of the directly crystallized salts (~ 33%) was less 

than that calculated from the analysed concentrations (~ 48%) taking the chloride molar mass 

ratios into account. A further discrepancy is caused – beyond the potential systematic error in the 

analysis of the concentrated samples – by the settling after the leaching step, leaving the more 

concentrated portions of the – not perfectly homogeneous - solution in the residue at the bottom 

of the reaction bottle. Nevertheless, the final elimination and the distribution of the yields of the 

salt content by the water treatment was confirmed.  

pH ~ 10.5 

a) b) c) d) 
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Figure 10  

Metal yields (a), solution pH (b) and evaporated salt masses (c) obtained by water leaching of 

the common type residual dross in multiple steps, followed by washing and rinsing filtration 

 

Applying dilute sulphuric acid for the leaching steps had the expected effect of removing aluminium 

and other impurity metals. In view of the slower dissolution reaction of the metallic phase, the acid 

leaching was carried out for longer (30 min) periods. However, it was repeated with fresh reagent 

only once, after decanting off the first solution. For a better separation of the acidic and the subse-

quent quasi-neutral steps, the last leaching step here was followed by a filtration, applying also water 

rinsing, instead of the simple decantation. Figure 11 shows the results of leaching with both the 

preferred dilute (16.3%) and with a more concentrated (23.5%) H2SO4 concentrations.  

 

 

Figure 11 

Metal yields obtained with 16.3 % (a,c), and 23.5% (b,d) H2SO4 solutions applied for leaching 

and water for the subsequent rinsing and washing steps to purify the common type residual dross 

a) b) c) 

a) b) c) d) 
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Despite fine grinding of the examined dross samples, some extent of heterogeneity cannot be 

excluded, therefore comparing the results of different experiments starting from nominally the 

same raw material cannot be made accurately. Nevertheless Figure 11a and b reveal that increas-

ing the sulphuric acid concentration may not increase the yields of NaCl and KCl by leaching. In 

order to examine the effect of H2SO4 on the solubilisation of Al and the other impurity metals in 

it, results from the same experiments are plotted on a different scale in Figure 11c and d. It is seen 

that increasing the H2SO4 concentration did not improve the efficiency of metal dissolution. How-

ever, the latter two figures also show that some CaF2 is solubilized as a result of the sulphuric 

acid treatment. It may be converted into the CaSO4 form, which is however not dissolved – due 

to the solubility product – until the sulphate ions are removed by the water rinsing. Calcium ap-

pears significantly only in the neutral solutions of washing after the sulphuric acid leaching. In 

practice, it may be of reason to apply water leaching first and recover the salt content of the neutral 

solutions. The desalinated solid residue neutral procedure may be further treated by acid leaching 

to reach the necessary level of purity if any possible application requires it. This procedure has 

also been tested on the laboratory scale. A preliminary water leaching in three repeated steps 

followed by a double water washing was used to remove the chloride salt content from the com-

mon type of the residual dross samples. These pre-treated materials were then leached with sulphuric 

acid reagents of 8.5% (reduced), 16.3% (preferred) and 23.5% (increased) concentrations according 

to the procedure described above. The results are summarized in Figure 12. 

 

Figure 12 

Metal yields obtained with 8.5%, (a), 16.3 % (a,c), and 23.5% (b,d) H2SO4 solutions applied for 

leaching and water for rinsing and washing steps, after preliminary water-leaching, to purify 

the common type residual dross. 

 

The analysis of the minor components in the leachates was probably more accurate after the pre-

liminary removal of the high salt content. The comparison of Figures 11 and 12 suggests that the 

preliminary treatment of the residual dross with water (3 times leaching and twice washing in 

series) could remove more than 95% of the chloride salts. Especially the recovery of NaCl was 

a) b) c) 
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efficient. Some remaining KCl and NaCl were completely removed by the subsequent acid leach-

ing steps. Increasing the sulphuric acid concentration from 8.5 % to 23.5 % could enhance the 

efficiency of removing the metallic Al, although the preferred dilute 16.3% H2SO4 concentration 

may be just satisfactory.   

In order to compare the efficiency of a strong alkaline leaching, where the oxide coatings of 

the hidden aluminium particles may be more efficiently digested (GASTEIGER et al. 1992), exper-

iments with different NaOH reagents were also carried out. Results are shown in Figure 13.  

