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Abstract 27 

In this paper we report on a novel oriented peptide-N-glycosidase F (PNGase F) 28 

immobilization approach onto methacrylate based monolithic support for rapid, reproducible 29 

and efficient release of the N-linked carbohydrate moieties from glycoproteins. The 30 

glutathione-S-transferase-fusion PNGase F (PNGase F-GST) was expressed in E. coli using 31 

regular vector technology. The monolithic pore surface was functionalized with glutathione 32 

via a succinimidyl-6-(iodoacetyl-amino)-hexanoate linker and the specific affinity of GST 33 

towards glutathione was utilized for the oriented coupling. This novel immobilization 34 

procedure was compared with reductive amination technique commonly used for non-35 

oriented enzyme immobilization via primary amine functionalities. Both coupling approaches 36 

were compared using enzymatic treatment of several glycoproteins, such as ribonuclease B, 37 

fetuin and immunoglobulin G followed by MALDI/MS and CE-LIF analysis of the released 38 

glycans. Orientedly immobilized PNGase F via GST-glutathione coupling showed 39 

significantly higher activity, remained stable for several months, and allowed rapid release of 40 

various types of glycans (high-mannose, core fucosylated, sialylated, etc.) from 41 

glycoproteins. Complete protein deglycosylation was obtained as fast as in several seconds 42 

when using flow-through immobilized microreactors. 43 

 44 

 45 

Keywords: enzyme microreactor, oriented immobilization, monolith, PNGase F, 46 

deglycosylation. 47 

 48 

Abbreviations: AIBN, 2,2´-azobisisobutyronitrile, APTS, 8-aminopyrene-1,3,6-trisulphonic 49 

acid; EDMA, ethylene dimethacrylate; GMA, glycidyl methacrylate; GSH, glutathione; GST, 50 

glutathione-S-transferase; PNGase F, peptide-N-glycosidase F.  51 
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1 Introduction 52 

Microreactors are becoming important tools in many research and development areas ranging 53 

from organic synthesis [1] to diesel fuel production [2,3]. Immobilized enzyme reactors are 54 

under rapid recent development, especially for bioanalytical purposes related to the omics 55 

fields. Besides the most common immobilized trypsin reactors [4,5] other enzymes, 56 

including, e.g., the endoproteinase LysC have been also successfully used [6]. While many 57 

different forms of solid support can be used for enzyme immobilization, including 58 

chromatographic particles [7], self-assembled magnetic beads [8] or open fused silica 59 

capillary surfaces [9], porous monoliths represent a promising choice due to their excellent 60 

mechanical and chemical properties, which can be easily fine-tuned for a plethora of special  61 

applications [10]. 62 

Enzymatic release of glycans from glycoproteins represents a key step in analytical 63 

glycomics. Peptide-N-glycosidase F (PNGase F) is one of the most frequently used 64 

endoglycosidases utilized to release N-linked glycans. The common in-solution 65 

deglycosylation method is a relatively time-consuming process requiring several hours up to 66 

overnight for complete removal of all N-linked glycans. While it has been shown that the 67 

deglycosylation time can be reduced to minutes by microwave irradiation [11,12] or pressure-68 

cycling [13], the simplest way to speed up the reaction is increasing the enzyme to substrate 69 

ratio by immobilization of PNGase F on a solid support. Both particulate and monolithic 70 

supports were used for PNGase F immobilization via non-specific coupling chemistries 71 

including CNBr-activated Sepharose 4B [14], glycidoxypropyltrimethoxysilane modified 72 

silica beads [15], carboxylated nanodiamonds [16], or acrylic polymer particles containing 73 

amine functionalities [17]. Solid supports with immobilized PNGase F can be suspended in 74 

the glycoprotein solution [16], packed into a column [14], capillary [17] or microfluidic chip 75 

