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Abstract

We define a time dependent empirical process based on n independent fractional Brownian
motions and describe strong approximations to it by Gaussian processes. They lead to strong
approximations and functional laws of the iterated logarithm for the quantile or inverse of this
empirical process. They are obtained via time dependent Bahadur–Kiefer representations.
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1 Introduction

Swanson [13] using classical weak convergence theory proved that an appropriately scaled median
of n independent Brownian motions converges weakly to a mean zero Gaussian process. More
recently Kuelbs and Zinn [9], [10] have obtained central limit theorems for a time dependent quantile
process based on n independent copies of a wide variety of random processes, which may be zero
or perturbed to be not zero with probability 1 [w.p. 1] at zero. These include certain self-similar
processes of which fractional Brownian motion is a special case. Their approach is based on an
extension of a result of Vervaat [16] on the weak convergence of inverse processes in combination
with results from their deep study with Kurtz [Kurtz, Kuelbs and Zinn [8]] of central limit theorems
for time dependent empirical processes.

We shall begin by defining a time dependent empirical process based on n independent fractional
Brownian motions and describe strong approximations to it recently obtained by Kevei and Mason
[5]. We shall see that they lead to strong approximations and functional laws of the iterated loga-
rithm for the quantile or inverse of these empirical processes and are obtained via time dependent
Bahadur–Kiefer representations.
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1.1 Swanson (2007) result

Our work is motivated by the following result of Swanson [13].

Let
{
B

(1/2)
j

}
j≥1 be a sequence of i.i.d. standard Brownian motions and let Mn (t) denote the median

of B
(1/2)
1 (t), . . . , B

(1/2)
n (t) for each n ≥ 1 and t ≥ 0. Swanson [13] using classical weak convergence

theory proved that
√
nMn(t) converges weakly to a continuous centered Gaussian process X on

[0,∞) with covariance function defined for t1, t2 ∈ [0,∞) by

E (X (t1)X (t2)) =
√
t1t2 sin−1

(
t1 ∧ t2√
t1t2

)
.

For a random particle motivation to look at such problems consult the Introduction in [13], where
possible fractional Brownian motion generalizations are hinted at.
One of the aims of this paper is to place this result within the framework of what has been long
known about the usual empirical and quantile processes.

1.2 Some classical quantile process lore

To put our study into a broader context, we recall here some classical quantile process lore.
Let X1, X2, . . . , be i.i.d. F . For α ∈ (0, 1) define the inverse or quantile function Q(α) =
inf {x : F (x) ≥ α} and the empirical quantile function Qn (α) = inf {x : Fn(x) ≥ α}, where

Fn(x) = n−1
n∑
j=1

1 {Xj ≤ x} , x ∈ R,

is the empirical distribution function based on X1, . . . , Xn.
We define the empirical process

vn (x) :=
√
n {Fn (x)− F (x)} , x ∈ R,

and the quantile process

un (t) :=
√
n {Qn (t)−Q (t)} , t ∈ (0, 1) .

For a real-valued function Υ defined on a set S we shall use the notation

‖Υ‖S = sup
s∈S
|Υ (s)| . (1)

The empirical and quantile processes are closely connected to each other through the following
Bahadur–Kiefer representation:

Let X1, X2, . . . , be i.i.d. F on [0, 1], where F is twice differentiable on (0, 1), f(x) = F ′(x), with

inf
x∈(0,1)

f(x) > 0 and sup
x∈(0,1)

∣∣F ′′(x)
∣∣ <∞.

We have (Kiefer [6]) the Bahadur–Kiefer representation

lim sup
n→∞

n1/4 ‖vn(Q) + f(Q)un‖(0,1)
4
√

log logn
√

log n
=

1
4
√

2
, a.s. (2)
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The “Bahadur” is in reference to the original Bahadur [1] paper, where a less precise version of
(2) was first established. The function f(Q) is called the density quantile function. Deheuvels and
Mason [4] developed a general approach to such theorems. For corresponding Lp versions of such
results we refer to Csörgő and Shi [2].

Next using a strong approximation result of Komlós, Major and Tusnády [7] one has on the
same probability space an i.i.d. F sequence X1, X2, . . . , and a sequence of i.i.d. Brownian bridges
U1, U2, . . . , on [0, 1] such that∥∥∥∥vn (Q)−

∑n
j=1 Uj√
n

∥∥∥∥
(0,1)

= O

(
(log n)2√

n

)
, a.s. (3)

Using (3) it is easy see that under the conditions for which the above the Bahadur–Kiefer repre-
sentation (2) holds

lim sup
n→∞

n1/4
∥∥∥∑n

j=1 Uj√
n

+ f (Q)un

∥∥∥
(0,1)

4
√

log logn
√

log n
=

1
4
√

2
, a.s.

Deheuvels [3] has shown that this rate of strong approximation rate cannot be improved.

We shall develop analogues of these classical results for time dependent empirical and quantile
processes based on independent copies of fractional Brownian motion. In particular, we shall
extend the Swanson setup to fractional Brownian motion, which will put his result in a broader
context.

2 A time dependent empirical process

In this section we recall some needed notation from [5]. Let
{
B(H)

}
∪
{
B

(H)
j

}
j≥1 be a sequence

of i.i.d. sample continuous fractional Brownian motions with Hurst index 0 < H < 1 defined on
[0,∞). Note that B(H) is a continuous mean zero Gaussian process on [0,∞) with covariance
function defined for any s, t ∈ [0,∞)

E
(
B(H)(s)B(H)(t)

)
=

1

2

(
|s|2H + |t|2H − |s− t|2H

)
.

By the Lévy modulus of continuity theorem for sample continuous fractional Brownian motion
B(H) with Hurst index 0 < H < 1, (see Corollary 1.1 of [17]), we have for any 0 < T <∞, w.p. 1,

sup
0≤s≤t≤T

∣∣B(H) (t)−B(H) (s)
∣∣

fH(t− s)
=: L <∞, (4)

where for u ≥ 0
fH(u) = uH

√
1 ∨ log u−1 (5)

and a∨ b = max{a, b}. We shall take versions of
{
B(H)

}
∪
{
B

(H)
j

}
j≥1 such that (4) holds for all of

their trajectories.

