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Abstract 
 
In recent years the number of titanium dental implants in use has significantly increased. At the same time 
bacterial infection of implants has become more common. The goal of our study was to develop a titanium-
dioxide layer on the surface of titanium implant materials by anodisation with a view to impeding the 
attachment of contagious bacteria. In our experiments Grade 2 titanium and nanograin Grade 2 titanium 
discs were subjected to anodisation. We investigated the effect of voltage on the surface pattern of emerging 
titanium-dioxide. We examined the surfaces by reflected-light microscopy. We found that the value of the 
applied voltage and variation in grain size affected the thickness of the formed titanium-dioxide layer. These 
layers may promote or support desired forms of biological activity, such as cell attachment to integrate with 
bone. 
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1. Introduction 
 
Implant-associated infections have dramatically increased over the last decade in line with an unfortunate 
trend of growing resistance by bacteria to antibiotics. Bacterial infection can seriously compromise the 
success of an implant 1. One way to reduce bacterial colonisation of an implant might be to subject it to a 
surface treatment that gives the implant surface a texture which is difficult to colonise. Perhaps 
paradoxically, we are therefore trying to achieve a surface which impedes one kind of cellular attachment 
(bacterial) and yet promotes another kind of cellular attachment (osseointegrative, supporting attachment by 
bone cells). 
Anodisation is an electrolytic surface treatment. The work piece is connected into a circuit as an anode 
immersed in an anodising bath. A cathode is immersed in the bath as well, made from the same or different 
material as the work piece. The most common geometries of the cathodes are sheet or roll. After closure of 
the circuit electrons can flow (Figure 1). 
 

 
Figure 1 Schematic depiction of the anodisation experiment 



 
Because of the voltage, oxygen is released from the anodising bath, which reacts with the work piece. A 
metal-oxide layer is created on the surface, the thickness of which depends on the applied voltage and to 
some extent duration of immersion. 
Aside from time, the process is jointly determined by the applied voltage, the composition of the anodising 
bath and the material comprising the work piece. With anodisation, metals can be coated whose oxides 
adhere to their surfaces 2, 3, 4, 5. 
Chen and his colleagues in their work examined titanium-dioxide films of 0.3 mm thickness. Samples were 
mechanically polished and cleaned in acetone with ultrasonic cleaning equipment. Experiments were 
completed in a solution of 6 wt% hydrogen-fluoride. They used a cathode surface area of 9 cm2 at a distance 
of 1 cm from the anode, and at voltages of 40, 60, 80 and 100 V, for durations of 2, 5 and 12 hours. They 
found that high hydrogen-fluoride concentration and voltage at 80 V are crucial for the formation of 
nanogrooves 6. 
Gong and his colleagues anodised pure titanium samples in 0.5 wt% hydrogen-fluoride mixture at 18°C for 
20 minutes. They used magnetic mixing. It was found that nanotubular structures did not form if the 
applied voltage was more than 40 V. They found that under an applied voltage of 20 V nanotubes were 
formed which had average diameter 60 nm and length 250 nm 7. 
The colour of the formed oxide layer depends on its thickness. For titanium this ranges across a wide 
spectrum allowing us to infer the thickness of the formed titanium-dioxide layer from its colour 8. 
Puckett and his colleagues anodised films of pure (99.2 %) titanium. Before their experiments, the samples 
were chemically etched in a solution of hydrogen-fluoride and nitric acid to remove any surface 
contamination and the thin oxide layer. After this treatment the films were anodised in solution of 1.5 
V/V% hydrogen-fluoride for 10 minutes at 20 V. They found that nanotubular-like titanium-dioxide 
structures were created on the surface. In another experiment they performed the anodization in a solution 
of 0.5 V/V% hydrogen-fluoride at 20 V for 1 minute. They found the surface had acquired nanotexture 9. 
Poznyak and colleagues anodised pure titanium samples with a titanium cathode. Before the experiment 
mechanical and chemical polishing were done in a warm hydrogen-fluoride and nitric acid solution. During 
anodisation, maximum current density was 10 mA/cm2, and maximum voltage was higher than 1000 V. The 
anodising bath they used was a mixture of nitric acid and distilled water. The depth of the created oxide 
layer was determined with Auger-spectroscopy, the phase composition was determined with X-ray 
diffraction, and the morphology of the surface was determined with scanning electron microscopy. They 
found that the density of the oxide layer was 3.2-3.9 g/cm3, which was 180 nm thick, containing 4 to 5% 
sulphur from the acid. The thicker oxide layer was rougher, and where d<50 nm then it was amorphous, 
whereas if d≈100 nm then it was composed of atanase. If d≈300 nm then the oxide layer contained both 
atanase and rutile 10. 
In his research, Elias treated with a range of processes discs and dental implants made of one type of pure 
titanium. The etching pickle was a solution of nitric acid, hydrochloric acid and sulphuric acid. He found 
that chemically etched homogeneously rough surfaces were more biologically active in the osseointegrative 
sense. This facilitated the attachment of bone cells so the implants would support mechanical loading. The 
electrolytic solution for anodisation contained calcium and phosphorus and he used micro-arc oxidation 
based on previous research 11. He found that various treatments differently changed surface morphology 
and therefore the anodised samples needed greater torque to screw into bone than chemically etched 
implants 12. 
Gubicza and his colleagues in their research manufactured ultrafine-grained titanium with equal channel 
angular pressing, which known as ECAP technology and the combination of modern and conventional 
plastic deformation techniques. The formed grain size was 200-500 nm using ECAP and 50-300 nm using a 
combination of the ECAP, forging and drawing. They found that this material had increased yield stress 
(652 MPa) and increased dislocation density (24×1014 m-2) 13, 14. 