[15] in order to create flow-through reactors. Monolithic PNGase F reactors prepared in 76 

capillary format were reported earlier [18-20] as promising alternatives to packed column 77 

reactors. Palm and Novotny immobilized PNGase F on the surface of polyacrylamide based 78 

monoliths via succinimide functionalities [18]. Immobilization of PNGase F on monolithic 79 

support via azlactone chemistry [19] or reductive amination [20] was just recently published. 80 

Currently, all coupling methods employ non-specific reactions between the primary 81 

amines of PNGase F with reactive functionalities generated on a solid support surface. Since 82 

amino groups are also present at the active site of the enzyme molecule, the resulting non-83 

oriented immobilization may negatively affect accessibility of the active site leading to 84 

reduced activity of the immobilized enzyme. It can be expected that enzyme immobilization 85 
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through a selected functional group instead of randomly reacting amines will result in 86 

predictable, and therefore better performing microreactors. 87 

With the use of recombinant DNA technology a wide variety of proteins, including 88 

enzymes, can be produced with specific sequences allowing site selective binding. Such 89 

fusion systems were developed for purification of recombinant proteins from cell lysates 90 

through affinity capture. While the tags are usually removed from the protein molecules 91 

before further use, they offer a special advantage as specific moieties for oriented 92 

immobilization. In particular, a discrete modification using a highly specific tag attached to 93 

the enzyme molecule during its synthesis can be employed for direct coupling reactions away 94 

from the active center of the enzyme molecule. 95 

In this work we report on a novel oriented PNGase F immobilization method onto a 96 

methacrylate based monolithic support prepared in a 250 m ID fused silica capillary for 97 

rapid and efficient N-glycan removal from glycoproteins. Our approach is based on the 98 

affinity of glutathione (GSH) immobilized on the monolithic surface towards glutathione-S-99 

transferase fusion PNGase F (PNGase F-GST). The developed oriented immobilization was 100 

compared with the non-oriented approach in enzymatic treatments of several standard 101 

glycoproteins including ribonuclease B, fetuin and immunoglobulin G, followed by off-line 102 

MALDI/MS and CE-LIF analysis of released glycans. 103 

 104 

2 Experimental part 105 

2.1 Materials and reagents 106 

Glycidyl methacrylate (GMA), ethylene dimethacrylate (EDMA), 1-dodecanol, 107 

cyclohexanol, 2,2´-azobisisobutyronitrile (AIBN), 3-(trimethoxysilyl)propyl methacrylate, 108 

sodium periodate, sodium cyanoborohydride, chloroform, iodomethane, dithiotreitol, and 109 

iodoacetamide were purchased from Sigma-Aldrich (Prague, Czech Republic). GMA and 110 

EDMA were purified by passing them through a column containing basic alumina inhibitor 111 

remover (Sigma-Aldrich). Succinimidyl-6-[(iodoacetyl)amino]hexanoate was purchased from 112 

Chem-Impex International (Wood Dale, IL). 8-aminopyrene-1,3,6-trisulphonic acid (APTS) 113 

was purchased from Beckman Coulter (Brea, CA). 114 

PNGase F-GST was expressed in E. coli using regular vector technology and purified 115 

by affinity chromatography [21,22]. The expression of PNGase F-GST was confirmed by 116 

SDS-PAGE of cell lysates followed by Coomassie Brilliant Blue R-250 staining. 117 
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Polyclonal human immunoglobulin G (hIgG), bovine ribonuclease B (RNase B), 118 

bovine fetuin, PNGase F, glutathione, super-dihydroxybenzoic acid (9:1 mixture of 119 

dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid) and sinapinic acid were 120 

purchased from Sigma-Aldrich. 121 

Polyimide-coated fused-silica capillary (250 µm ID, 375 µm OD) was purchased from 122 

Polymicro Technologies (Phoenix, AZ). 123 

 124 

2.2 Instrumentation 125 

MALDI/MS measurements were carried out using an AB SCIEX TOF/TOF 5800 system 126 

(Framingham, MA, USA). CE-LIF separations were performed on a P/ACE MDQ instrument 127 