For any t ∈ [0,∞) and x ∈ R let F (t, x) = P
{
B(H) (t) ≤ x

}
. Note that

F (t, x) = Φ
(
x/tH

)
, (6)
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where Φ (x) = P {Z ≤ x} , with Z being a standard normal random variable. For any n ≥ 1 define
the time dependent empirical distribution function

Fn (t, x) = n−1
n∑
j=1

1
{
B

(H)
j (t) ≤ x

}
.

Applying Theorem 5 in [8] (also see their Remark 8) one can show for any choice of 0 < γ ≤ 1 <
T <∞ that the time dependent empirical process indexed by (t, x) ∈ T (γ),

vn (t, x) =
√
n {Fn (t, x)− F (t, x)} ,

where
T (γ) := [γ, T ]× R,

converges weakly to a uniformly continuous centered Gaussian process G (t, x) indexed by (t, x) ∈
T (γ), whose trajectories are bounded, having covariance function

E (G (s, x)G (t, y)) = P
{
B(H) (s) ≤ x,B(H) (t) ≤ y

}
− P

{
B(H) (s) ≤ x

}
P
{
B(H) (t) ≤ y

}
. (7)

Here we restrict ourselves in stating this weak convergence result to positive γ, since as pointed
out in Section 8.1 of [8] the empirical process vn(t, x) indexed by T (0) := [0, T ] × R does not
converge weakly to a uniformly continuous centered Gaussian process indexed by (t, x) ∈ T (0),
whose trajectories are bounded. In the sequel, G (t, x) denotes a centered Gaussian process on
T (0) with covariance (7) that is uniformly continuous on T (γ) with bounded trajectories for any
0 < γ ≤ 1 < T <∞.

We shall also be using the following empirical process indexed by function notation. Let
X,X1, X2, . . . , be i.i.d. random variables from a probability space (Ω,A, P ) to a measurable space
(S,S). Consider an empirical process indexed by a class G of bounded measurable real valued
functions on (S,S) defined by

αn (ϕ) :=
√
n(Pn − P )ϕ =

∑n
i=1 ϕ (Xi)− nEϕ (X)√

n
, ϕ ∈ G,

where

Pn (ϕ) = n−1
n∑
i=1

ϕ (Xi) and P (ϕ) = Eϕ (X) .

Keeping this notation in mind, let C [0, T ] be the class of continuous functions g on [0, T ] endowed
with the topology of uniform convergence. Define the subclass of C [0, T ]

C∞ :=

{
g : sup

{
|g (s)− g (t)|
fH(|s− t|)

, 0 ≤ s, t ≤ T
}
<∞

}
.

Further, let F(γ,T ) be the class of functions of g ∈ C [0, T ] → R, indexed by (t, x) ∈ T (γ) , of the
form

ht,x (g) = 1 {g (t) ≤ x, g ∈ C∞} .
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Here we permit γ = 0. Since by (4) we can assume that each B(H), B
(H)
j , j ≥ 1, is in C∞, we see

that for any ht,x ∈ F(γ,T ),

αn (ht,x) =
1√
n

n∑
i=1

(
1
{
B

(H)
i (t) ≤ x

}
− P

{
B(H) (t) ≤ x

})
= vn (t, x) . (8)

We shall be using the notation αn (ht,x) and vn (t, x) interchangeably.

Let G(γ,T ) denote the mean zero Gaussian process indexed by F(γ,T ), having covariance function
defined for hs,x, ht,y ∈ F(γ,T )

E
(
G(γ,T ) (hs,x)G(γ,T ) (ht,y)

)
= P

{
B(H) (s) ≤ x,B(H) (t) ≤ y,B(H) ∈ C∞

}
−P

{
B(H) (s) ≤ x,B(H) ∈ C∞

}
P
{
B(H) (t) ≤ y,B(H) ∈ C∞

}
,

which since P
{
B(H) ∈ C∞

}
= 1,

= E (G (s, x)G (t, y)) ,

i.e. G(γ,T ) (ht,x) defines a probabilistically equivalent version of the Gaussian process G (t, x) for

(t, x) ∈ T (γ). We shall say that a process Ỹ is a probabilistically equivalent version of Y if Ỹ D
= Y.

2.1 The Kevei and Mason (2016) strong approximation results for αn

For future reference we record here two strong approximations for αn that were recently established
by Kevei and Mason [5]. In the results that follow

ν0 = 2 +
2

H
and H0 = 1 +H. (9)

The main results in [5] are the following strong approximation theorems. Recall the notation (1).

Theorem 1. ([5]) For any 1 ≥ γ > 0, for all 1/ (2τ1(0)) < α < 1/τ1(0) and ξ > 1 there

exist a ρ (α, ξ) > 0, a sequence of i.i.d. B
(H)
1 , B

(H)
2 , . . . , and a sequence of independent copies

G(1)
(γ,T ),G

(2)
(γ,T ), . . ., of G(γ,T ) sitting on the same probability space such that

max
1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

G(i)
(γ,T )

∥∥∥∥∥
F(γ,T )

= O
(
n1/2−τ(α) (log n)τ2

)
, a.s., (10)

where τ (α) = (ατ1(0)− 1/2) /(1 + α) > 0, τ1(0) = 1/ (2 + 5ν0), τ2 = (19H + 25)/(24H + 20) and
ν0 is defined in (9).

For any κ > 0 let
G (κ) = {tκht,x : (t, x) ∈ [0, T ]× R} .