 
Figure 13 

Metal yields obtained with 6M NaOH applied for leaching and water for the subsequent rinsing 

and washing steps, after preliminary water-leaching, to purify the common type residual dross 

 

After a preliminary triple water-leaching treatment to remove the chloride salt content, the applied 

6M NaOH leaching could remove virtually only aluminium, which may have been mostly in the 

metallic form, but some Al2O3 dissolution from the coatings of the particles may also have con-

tributed to the analysed values. The second leaching was combined with filtering where a minute 

amount of rinsing water was also applied. It was followed by the usual washing and the final 

filtering steps, applying water to remove the remaining solution. Despite all the expectations, the 

aggressive alkaline leaching could remove significantly more metallic aluminium than the proce-

dure applying 16.3% or 25.3% sulphuric acid solutions as leachants. Although the decantation 

steps involved in the preliminary water-leaching treatment may have wasted some of the starting 

material, which could reduce the overall amount of dissolved metal.  

 

4. CONCLUSIONS 

A thorough examination of the residual dross samples collected from the industrial thermo-me-

chanical processing of aluminium melting dross materials revealed that the salt content can reach 

as high a level as ~ 40 %, the major constituents being NaCl and KCl. The examinations proved 

that a multiple-step procedure consisting of leaching, rinsing filtering and washing steps with 

water at room temperature and applying shaking can remove the chloride components efficiently. 

The dissolution of chlorides may be completed in a few minutes and a such a high S/L mass to 

volume ratio as 1 g/1 cm3 can be still efficient. Thereby the cost of recovering the salt by evapo-

ration and crystallization can be reduced. The reaction of AlN, also present in the residual dross 

from the hot treatment, can react with water, and especially with alkaline solutions, to produce 
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unpleasant NH3 emission. It may be suppressed by acid media, but a practical way to diminish its 

evolution is to apply shorter leaching, which may be efficient to dissolve the salts, but prevent the 

development of unwanted reactions. Applying repeated leaching steps may not increase the effi-

ciency of salt removal, however washing the residue with water and separating it by vacuum 

filtration, while rinsing the cake with water can usually guarantee at least a 95% efficiency in 

removing NaCl and KCl. If the S/L separation is carried out as much as technically possible, the 

product can be suitable for various new applications, such as cement and glass foams, geopolymer 

production, or asphalt conditioning, but the conventional use of a purified material in steel making 

is also advantageous. The residual minor amount of metallic aluminium in the product from the 

water-leaching procedure is mostly covered by an oxide layer making it virtually inert for appli-

cations in the construction materials industry, and it is even useful in steel making. Any practical 

metallic component content however, can be readily eliminated by applying dilute sulphuric acid 

leaching followed by the necessary washing and rinsing-filtering steps in a second purification 

procedure. Sodium hydroxide, although more efficient in digesting the Al2O3 layers, was not 

found significantly more efficient in removing the metallic aluminium from the residue of the 

water-leaching procedure.  
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Abstract 

Present paper deals with glass foam development from waste hollow glass. It is focused on the 

influence of glass particle size on the foaming process and physical characteristic of glass foam 

pellet. After the determination of the raw materials’ properties, green pellets were produced in a 

pelleting table using optimal pelleting parameters (2.5 w/w% bentonite concentration, 20 w/w% 

moisture content, heat curing of 850 °C) developed in our previous research. Ground glass with 

different particle size distribution (<106; 80; 45 and 20µm), Na-bentonite (to improve the initial 

strength of pellet) and dolomite (as foaming agent) were used for the pellet production. The 

apparent density, and pore size (by optical microscope) of the resulted glass foam pellets were 

determined. The mechanical stability (abrasion resistance) was investigated by abrasion test in a 

Deval-drum. The use of finer glass particle size resulted smaller density of glass foam pellets. 

The lowest density of glass foam was 0.52 g/cm3.Based on the results of mechanical stability, it 

can be stated the abrasion of coarser size pellets was higher. The pore size of pellets was different, 

it changed between few micron and 1000 micron. 

Keywords: waste glass, particle size, glass foam pellet, foaming agent, dolomite 

 

 

1. INTRODUCTION 

In Hungary, the glass waste is generated in approx. 180,000 tons/year, most of which (about 80%) 

is colored hollow glass. However, utilization of a significant ratio (60%) is not solved. Due to the 

technical and economic development of recent years, protection against the harmful effects of 

waste has become one of the most important economic and environmental factors. Waste should 

be properly collected, handled and disposed, otherwise it may have an adverse environmental 

impact. Along with recognizing the environmental impact of wastes, the role of wastes in the 

rational management of natural resources, material and energy management has become more 

apparent. In the developed countries, the significant part of waste is re-used as raw material, 

secondary raw material or secondary energy source [1]. 

According to the EU Waste Directive 2008/98 / EK: “The primary purpose of any waste policy 

is to minimize the negative effects of waste generation and waste management on human health 