(Beckman Coulter) equipped with an Ar-ion laser (488 nm excitation wavelength) for 128 

fluorescent detection. 129 

The elemental composition of monolithic columns was determined by scanning 130 

electron microscopy with energy dispersive X-ray analysis (SEM/EDAX) on a JEOL JSM-131 

5500 LV instrument equipped with an analyzer IXRF Systems and a detector Gresham Sirius 132 

10. 133 

 134 

2.3 Preparation of monolithic poly(glycidyl methacrylate-co-ethylene 135 

dimethacrylate) support 136 

The inner surface of the fused silica capillary was first activated with 3-137 

(trimethoxysilyl)propyl methacrylate [23]. The polymerization mixture consisting of 25.5% 138 

GMA, 17.5% EDMA, 40% 1-dodecanol, 17% cyclohexanol, and 1% AIBN (with respect to 139 

monomers) (all percentages w/w) was purged with nitrogen for 10 min. The vinylized 140 

capillary was filled with this mixture and thermally initiated polymerization was carried out 141 

in a water bath at 60 C for 24 h. After polymerization, the porogenic solvents were removed 142 

from the monolith by pumping acetonitrile through the column at a flow rate of 60 µL/h for 1 143 

h. 144 

 145 

2.4 Oriented immobilization of PNGase F-GST 146 

The poly(GMA-co-EDMA) monolithic column was filled with a 30% (v/v) solution of 147 

ammonium hydroxide, sealed with silicone septa and heated in a column oven to 70 C for 3 148 

h. The modified column was washed with water (150 µL/h, 1 h) and dimethyl sulfoxide 149 

(DMSO) (150 µL/h, 15 min). The resulting primary amine functionalized monolithic column 150 
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was flushed with a solution of succinimidyl-6-[(iodoacetyl)amino]hexanoate in DMSO (10 151 

mg/mL) at a flow rate of 150 µL/h for 3 h in dark at room temperature. Next, a solution of 152 

glutathione (10 mg/mL) in 20 mmol/L Tris-HCl buffer, pH 8.3 was pumped through the 153 

iodoacetate functionalized column at a flow rate of 150 µL/h for 3 h in dark at room 154 

temperature. The scheme of the activation procedure is in Figure 1. The glutathione modified 155 

column was washed with the 20 mmol/L Tris-HCl buffer, pH 8.3. PNGase F-GST (1 mg/mL) 156 

was dissolved in 10 mmol/L phosphate buffered saline (PBS). The enzyme solution was 157 

pumped through the glutathione modified monolithic column at room temperature for 2.5 h 158 

with a flow rate of 100 µL/h. The PNGase F-GST conjugated monolith was then washed with 159 

10 mmol/L PBS (100 µL/h, 1 h) and stored at 4 °C before further use. 160 

 161 

2.5 Non-oriented immobilization of PNGase F-GST 162 

The poly(GMA-co-EDMA) monolithic column was filled with 0.5 mol/L sulfuric acid, sealed 163 

with silicone septa and heated in a column oven to 70 C for 3 h. The monolithic column was 164 

washed with water (150 µL/h, 1 h) followed by rinsing with a freshly prepared solution of 0.1 165 

mol/L sodium periodate (150 µL/h, 1.5 h). PNGase F-GST (1 mg/mL) was dissolved in 10 166 

mmol/L PBS, containing 3 mg/mL sodium cyanoborohydride. The enzyme solution was 167 

pumped through the aldehyde functionality modified monolith at room temperature for 2.5 h 168 

with a flow rate of 100 µL/h. The monolith conjugated with PNGase F-GST was then washed 169 

with 10 mmol/L PBS (100 µL/h, 1 h) and stored at 4 C before further use. 170 

 171 

2.6 Sample preparation 172 

Stock solutions (5 mg/mL) of ribonuclease B, fetuin and hIgG were prepared in 5 mmol/L 173 

sodium bicarbonate, pH 8.0 containing 10 % acetonitrile. Ribonuclease B and fetuin were 174 

denaturated before deglycosylation by the addition of dithiotreitol to the glycoprotein 175 