For g ∈ G (κ), with some abuse of notation, we shall write

G(0,T ) (g) = tκG(0,T ) (ht,x) .
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Also, in analogy with (1), in the following theorem,∥∥∥∥∥√mαm −
m∑
i=1

G(i)
(0,T )

∥∥∥∥∥
G(κ)

:= sup

{∣∣∣∣∣tκαn (ht,x)− tκ
m∑
i=1

G(i)
(0,T ) (ht,x)

∣∣∣∣∣ : (t, x) ∈ [0, T ]× R

}
.

Theorem 2. ([5]) For any κ > 0, for all 1/ (2τ ′1) < α < 1/τ ′1, and ξ > 1 there exist a ρ′ (α, ξ) > 0,

a sequence of i.i.d. B
(H)
1 , B

(H)
2 , . . . , and a sequence of independent copies G(1)

(0,T ),G
(2)
(0,T ), . . . , of

G(0,T ) sitting on the same probability space such that

max
1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

G(i)
(0,T )

∥∥∥∥∥
G(κ)

= O
(
n1/2−τ

′(α) (log n)τ2
)

, a.s., (11)

where τ ′ (α) = (ατ ′1 − 1/2) /(1 + α) > 0 and τ ′1 = τ ′1(κ) = κ/(5H0 + κ(2 + 5ν0)).

Notice that (10) and (11) trivially imply that for some 1/2 > ξ > 0

max
1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

G(i)
(γ,T )

∥∥∥∥∥
F(γ,T )

= O
(
n−ξ

)
, a.s.,

and

max
1≤m≤n

∥∥∥∥∥√mαm −
m∑
i=1

G(i)
(0,T )

∥∥∥∥∥
G(κ)

= O
(
n−ξ

)
, a.s.

2.2 Applications to LIL

Kevei and Mason [5] point out that the following compact law of the iterated logarithm (LIL) for
αn follows from their Theorem 1, namely{

αn (ht,x)√
2 log log n

: ht,x ∈ F(γ,T )

}
=

{
vn (t, x)√
2 log log n

: (t, x) ∈ T (γ)

}
(12)

is, w.p. 1, relatively compact in `∞
(
F(γ,T )

)
(the space of bounded functions Υ on F(γ,T ) equipped

with supremum norm ‖Υ‖F(γ,T )
= supϕ∈F(γ,T )

|Υ (ϕ)|) and its limit set is the unit ball of the repro-

ducing kernel Hilbert space determined by the covariance function E
(
G(γ,T ) (hs,x)G(γ,T ) (ht,y)

)
=

E (G (s, x)G (t, y)). In particular we get that

lim sup
n→∞

‖αn‖F(γ,T )√
2 log log n

= lim sup
n→∞

sup
(t,x)∈T (γ)

∣∣∣∣ vn (t, x)√
2 log log n

∣∣∣∣ = σ (γ, T ) , a.s.

where

σ2 (γ, T ) = sup
{
E
(
G2

(γ,T ) (ht,x)
)

: ht,x ∈ F(γ,T )

}
=

1

4
.

Furthermore, they derive from their Theorem 2 the following compact LIL, for all 0 < κ <∞,{
tκαn (ht,x)√

2 log log n
: ht,x ∈ F(0,T )

}
=

{
tκvn (t, x)√
2 log log n

: (t, x) ∈ [0, T ]× R
}

(13)
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is, w.p. 1, relatively compact in `∞ (G (κ)) and its limit set is the unit ball of the reproducing
kernel Hilbert space determined by the covariance function E

(
sκtκG(γ,T ) (hs,x)G(γ,T ) (ht,y)

)
=

E (sκtκG (s, x)G (t, y)) . This implies that

lim sup
n→∞

‖αn‖G(κ)√
2 log log n

= lim sup
n→∞

sup
(t,x)∈[0,T ]×R

∣∣∣∣ tκvn (t, x)√
2 log log n

∣∣∣∣ = σκ (T ) , a.s., (14)

where

σ2κ (T ) = sup
{
E
(
G2

(0,T ) (tκht,x)
)

: tκht,x ∈ G (κ)
}

=
T 2κ

4
. (15)

3 Bahadur–Kiefer representations and strong approximations for
time dependent quantile processes

3.1 A time dependent quantile process

For each t ∈ (0,∞) and α ∈ (0, 1) define the time dependent inverse or quantile function

τα(t) = inf {x : F (t, x) ≥ α} ,

and the time dependent empirical inverse or empirical quantile function

τnα (t) = inf {x : Fn (t, x) ≥ α} , (16)

and the corresponding time dependent quantile process

un(t, α) :=
√
n (τnα (t)− τα(t)) .

Notice that by (6), for each fixed t > 0, F (t, x) has density

φ (t, x) =
1

tH
√

2π
exp

(
− x2

2t2H

)
, −∞ < x <∞.

Further, for each t ∈ (0,∞) and α ∈ (0, 1), τα (t) is uniquely defined by

τα (t) = tHzα, where P {Z ≤ zα} = α, (17)

which says that φ (t, τα (t)) = 1
tH
√
2π

exp
(
− z2α

2

)
.

3.2 Our results for time dependent quantile processes

We shall prove the following uniform time dependent Bahadur–Kiefer representations for the quan-
tile process un (t, α). We shall see that one easily infers from them LIL and strong approximations
for such processes.

Introduce the condition on a sequence of constants 0 < γn ≤ 1

∞ > − log γn
log n

→ η, as n→∞. (18)

7



Theorem 3. Whenever 0 < γ = γn ≤ 1 satisfies (18) for some 0 ≤ η < 1/(2H), then for any
0 < ρ < 1/2 and T > 1

sup
(t,α)∈[γn,T ]×[ρ,1−ρ]

|vn(t, τα(t)) + φ(t, τα(t))un(t, α)| = O
(
n−1/4γ−H/2n (log log n)1/4 (log n)1/2

)
, a.s.

(19)

Remark 1. It is noteworthy here to point out that when γn = γ is constant, the rate in (19)
corresponds to the known exact rate in (2) in the classic uniform Bahadur–Kiefer representation of
sample quantiles. Refer to Deheuvels and Mason [4] for more results in this direction.