 
 
 



2. Materials and Methods 
 

In our experiments we used 13 mm-diameter titanium rods out of which we machined 2 mm-thick discs. 
We used two types of base material: pure titanium, known as Grade 2, and nanograin Grade 2 pure 
titanium. The latter is prepared using ECAP. The two materials vary only in grain size. 
After making these discs we cut each disc into 4 identical quarters with a diamond disc cutter. The 
machining left burr and surface imperfections so we applied chemical etching to remove these. During 
treatment we used ultrasonic cleaning equipment. We used a mixture of 12 V/V% nitric acid, 9 V/V % 
hydrogen-fluoride, and distilled water. Based on our preliminary experiments the time of the chemical 
etching was chosen as 30 seconds. We kept the temperature at 30±1°C. The chemical etching successfully 
removed the burr and surface imperfections caused by machining and cutting 15.  
To further smooth surfaces we electropolished the chemically etched samples. We kept the temperature at 
30±1°C during the process. We used 20 V and a 3-minute duration. After this we applied anodisation on 
the resulting work pieces.  
We held samples with a clip of nickel-coated 316L austenitic stainless steel. This material transferred power 
to the sample. The clip did not touch the anodising bath. The cathode was a cylindrical mesh of 316L 
austenitic stainless steel.  
Because the main criteria for the anodising bath were its oxygen and acidic properties we used a mixture of 
0.1 V/V% hydrogen-fluoride and distilled water. We chose this concentration based on preliminary tests.  
The applied voltages were between 10 and 200 V. The necessary voltages we created with a toroidal 
transformer. The exact value of the voltage in the circuit depends on the conductivity of the anodising 
solution and on the current limit. Over-high current density can cause problems so we limited this with a 
current limit, which stopped the voltage rising further during anodising. Exact values of the applied voltages 
of the samples are given in Table 1.  
 

Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
U [V] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Table 1 The values of the anodising voltage of the samples 
 

In preliminary anodising experiments we treated samples for durations of 1, 5 and 10 minutes and observed 
the formed oxide layer. We found this layer formed immediately so in the actual experiments we stopped  
when applied voltage reached the required value. During the process we used magnetic mixing with 150 
rpm to keep the anodising solution in motion. The temperature of the anodising bath was 20±1 °C. 

 
3. Results and Discussion 

 
We examined the formed surfaces with reflected-light microscopy. On images we can see that different 
voltage resulted in differently coloured titanium-dioxide layers (Figures 2-3). The colour is closely related to 
the thickness of the layer. Figures 4-5 shows the reflected-light microscopy images of the anodised surfaces. 
The two different types of base materials have the same chemical composition, they vary only in grain size. 
The grain size influences mechanical properties (e.g. tensile strength, hardness, dislocation density) as well as 
electrical properties (e.g. conductivity). On images we found that different grain sizes resulted in different 
oxide layer thicknesses at the same voltage value. We can conclude this from oxide colours, which closely 
track thickness. 
On images we found local surface heterogeneities in titanium-dioxide layers. These are due to material 
defects, work piece shape, and uneven voltage distribution. The size of these heterogeneous areas stayed 
low at low applied voltages (10-100 V) but rise at higher voltages (100-200 V). This phenomenon held for 
both materials. 
 



 

 
Figure 2 Sections of surfaces of the anodising Grade 2 titanium discs, with voltage changing from left to right from 10 to 

200 V in 10 V increments 
 

 
Figure 3 Sections of surfaces of the anodising nanograin Grade 2 titanium discs, with voltage changing from left to right from 

10 to 200 V in 10 V increments 
 

To observe possible nanostructures formed on the surface we have to use atomic-force microscopy. This 
gives higher-resolution images of the surface.  
To observe the biological behaviour of these surfaces, bacteriological experiments were needed. Based on 
these we concluded that the formed titanium-dioxide layer can support osseointegration. 
 

 
Figure 4 Reflected-light microscopy pictures of surfaces of the anodised Grade 2 titanium discs, 10 V (a), 30 V (b), 60 V (c), 

90 V (d), 120 V (e), 150 V (f), 180 V (g), 200 V (h) 
 



 
Figure 5 Reflected-light microscopy pictures of surfaces of the anodised nanograin Grade 2 titanium discs 10 V (a), 

30 V (b), 60 V (c), 90 V (d), 120 V (e), 150 V (f), 180 V (g), 200 V (h) 
 

4. Conclusions 
 

In our study we worked on disc segments of pure titanium, known as Grade 2 titanium, and nanograin 
Grade 2 pure titanium. Both materials can be used for medical implants. Before anodisation we treated the 
specimens with chemical etching and electropolishing. Chemical etching removed burrs and surface 
contamination, while electropolishing smoothed the surface.  
For the anodising experiments applied voltages were between 10 and 200 V. The anodising bath was a 
mixture of 0.1 V/V% hydrogen-fluoride and distilled water and the temperature was 20 °C. During the 
process we used magnetic mixing.   
Reflected-light microscopy images show that different voltages resulted in differently coloured titanium-
dioxide layers, indicating varying thicknesses. On images we found that different grain sizes resulted in 
different oxide-layer thicknesses at the same voltage value. We found these layers contained local 
heterogeneities whose size increased with voltage. 
Based on our experiments we can conclude that it is possible to create titanium-dioxide layers on the surface 
of pure titanium, and nanograin pure titanium. The thickness of the formed oxide layer depends mainly on 
the applied voltages and on the grain size. 
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