solution in a final concentration of 5 mmol/L and incubation at 65 °C for 15 min. Next, 176 

iodoacetamide was added in a final concentration of 5 mmol/L and the solution was 177 

incubated in dark at room temperature for 15 min. Before deglycosylation, the glycoprotein 178 

solutions were diluted by 5 mmol/L sodium bicarbonate, pH 8.0, containing 10 % 179 

acetonitrile. 180 

 181 

2.7 Release of N-glycans using immobilized PNGase F-GST 182 
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Deglycosylation using immobilized PNGase F-GST was carried out at room temperature for 183 

1-6 min. The glycoprotein solutions (1.0-2.5 mg/mL) were pumped through the monolithic 184 

reactors (2.5-10 cm) at different flow rates by means of a syringe pump. The released glycans 185 

were collected in microvials and stored at 4 °C before further analysis. 186 

 187 

2.8 Release of glycans using soluble PNGase F and PNGase F-GST 188 

Deglycosylation of denaturated ribonuclease B (50 g) was performed using soluble PNGase 189 

F-GST and commercially available PNGase F (Sigma Aldrich). The enzyme was added to the 190 

protein solution in a concentration of 0.1 nmol/L and deglycosylation was carried out at 37 191 

°C for 2 h. The released glycans were collected in microvials and stored at 4 °C before 192 

further analysis. 193 

 194 

2.9 Labeling and purification of the released glycans 195 

The deglycosylated proteins were removed from the collected fractions (50 L) using 10 kDa 196 

MWCO centrifugal filter units (Millipore, Billerica, MA) before the glycan labeling step. The 197 

glycan-containing supernatants were dried in a SpeedVac concentrator and labeled via 198 

reductive amination by the addition of 2 μL of 50 mmol/L APTS in 15% acetic acid and 4 μL 199 

of 1 mol/L sodium cyanoborohydride in tetrahydrofuran. The labeling reaction was 200 

performed at 37 °C overnight. Labeled glycans were purified using cleanup cartridges 201 

(Prozyme, Hayward, CA) following the protocol suggested by the manufacturer. The APTS 202 

labeled glycan solutions were collected in microvials, dried in a SpeedVac concentrator and 203 

redissolved in water (50 L) before CE-LIF analysis. 204 

 205 

2.10 CE-LIF analysis of the labeled glycans 206 

CE-LIF separations of APTS labeled glycans were performed on a Beckman P/ACE MDQ 207 

instrument using a neutral coated N-CHO (PVA) capillary (Beckman Coulter, 50 m ID/365 208 

m OD, 60-cm total length, 50-cm effective length) and a commercially available 209 

carbohydrate separation gel buffer (Beckman Coulter) as a background electrolyte. The 210 

instrument was equipped with a 488 nm laser module and a 520 nm cut-off filter for LIF 211 

detection. Samples were injected by pressure at 6.9 kPa (1 psi) for 5 s. The capillary was 212 

rinsed with the separation buffer between injections for 5 min at 206.8 kPa (30 psi) in order 213 

to avoid any sample carryover. All separations were performed at 25 °C by applying −30 kV 214 

separation voltage (E = 500 V/cm). 215 
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 216 

2.11 Permethylation 217 

Permethylation of N-linked glycans released from fetuin was performed according to the 218 

published procedure in [24]. Briefly, spin columns were packed with sodium hydroxide beads 219 

(20-40 mesh) washed with DMSO and spun down at 1000 rpm for 2 min. Before 220 

permenthylation, proteins were removed from the collected fractions (50 L) using 10 kDa 221 

MWCO centrifugal filters, dried in a SpeedVac concentrator and redissolved in a solution 222 

containing 140 L DMSO, 54 L iodomethane and 6 L water. Next, the sample was passed 223 

through the spin column at 1000 rpm for 2 min. The process was repeated 10 times. The 224 

permethylated glycans were extracted with chloroform and washed repeatedly with water. 225 