Remark 2. Let `∞ ([γ, T ]× [ρ, 1− ρ]) denote the class of bounded functions on [γ, T ] × [ρ, 1− ρ].
Notice when 0 < γ ≤ 1 is fixed, we immediately get from (12) and (19) that{

φ(t, τα(t))un(t, α)√
2 log log n

: (t, α) ∈ [γ, T ]× [ρ, 1− ρ]

}
is, w.p. 1, relatively compact in `∞ ([γ, T ]× [ρ, 1− ρ]) and its limit set is the unit ball of the repro-
ducing kernel Hilbert space determined by the covariance function defined for (t1, α1) , (t2, α2) ∈
[γ, T ]× [ρ, 1− ρ] by

K ((t1, α1) , (t2, α2)) = E (G (t1, τα1 (t1))G (t2, τα2 (t2)))

= P
{
B(H) (t1) ≤ tH1 zα1 , B

(H) (t2) ≤ tH2 zα2

}
− α1α2.

Also we get when 0 < γ ≤ 1 is fixed the following strong approximation, namely on the probability
space of Theorem 1,

sup
(t,α)∈[γ,T ]×[ρ,1−ρ]

∣∣∣∣∣√nφ(t, τα(t))un(t, α) +
n∑
i=1

Gi(t, τα(t))

∣∣∣∣∣ = O
(
n1/2−τ(α) (log n)τ2

)
, a.s.,

where Gi(t, τα(t)) = G(i)
(γ,T )

(
ht,τα(t)

)
. This follows from Theorems 1 and 3, since τ(α) < 1/4.

Corollary 1. For any 0 < ρ < 1/2, T > 1 and δ > 0 we have

sup
(t,α)∈[0,T ]×[ρ,1−ρ]

∣∣∣∣∣∣tHvn (t, τα (t)) +
exp

(
− z2α

2

)
√

2π
un (t, α)

∣∣∣∣∣∣ = O
(
n−1/6+δ

)
, a.s. (20)

Remark 3. Let `∞ ([0, T ]× [ρ, 1− ρ]) denote the class of bounded functions on [0, T ] × [ρ, 1− ρ].
Observe that (20) combined with the compact LIL pointed out in (13), immediately imply thatexp

(
− z2α

2

)
un (t, α)

√
2π
√

2 log log n
: (t, α) ∈ [0, T ]× [ρ, 1− ρ]


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is, w.p. 1, relatively compact in `∞ ([0, T ]× [ρ, 1− ρ]) and its limit set is the unit ball the repro-
ducing kernel Hilbert space determined by the covariance function defined for (t1, α1), (t2, α2) ∈
[0, T ]× [ρ, 1− ρ] by

K ((t1, α1) , (t2, α2)) = tH1 t
H
2 E (G(t1, τα1(t1))G(t2, τα2(t2)))

= tH1 t
H
2

(
P
{
B(H)(t1) ≤ tH1 zα1 , B

(H)(t2) ≤ tH2 zα2

}
− α1α2

)
.

We also get the following strong approximation, namely on the probability space of Theorem 2
with κ = H, for some 1/2 > ξ > 0

sup
(t,α)∈[0,T ]×[ρ,1−ρ]

∣∣∣∣∣∣
exp

(
− z2α

2

)
un(t, α)

√
2π

+
1√
n

n∑
i=1

tHGi(t, τα(t))

∣∣∣∣∣∣ = O
(
n−ξ

)
, a.s., (21)

where Gi(t, τα(t)) = G(i)
(0,T )

(
ht,τα(t)

)
. This follows from (11), noting that τ ′(α) > 0, combined with

(20).

Remark 4. Let `∞ ([0, T ]) denote the class of bounded functions on [0, T ]. Applying the compact
LIL pointed out in the previous remark with H = 1/2, to the median process considered by Swanson
[13], i.e. √

nMn (t) = un (t, 1/2) =
√
nτn1/2 (t) , t ≥ 0,

we get for any T > 0, that { √
nMn (t)√

2 log log n
: t ∈ [0, T ]

}
is, w.p. 1, relatively compact in `∞ ([0, T ]) , and its limit set is the unit ball of the reproducing
kernel Hilbert space determined by the covariance function defined for t1, t2 ∈ [0, T ]

2πK (t1, t2) = 2π
√
t1t2E (G (t1, 0)G (t2, 0))

= 2π
√
t1t2

(
P
{
B(1/2) (t1) ≤ 0, B(1/2) (t2) ≤ 0

}
− 1/4

)
,

which equals
√
t1t2 sin−1

(
t1 ∧ t2√
t1t2

)
. (22)

In particular we get

lim sup
n→∞

‖
√
nMn‖[0,T ]√
2 log log n

=

√
T sin−1 (1) =

√
Tπ/2, a.s.

Moreover, since a mean zero Gaussian process X(t), t ≥ 0, with covariance function (22) is equal in

distribution to −
√

2πtG(t, 0), t ≥ 0, we see from (21) that there exist a sequence B
(1/2)
1 , B

(1/2)
2 , . . . ,

i.i.d. B(1/2) and a sequence of processes X(1), X(2), . . ., i.i.d. X sitting on the same probability space
such that, a.s. ∥∥∥∥∥√nMn −

1√
n

n∑
i=1

X(i)

∥∥∥∥∥
[0,T ]

= o (1) .

Of course, this implies the Swanson result that
√
nMn converges weakly on [0, T ] to the process X.

9



4 Proofs of Theorem 3 and Corollary 1

To ease the notation we suppress the upper index from the fractional Brownian motions, that is,
in the following B,B1, B2, . . . are i.i.d. fractional Brownian motions with Hurst index H.

4.1 Proof of Theorem 3

Before we can prove Theorem 3 we must first gather together some facts about τnα (t), defined in
(16). In the following dxe denotes the ceiling function, which is the smallest integer ≥ x.