The extracts were dried in a SpeedVac concentrator and redissolved in a solution (50 L) 226 

containing 50 % methanol and 50 % 5 mmol/L sodium bicarbonate. 227 

 228 

2.12 MALDI/MS analysis of proteins and released glycans 229 

Before MALDI/MS analysis of proteins, the collected fractions were 10 times diluted by 230 

water and mixed with a sinapinic acid solution (10 mg/mL, prepared in 50% acetonitrile 231 

containing 0.1% trifluoroacetic acid) in a 1:1 (v/v) ratio. Proteins were analyzed in the 232 

positive linear ion mode. The released glycans (native or permethylated) were analyzed by 233 

MALDI/MS without any dilution/pre-concentration steps. The samples were mixed with 234 

super-dihydroxybenzoic acid solution (20 mg/mL, prepared in water) in 1:1 (v/v) ratio and 235 

analyzed in the positive reflectron ion mode. 236 

 237 

3 Results and discussion 238 

In this work we describe a novel oriented immobilization technique of PNGase F on 239 

monolithic support. Prior to immobilization the activity of the expressed and purified PNGase 240 

F-GST was tested by in-solution deglycosylation of bovine ribonuclease B (RNase B). RNase 241 

B is a relatively small glycoprotein containing four disulfide bonds and a single glycosylation 242 

site at Asn34, where five to nine mannose residues can be attached to the chitobiose core. The 243 

released glycans were APTS labeled and analyzed by CE-LIF. Figure 1 2 shows the 244 

electrophoretic profile of the APTS-labeled glycans released from RNase B, confirming 245 

efficient expression and good isolation of the active PNGase F-GST. Table 1 delineates the 246 

glycan structures and GUCE values for all significant peaks corresponding to APTS-labeled 247 

RNase B glycans detected by CE-LIF. 248 
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We have compared the in solution digestion activity of the PNGase F-GST conjugate 249 

to that of the commercially available PNGase F (Sigma Aldrich) under the same conditions. 250 

The obtained electropherograms of APTS-labeled glycans released from ribonuclease B did 251 

not show any difference between the enzyme treatments. Furthermore, the samples treated 252 

using soluble enzymes were also analyzed by SDS-PAGE. The complete deglycosylation of 253 

ribonuclease B was observed after treatment by both enzymes, confirming that PNGase F-254 

GST has similar activity as the commercially available counterpart. 255 

 256 

3.1 Immobilization of PNGase F-GST 257 

The oriented approach required modification of the monolithic pore surface by immobilized 258 

GSH. Therefore, the poly(GMA-co-EDMA) monolith prepared by thermally initiated radical 259 

polymerization in a 250 µm ID fused silica capillary was activated via a multistep procedure 260 

shown in Figure 2 (Figure 1). The monolith was first treated with an aqueous ammonia 261 

solution and then functionalized with succinyl-6-[(iodoacetyl)amino]hexanoate to assure the 262 

oriented coupling of GSH to the monolith. Iodoacetyl groups react specifically and efficiently 263 

with sulfhydryl functionalities forming covalent thioether bonds, permanently attaching GSH 264 

to the monolithic column. Each step of the monolith modification was characterized by 265 

fluorescent microscopy as well as SEM/EDAX analysis. The specific reaction of 266 

fluorescamine with primary amines forming a highly fluorescent product was employed for 267 

qualitative characterization of the efficient amination of the monolith as well as the 268 

immobilization of GSH via sulfhydryl functionalities. Furthermore, the SEM/EDAX analysis 269 

confirmed the presence of iodine (1.54 wt%) and sulfur (0.15 wt%) in the iodoacetyl- and 270 

GSH-modified monolithic columns. In the last step, a solution of PNGase F-GST was flushed 271 

through the GSH-modified column resulting in the required oriented immobilization of 272 

PNGase F via the GST tag. 273 

 274 

3.2 Optimization of the PNGase F-GST reactor performance 275 

RNase B was used as a model glycoprotein for digestion condition optimization. It has been 276 

shown that globular glycoproteins with several disulfide bridges are often resistant to PNGase 277 