Proposition 1. With probability 1 for any choice of 0 < ρ < 1/2 uniformly in t > 0, n ≥ 1 and
0 < ρ ≤ α ≤ 1− ρ

0 ≤ Fn (t, τnα (t))− α ≤ m/n,

where m = 2(d2/He+ 1).

Proof We require a lemma.

Lemma 1. Let Bj, j = 1, . . . , n, be i.i.d. fractional Brownian motions on [0,∞) with Hurst index
0 < H < 1, where n ≥ 2 d2/He + 2. Then w.p. zero does there exist a subset {i1, . . . , im} ⊂
{1, . . . , n}, where m = 2 d2/He+ 2, such that for some t > 0

Bi1(t) = · · · = Bim(t).

Proof If such a subset exists then the paths of the independent fractional Brownian motions in Rk
with 2k = m,

X1 = (Bi1 , . . . , Bik) and X2 =
(
Bik+1

, . . . , Bi2k
)

(23)

would have non-empty intersection except at 0, which, since k > 2/H, contradicts the following
special case of Theorem 3.2 in Xiao [18]:

Theorem. (Xiao) Let X1(t), t ≥ 0, and X2(t), t ≥ 0, be two independent fractional Brownian
motions in Rd with index 0 < H < 1. If 2/H ≤ d, then w.p. 1,

X1 ([0,∞)) ∩X2 ((0,∞)) = ∅.

We apply this result with X1 and X2 as in (23). �

Returning to the proof of Proposition 1, choose n ≥ 2 d2/He + 2 and for any choice of t > 0
let B(1)(t) ≤ · · · ≤ B(n)(t) denote the order statistics of B1(t), . . . , Bn(t). We see that for any
α ∈ (0, 1),

Fn (t, B(dαne)(t)) ≥ dαne /n ≥ α

and
Fn (t, B(dαne)(t)−) ≤ (dαne − 1) /n < α.

Thus
τnα (t) = inf {x : Fn (t, x) ≥ α} = B(dαne)(t).

10



Since by the above lemma, w.p. 1, for all t > 0

n∑
j=1

1 {Bj (t) = B(dαne) (t)} < m = 2 d2/He+ 2,

we see that
α ≤ dαne /n ≤ Fn (t, τnα (t)) ≤ (dαne+m− 1) /n ≤ α+m/n.

Thus w.p. 1 for any choice of 0 < ρ < 1/2 uniformly in t > 0, n ≥ 2 d2/He+2 and 0 < ρ ≤ α ≤ 1−ρ

0 ≤ Fn (t, τnα (t))− α ≤ m/n.

Note that this bound is trivially true for 1 ≤ n < 2 d2/He+ 2. �

Proposition 2. For any H ≥ δ > 0 and ρ ∈ (0, 1/2) there is a D0 = D0(ρ, T ) > 0 (depending
only on ρ and T ) such that, w.p. 1 there is an n0 = n0(δ), such that for all n > n0, uniformly in
(α, t) ∈ [ρ, 1− ρ]× (an(δ), T ],

|τα (t)− τnα (t)| ≤ tH−δD0
√

log log n√
n

,

with

an = an(δ) = C

(
log logn

n

)1/(2δ)

, (24)

where C = C(δ, ρ, T ) depends only on δ, ρ and T .

Proof By Proposition 1, w.p. 1,

sup
(α,t)∈[ρ,1−ρ]×(0,T ]

|Fn (t, τnα (t))− α| ≤ m/n. (25)

We see by (14) that for any H ≥ δ > 0 w.p. 1 there is an n0, such that for all n > n0

sup
(α,t)∈[ρ,1−ρ]×(0,T ]

tδ |Fn (t, τnα (t))− F (t, τnα (t))| ≤ 2σδ(T )
√

log log n√
n

,

where, as in (15), σ2δ (T ) = T 2δ

4 ≤
T 2

4 . Thus by (25) and noting that F (t, τα (t)) = α we have w.p. 1
for all large enough n

sup
(α,t)∈[ρ,1−ρ]×(0,T ]

tδ |F (t, τα (t))− F (t, τnα (t))| ≤ 2T
√

log log n√
n

. (26)

Recall the notation in (17). Notice that whenever tHx − τα (t) > tH/8, for some t > 0 and
α ∈ [ρ, 1− ρ] , ∣∣F (t, τα (t))− F

(
t, tHx

)∣∣ =

∫ tHx

τα(t)

1

tH
√

2π
exp

(
− y2

2t2H

)
dy

=

∫ x

zα

1√
2π

exp

(
−u

2

2

)
du

>

∫ zα+1/8

zα

1√
2π

exp

(
−u

2

2

)
du ≥ d1 > 0,

11



where

d1 = inf

{∫ zα+1/8

zα

1√
2π

exp

(
−u

2

2

)
du : α ∈ [ρ, 1− ρ]

}
.

Similarly, whenever τα (t)− tHx > tH/8 for some t > 0 and α ∈ [ρ, 1− ρ] ,∣∣F (t, τα (t))− F
(
t, tHx

)∣∣ ≥ d1.
We have shown that whenever |tHx− τα (t) | > tH/8, for some t > 0, and α ∈ [ρ, 1− ρ], then

|F (t, τα(t))− F (t, tHx)| > d1 > 0.

Choose C(δ, ρ, T ) = (2T/d1)
1/δ in (24). Then

2T
√

log log n√
n

a−δn =
2T

Cδ
= d1. (27)

Now, (26) implies that w.p. 1 for all large n we have |τα(t)−τnα (t)| ≤ tH/8, whenever t > an, which
together with α ∈ [ρ, 1− ρ] implies that

τα(t), τnα (t) ∈ tH [zρ − 1/8, z1−ρ + 1/8] =: tH [a, b] . (28)

We get for t > an

|F (t, τα(t))− F (t, τnα (t))| =
∣∣Φ(τα(t)t−H)− Φ(τnα (t)t−H)

∣∣ = t−H |τα(t)− τnα (t)|ϕ(ξ),

where ξ ∈ [zρ − 1/8, z1−ρ + 1/8], ϕ is the standard normal density and

ϕ(ξ) ≥ min
y∈[a,b]

ϕ(y) =: d2 > 0.

Therefore by (26), w.p. 1, for all large n, for t > an and α ∈ [ρ, 1− ρ]

|τα(t)− τnα (t)| ≤ 2T

d2

tH−δ
√

log logn√
n

,

so the statement is proved, with D0 = 2T/d2. �

For future reference we point out here that for any an (δ) as in (24) and 1 ≥ γn > 0 satisfying
(18) for some η < 1

2H

lim
n→∞

− log an (δ)

log n
=

1

2δ
≥ 1

2H
> lim

n→∞

− log γn
log n

= η.

Thus for all n sufficiently large
an (δ) < γn. (29)

Note that

vn (t, τnα (t))−
√
n {α− F (t, τnα (t))} =

√
n (Fn (t, τnα (t))− α) =: ∆n (t, α) , (30)

12



for which by Proposition 1 we have

|∆n (t, α)| ≤ m√
n
, uniformly in t > 0, 0 < ρ ≤ α ≤ 1− ρ and n ≥ 1. (31)

Rewriting (30) as
vn(t, τnα (t)) = −

√
n {F (t, τnα (t))− α}+ ∆n(t, α),

we get using a Taylor expansion applied to F (t, τnα (t))− α,

vn(t, τnα (t)) = −
√
nφ(t, τα(t)) (τnα (t)− τα(t))− 1

2

√
nφ′ (t, θnα (t)) (τnα (t)− τα (t))2 + ∆n(t, α), (32)

where θnα (t) is between τα(t) and τnα (t) and φ′ (t, x) = ∂φ(t, x)/∂x. Write

√
nφ′ (t, θnα (t)) (τnα (t)− τα (t))2 =

√
nt2Hφ′ (t, θnα (t)) t−2H (τnα (t)− τα (t))2 .

Observe that by (29) with [a, b] as given in (28), w.p. 1, for all large n

sup
{∣∣t2Hφ′ (t, θnα (t))

∣∣ : (α, t) ∈ [ρ, 1− ρ]× [γn, T ]
}
≤ sup

t∈(0,T ]
sup

{
t2H

∣∣φ′ (t, x)
∣∣ : x ∈ tH [a, b]

}
= sup

{∣∣φ′ (1, x)
∣∣ : x ∈ [a, b]

}
<∞.

Further by (29), we can apply Proposition 2 with δ = H/4 to get, w.p. 1,

sup
(α,t)∈[ρ,1−ρ]×[γn,T ]

t−2H (τnα (t)− τα (t))2 = O

(
γ
−H/2
n log logn

n

)
.

Therefore, substituting back into (32) from the definition of un and from (31) we see that w.p. 1,

sup
(α,t)∈[ρ,1−ρ]×[γn,T ]

|vn (t, τnα (t)) + φ (t, τα (t))un (t, α)| = O

(
γ
−H/2
n log log n√

n

)
. (33)

Next we control the size of |vn (t, τα (t))− vn (t, τnα (t))| uniformly in (α, t) ∈ [ρ, 1− ρ]× [γn, T ]
for appropriate 0 < γn ≤ 1. For this purpose we need to introduce some more notation.

Recall the notation (5). For any K ≥ 1 denote the class of real-valued functions on [0, T ],

C (K) = {g : |g(s)− g(t)| ≤ KfH(|s− t|), 0 ≤ s, t ≤ T} .

One readily checks that C (K) is closed in C [0, T ]. The following class of functions C [0, T ]→ R will
play an essential role in our proof:

F (K, γ) :=
{
h
(K)
t,x (g) = 1 {g (t) ≤ x, g ∈ C (K)} : (t, x) ∈ T (γ)

}
.

For any c > 0, n > e and 1 < T denote the class of real-valued functions on [0, T ],

Cn := C(
√
c log n) =

{
g : |g (s)− g (t)| ≤

√
c log nfH(|s− t|), 0 ≤ s, t ≤ T

}
. (34)
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Define the class of functions C [0, T ]→ R indexed by [γn, T ]× R =T (γn)

Fn =

{
h

(
√
c logn)

t,x (g) = 1 {g (t) ≤ x, g ∈ Cn} : (t, x) ∈ T (γn)

}
.

To simplify our previous notation we shall write here

h
(n)
t,x (g) = h

(
√
c logn)

t,x (g) .

For h
(n)
t,x ∈ Fn write

αn(h
(n)
t,x ) =

n∑
i=1

1 {Bi(t) ≤ x,Bi ∈ Cn} − P {B(t) ≤ x,B ∈ Cn}√
n

.

Using (8), note that for each (t, x) ∈ T (γn), when Bi ∈ Cn, for i = 1, . . . , n,

αn

(
h
(n)
t,x

)
= vn (t, x) +

√
nP {B (t) ≤ x,B /∈ Cn}

= αn (ht,x) +
√
nP {B (t) ≤ x,B /∈ Cn} .

Set
Fn (ε) =

{(
f, f ′

)
∈ F2

n : dP
(
f, f ′

)
< ε
}

and
Gn (ε) =

{
f − f ′ :

(
f, f ′

)
∈ Fn (ε)

}
,

where

dP
(
f, f ′

)
=

√
E (f (B)− f ′ (B))2.

Note that ′ is not a derivative here. By the arguments given in the Appendix of Kevei and Mason
[5] the classes Fn (ε) and Gn (ε) are pointwise measurable. This means that the use of Talagrand’s
inequality below is justified.