F cleavage requiring a denaturation step to increase deglycosylation efficiency [18,19]. 278 

Therefore, the effect of RNase B denaturation was studied in our initial experiments. Since 279 

MALDI/MS was chosen for the analysis of the native glycans released from RNase B, 280 

enabling rapid generation of the desired information, no detergents were used for protein 281 

denaturation. RNase B was only reduced by dithiotreitol before endoglycosidase treatment 282 
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using a monolithic reactor containing PNGase F-GST prepared by oriented immobilization. 283 

Solutions of native or denatured RNase B (1 mg/mL) were flushed through the 10 cm long 284 

reactor at room temperature setting the respective residence times for 1 min. The eluents were 285 

collected and analyzed by MALDI/MS. The resulting neutral glycans exhibited low 286 

ionization efficiency; therefore, another deglycosylation step was performed in 5 mmol/L 287 

sodium bicarbonate solution, pH 8.0 containing 10% (v/v) acetonitrile and the released 288 

glycans were detected as sodium cationized molecular species. The glycan structures and 289 

mass values for peaks corresponding to the RNase B glycans are summarized in Table 1. The 290 

initial experiments attempting deglycosylation of native RNase B using the immobilized 291 

PNGase F-GST reactor were unsuccessful and only low signal peaks were found in the 292 

MALDI/MS spectrum that corresponded to the released glycans (Figure 3a). It was also 293 

confirmed by MALDI/MS analysis in the linear mode, where the peaks corresponding to 294 

glycosylated protein (m/z~15.3 kDa) dominated the mass spectrum (Figure 3b). In contrast, 295 

denaturation of RNase B prior to enzymatic treatment significantly improved deglycosylation 296 

efficiency. The peaks corresponding to the intact or partially deglycosylated RNase B 297 

disappeared and only peaks corresponding to the completely deglycosylated protein were 298 

found in the mass spectrum (Figure 3d). The signal intensities of peaks corresponding to 299 

released glycans increased as shown in Figure 3c. 300 

 301 

3.3 Effect of the immobilization technique on reactor efficiency 302 

The oriented immobilization via the GST tag was compared with the non-oriented reductive 303 

amination technique introduced in the monolithic area by Petro et al. [25], which was based 304 

on the reaction of the primary amines of PNGase F-GST with aldehyde functionalities 305 

generated on the monolithic surface.  306 

In order to see the difference in the efficiency of both reactors, very short 307 

deglycosylation times of 30 seconds were used for the RNase B treatment. A solution of 308 

denaturated RNase B (2.5 mg/mL) was flushed through 2.5 cm long monolithic reactors at 309 

room temperature and the collected fractions were analyzed by MALDI/MS in linear mode as 310 

shown in Figure 4. Only partial deglycosylation of RNase B was obtained by the PNGase F-311 

GST reactor prepared by non-oriented immobilization as shown in the MALDI spectrum 312 

containing the peaks of original glycosylated protein (m/z ~6.7 kDa and ~15.3 kDa) (Figure 313 

4a). In contrast to non-oriented PNGase F-GST immobilization, the oriented immobilization 314 

technique provided an efficient monolithic reactor as demonstrated by complete RNase B 315 

deglycosylation (Figure 4b). 316 
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It has been shown that the immobilization chemistry can affect the density of 317 

immobilized enzyme and consequently the performance of the enzyme reactor. For example, 318 

trypsin immobilization via azlactone functionalities can improve the reactor performance in 319 

comparison to the widely used coupling via epoxy groups [6]. However, both procedures lead 320 

to non-oriented immobilization of enzyme, which can negatively affect accessibility of the 321 

active site and reduce activity of the immobilized enzyme. 322 

In the next experiments, bovine fetuin was used to examine the performance of the 323 

immobilized PNGase F-GST monolithic reactors. Bovine fetuin is an acidic glycoprotein 324 

containing four O-linked (Ser253, Thr262, Ser264, Ser323) and three N-linked (Asn81, 325 