Fix n ≥ 1. Let B1, . . . , Bn be i.i.d. B, and ε1, . . . , εn be independent Rademacher random
variables mutually independent of B1, . . . , Bn. Write for ε > 0,

µSn (ε) = E

{
sup

f−f ′∈Gn(ε)

∣∣∣∣∣ 1√
n

n∑
i=1

εi
(
f − f ′

)
(Bi)

∣∣∣∣∣
}
.

Observe that as long as ε = εn and γ = γn satisfy

√
nεn/

√
log n→∞ (35)

and

log

(
log n

εnγn

)
/ log n→ ς > 0, as n→∞, (36)

we have
√
nεn/

√
log

(
log n

εnγn

)
→∞, as n→∞,
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which by (57) in [5] implies that for all large enough n for a suitable A1 > 0

µSn (εn) ≤ A1εn

√
log

(
log n

εnγn

)
.

This, in turn, by (36) gives for all large enough n, for some A′1 > 0

µSn (εn) ≤ A′1εn
√

log n.

Therefore by Talagrand’s inequality (45) applied with M = 1, we have for suitable finite positive
constants D1, D

′
1 and D2 and for all z > 0,

P
{
||
√
nαn||Gn(εn) ≥ D

′
1(εn

√
n log n+ z)

}
≤ P

{
||
√
nαn||Gn(εn) ≥ D1(

√
nµSn (εn) + z)

}
≤ 2

{
exp

(
− D2z

2

nσ2Gn(εn)

)
+ exp(−D2z)

}
.

(37)

Let
εn = c1γ

−H/2
n (log log n/n)1/4 , for some c1 > 0. (38)

Recall that γn satisfies (18) with η < 1/(2H), which implies εn → 0. Further, εn fulfills (35) and

log
(

logn
εnγn

)
log n

→ 1

4
+ η

(
1− H

2

)
=: ς > 0,

which says that (36) holds. Also

nσ2Gn(εn) = n sup
g∈Gn(εn)

Var(g(B)) ≤ nε2n.

Hence,

2

{
exp

(
− D2z

2

nσ2Gn(εn)

)
+ exp (−D2z)

}
≤ 2

{
exp

(
−D2z

2

nε2n

)
+ exp (−D2z)

}
,

which, with z = εn
√
dn log n/D2 for some d > 0, is

≤ 2
{

exp (−d log n) + exp
(
−
√
dD2εn

√
n log n

)}
.

By choosing d > 0 large enough, (37) combined with the Borel–Cantelli lemma gives that, w.p. 1,

||αn||Gn(εn) = sup
{∣∣∣αn (h(n)s,x − h

(n)
t,y

)∣∣∣ : (s, x) , (t, y) ∈ T (γn) , d2P

(
h(n)s,x , h

(n)
t,y

)
< ε2n

}
= O

(
n−1/4γ−H/2n (log log n)1/4 (log n)1/2

)
.

Recall that T (γn) = [γn, T ]× R. Since for γn ≤ t ≤ T

d2P

(
h
(n)
t,x , h

(n)
t,y

)
= E [(1 {B(t) ≤ x} − 1 {B(t) ≤ y}) 1 {B ∈ Cn}]2
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≤ E |1 {B(t) ≤ x} − 1 {B(t) ≤ y}| = |F (t, x)− F (t, y)| ≤ γ−Hn |x− y| ,

i.e. |x− y| ≤ c21
√

(log log n)/n implies that h
(n)
t,x − h

(n)
t,y ∈ Gn(εn). This says that, w.p. 1, with c1 as

in (38),

sup

{∣∣∣αn (h(n)t,x − h
(n)
t,y

)∣∣∣ : t ∈ [γn, T ] , |x− y| < c21
√

log logn√
n

}
≤ ||αn||Gn(εn),

where w.p. 1,

||αn||Gn(εn) = O
(
n−1/4γ−H/2n (log log n)1/4 (log n)1/2

)
.

Next note that

Λn := sup
{∣∣∣αn (ht,x)− αn

(
h
(n)
t,x

)∣∣∣ : (t, x) ∈ T (γn)
}

≤
√
n

n∑
i=1

1 {Bi /∈ Cn}+
√
nP {B /∈ Cn} .

We readily get using inequality (46) that for any ω > 2 there exists a c > 0 in (34) such that
P {B /∈ Cn} ≤ n−ω, which implies

P
{

Λn >
√
nn−ω

}
≤ n1−ω.

Thus we easily see by using the Borel–Cantelli lemma that, w.p. 1,

sup

{
|αn (ht,x − ht,y)| : t ∈ [γn, T ] , |x− y| < c21

√
log logn√
n

}
= O

(
n−1/4γ−H/2n (log log n)1/4 (log n)1/2

)
.

(39)

Applying Proposition 2 with δ = H/4, keeping (29) in mind, and by choosing c1 > 0 large enough
in the definition of εn, we see that, w.p. 1, for all large n

sup
(α,t)∈[ρ,1−ρ]×[γn,T ]

|τnα (t)− τα (t)| ≤ T 3H/4D0
√

log log n√
n

≤ c21
√

log log n√
n

,

which says that, w.p. 1, for all large enough n uniformly in (α, t) ∈ [ρ, 1− ρ]× [γn, T ],

sup {|vn (t, τα (t))− vn (t, τnα (t))| : (α, t) ∈ [ρ, 1− ρ]× [γn, T ]}

≤ sup

{
|αn (ht,x − ht,y)| : t ∈ [γn, T ] , |x− y| < c21

√
log log n√
n

}
.

Thus by (39), w.p. 1, for large enough c > 0 and c1 > 0,

sup {|vn (t, τα (t))− vn (t, τnα (t))| : (α, t) ∈ [ρ, 1− ρ]× [γn, T ]}

= O
(
n−1/4γ−H/2n (log log n)1/4 (log n)1/2

)
.