Asn138, Asn158) glycosylation sites, with heavily sialylated glycans attached. A solution of 326 

denatured bovine fetuin (1 mg/mL) was flushed through 10 cm long monolithic reactors at a 327 

flow rate to maintain the deglycosylation time of 1 min. The direct comparison of 328 

deglycosylation performance of both types of reactors i.e., with oriented and non-oriented 329 

immobilization is shown in Figure 5. With non-oriented enzyme immobilization the main 330 

product peaks of ~20.8 kDa and ~41.5 kDa represent the molecular masses of the doubly and 331 

singly charged partially deglycosylated protein (Figure 5b). On the other hand, the 332 

MALDI/MS analysis of fetuin treated by the reactor prepared by oriented immobilization of 333 

PNGase F-GST provided the mass spectrum containing the main peaks of ~19.6 kDa and ~39 334 

kDa corresponding to the molecular masses of the doubly and singly charged bovine fetuin 335 

after complete release of N-linked glycans (Figure 5c). The fetuin glycans released by 336 

immobilized PNGase F-GST (oriented immobilization) were also detected by MALDI/MS 337 

(Figure 6); however, due to the low stability of sialic acid residues in acidic glycans the 338 

permethylation step was performed prior to mass spectrometry analysis. The glycan 339 

structures and mass values for all significant peaks corresponding to the permethylated 340 

sodium cationized fetuin glycans are summarized in Table 2. 341 

The MS spectra shown in Figures 4 and 5 clearly indicate the significant efficiency 342 

difference between the monolithic PNGase F-GST reactors prepared by non-oriented (Figures 343 

4a and 5b) and oriented (Figures 4b and 5c) immobilization techniques. Since the same 344 

monolith and the same enzyme was used for preparation of both reactors, the main reason for 345 

this difference can be attributed to the immobilization techniques where the oriented PNGase 346 

F molecules provided higher density with more accessible active sites. 347 

It should be emphasized that both types of reactors, i.e., with oriented and non-348 

oriented immobilization were very stable. The reactors were used repeatedly within a period 349 

of five months, washed with buffer and stored in refrigerator between experiments. No 350 
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apparent decrease in activity of immobilized PNGase F-GST was observed in comparison to 351 

the initial experiments as demonstrated by complete deglycosylation of RNase B (2.5 352 

mg/mL) in 15 seconds using the repeatedly used monolithic reactor. 353 

 354 

3.4 Deglycosylation of human immunoglobulin G 355 

In order to demonstrate the deglycosylation performance of the immobilized PNGase F-GST 356 

reactor with larger proteins, analysis of polyclonal human immunoglobulin G (hIgG) was 357 

performed. IgG contains a single conserved N-glycosylation site at Asn297 on both heavy 358 

chains in the CH2 domain of the Fc region. Since the denaturation process resulted in 359 

precipitation of hIgG, deglycosylation was carried out without denaturation. A solution of 360 

native hIgG was pumped through the monolithic PNGase F-GST reactor prepared by oriented 361 

immobilization at a flow rate maintaining 3 min residence time. Figure 7 shows the capillary 362 

electrophoretic profile of the APTS-labeled glycans released from hIgG. The structures and 363 

GUCE values for all significant peaks corresponding to APTS-labeled glycans detected by 364 

CE-LIF are summarized in Table 3. The native glycans released from hIgG were also 365 

detected by MALDI/MS, but the losses of sialic acid residues from released glycans were 366 

often observed. However, this can be minimized by glycan permethylation prior to the MS 367 

analysis as demonstrated above during the analysis of acidic fetuin glycans. The obtained 368 

data clearly demonstrate the efficient release of all respective glycans from hIgG using the 369 

immobilized PNGase F-GST monolithic reactor. 370 

 371 

4 Conclusions 372 

In summary, the described oriented immobilization of PNGase F on porous monolithic 373 

support significantly increased the efficiency of the flow through microreactor. Complete 374 

protein deglycosylation could be obtained in seconds with oriented or minutes with non-375 

oriented immobilized reactors, compared to several hours when in-solution digestion is used. 376 