On account of (33) this finishes the proof of Theorem 3. �
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4.2 Proof of Corollary 1

Let γn = n−η, where 0 < η < 1/(2H) is to be determined later. By Theorem 3

sup
(t,α)∈[γn,T ]×[ρ,1−ρ]

∣∣∣∣∣∣tHvn (t, τα (t)) +
exp

(
− z2α

2

)
√

2π
un (t, α)

∣∣∣∣∣∣
= O

(
(log log n)1/4 (log n)1/2 n−

1
4
+ηH

2

)
, a.s.

(40)

Next
sup

(t,α)∈[0,γn]×[ρ,1−ρ]

∣∣tHvn (t, τα (t))
∣∣ ≤ sup

{
|tHαn (ht,x) | : (t, x) ∈ [0, γn]× R

}
. (41)

Now by a simple Borel–Cantelli argument based on inequality (47) the right side of (41) is equal to

O
(

(log n)1/2 n−ηH
)
, a.s. (42)

Next, by Proposition 2, for any 0 < δ < H

sup {|un (t, α)| : (α, t) ∈ [ρ, 1− ρ]× (an, γn]} = O
(

(log log n)1/2 n−η(H−δ)
)
, a.s.

so the same holds without the logarithmic factor

sup {|un (t, α)| : (α, t) ∈ [ρ, 1− ρ]× (an, γn]} = O
(
n−η(H−δ)

)
, a.s. (43)

The latter rate is larger than the one in (42). Furthermore, comparing (40) and (43) one sees that
the optimal choice for η is η = 1/(6H), and the best rate is n−1/6+δ (due to the arbitrariness of δ
in the last step we changed ηδ to δ). That is the statement is proved for t ≥ an.

Now we handle the t < an case. Put

∆n (an) := sup {|un (t, α)| : 0 ≤ t ≤ an, 0 < ρ ≤ α ≤ 1− ρ} .

Observe that for all 0 ≤ t ≤ an and 0 < ρ ≤ α ≤ 1− ρ,

|τnα (t)| ≤ max
1≤i≤n

Mi (an) ,

where for 1 ≤ i ≤ n, Mi (an) = sup {|Bi (ans)| : 0 ≤ s ≤ 1}. Notice that B(ans), 0 ≤ s ≤ 1, is equal
in distribution to aHn B(s), 0 ≤ s ≤ 1. Further, as an application of the Landau–Shepp theorem
(46) we have for some c0 > 0 and d0 > 0

P

{
sup

0≤s≤1
|B (s)| > y

}
≤ d0 exp

(
−c0y2

)
, for all y > 0. (44)

We get now using a simple Borel–Cantelli lemma argument based on inequality (44) and

M1 (an)
D
= aHn sup {|B1(s)| : 0 ≤ s ≤ 1} ,
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that with D =
√

3/c0, w.p. 1, for all n sufficiently large,

max
1≤i≤n

Mi (an) ≤ DaHn
√

log n.

Hence, w.p. 1, uniformly 0 ≤ t ≤ an and 0 < ρ ≤ α ≤ 1− ρ, for all large enough n,

|τnα (t)| ≤ DaHn
√

log n.

Also trivially we have uniformly 0 ≤ t ≤ an and 0 < ρ ≤ α ≤ 1− ρ

|τα (t)| = tH |zα| ≤ aHn z1−ρ.

Thus, w.p. 1, uniformly 0 ≤ t ≤ an and 0 < ρ ≤ α ≤ 1− ρ, for all large enough n,

∆n (an) ≤ 2DaHn
√
n log n.

Note that

ρn := 2DaHn
√
n log n = 2DCH

(
log log n

n

)H/(2δ)√
n log n,

satisfies
− log ρn

log n
→ H

2δ
− 1

2
=
H − δ

2δ
> 0.

For some δ > 0 small enough (H − δ)/(2δ) > 1/6, therefore

∆n(an) = O(n−1/6), a.s.

which together with (40), and (42) finish the proof of the corollary. �

5 Appendix: Useful inequalities

5.1 Talagrand’s inequality

We shall be using the following exponential inequality due to Talagrand [14].

Talagrand Inequality. Let G be a pointwise measurable class of measurable real-valued functions
defined on a measure space (S,S) satisfying ||g||∞ ≤M, g ∈ G, for some 0 < M <∞. Let X,Xn,
n ≥ 1, be a sequence of i.i.d. random variables defined on a probability space (Ω,A, P ) and taking
values in S, then for all z > 0 we have for suitable finite constants D1, D2 > 0,

P

||√nαn||G ≥ D1

E ∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
G

+ z

 ≤ 2 exp

(
−D2z

2

nσ2G

)
+ 2 exp

(
−D2z

M

)
, (45)

where σ2G = supg∈G Var(g(X)) and εn, n ≥ 1, are independent Rademacher random variables mu-
tually independent of Xn, n ≥ 1.
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5.2 Application of Landau–Shepp Theorem

By the Lévy modulus of continuity theorem for fractional Brownian motion B(H) with Hurst index
0 < H < 1 (see Corollary 1.1 of Wang [17]), we have for any 0 < T <∞, w.p. 1,

sup
0≤s≤t≤T

∣∣B(H) (t)−B(H) (s)
∣∣

fH (t− s)
=: L <∞.

Therefore we can apply the Landau and Shepp [11] theorem (also see Sato [12] and Proposition
A.2.3 in [15]) to infer that for appropriate constants c0 > 0 and d0 > 0, for all z > 0,

P {L > z} ≤ d0 exp
(
−c0z2

)
. (46)

5.3 A maximal inequality

The following inequality is proved in Kevei and Mason [5], where it is Inequality 2.

Inequality For all 0 < γ ≤ 1 and τ > 0 we have for some E(τ) and for suitable finite positive
constants D3, D4 > 0, for all z > 0

P

{
max

1≤m≤n
sup

(t,x)∈[0,γ]×R
|
√
mtταm (ht,x) | ≥ D3

√
n (E(τ)(2γ)τ + z)

}
≤ 2

{
exp

(
−D4z

2 (2γ)−2τ
)

+ exp
(
−D4z

√
n (2γ)−τ

)}
.

(47)
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