The key component for achieving the highest processing speed was with permeable 377 

monolithic support and oriented immobilization of the enzyme allowing complete 378 

deglycosylation of RNase B (2.5 mg/mL) in 15 seconds using a 25 mm long, 250 m id 379 

microreactor. Such a processing speed can significantly shorten the glycoprotein analysis 380 

workflow from several hours to several minutes or even less in comparison to traditional in-381 

solution glycoprotein treatment. Furthermore, the immobilized PNGase F reactor enables the 382 

integration of glycoprotein deglycosylation into multidimensional capillary [19,20] or 383 
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microfluidic [15] based platforms incorporating glycoprotein digestion, protein removal, 384 

glycan capture and separation followed by MS analysis and open up new automated protocol 385 

without any manual interference for a broad range of glycoprotein analysis. 386 
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Figure captions 437 

 438 

Figure 12. Scheme of monolith modification by glutathione. 1 - succinimidyl-6-439 

[(iodoacetyl)amino]hexanoate, 2 – glutathione. 440 

 441 

Figure 12. Capillary electrophoresis profile of the APTS-labeled glycans released from 442 

RNase B using in solution PNGase F-GST digestion. 443 

 444 

Figure 3. MALDI/MS spectra of bovine RNase B (b, d) and glycans (a, c) released by 445 

immobilized PNGase F-GST reactor: (a, b) native RNase B, (c, d) denaturated RNase B. 446 

Protein concentration: 1.0 mg/mL, deglycosylation time: 1 min. The individual detected 447 

glycans are listed in Table 1. 448 

 449 

Figure 4. MALDI/MS spectra of bovine RNase B after treatment using the PNGase F-GST 450 

reactor prepared by non-oriented (a) and oriented (b) immobilization. Protein concentration: 451 

2.5 mg/mL, deglycosylation time: 30 sec. 452 

 453 

Figure 5. MALDI/MS spectra of bovine fetuin: before (a) and after treatment using the 454 

PNGase F-GST reactor prepared by non-oriented (b) and oriented (c) immobilization. Protein 455 

concentration: 1.0 mg/mL, deglycosylation time: 1 min. 456 

 457 

Figure 6. MALDI/MS spectrum of permethylated glycans released from bovine fetuin in the 458 

PNGase F-GST reactor prepared by oriented immobilization. Protein concentration: 1.0 459 

mg/mL, deglycosylation time: 1 min. The individual detected glycans are listed in Table 2. 460 

 461 

Figure 7. Capillary electrophoresis profile of the APTS-labeled glycans released from human 462 

IgG using the PNGase F-GST reactor prepared by oriented immobilization. Protein 463 

concentration: 2.5 mg/mL, deglycosylation time: 3 min. The individual detected glycans are 464 

listed in Table 3. 465 
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Table 1. Glycans released from bovine RNase B. 1 

Peak No. Structure GUCE value [M+Na]
+ 

1 

 

6.76 1257.56 

2 

 

7.62 1419.57 

3 

 

8.35; 8.54; 

8.67 

1581.68 

4 

 

9.03; 9.18; 

9.54 

1743.74 

5 

 

10.13 1905.79 

 2 
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Table 2. Glycans released from bovine fetuin. 1 

Peak No. Structure [M+Na]
+ 

1 

 

2430.88 

2 

 

2791.98 

3 

 

3241.11 

4 

 

3602.22 

5 

 

3963.32 

 2 
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Table 3. Glycans released from human IgG. 1 

Peak No. Structure GUCE value 

1 

 

4.83 

2 

 

4.92 

3 

 

5.91 

4 

 

6.11 

5 

 

7.69 

6 

 

8.20 

7 

 

8.75 

8 

 

9.08 

Table 3



 

 

9 

 

9.12 

10 

 

10.12 

11 

 

10.47 
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