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Abstract

We define a time dependent empirical process based on n independent fractional Brownian
motions and describe strong approximations to it by Gaussian processes. They lead to strong
approximations and functional laws of the iterated logarithm for the quantile or inverse of this
empirical process. They are obtained via time dependent Bahadur—Kiefer representations.

Keywords: Bahadur—Kiefer representation; Coupling inequality; Fractional Brownian motion;

Strong approximation; Time dependent empirical process.
MSC2010: 62E17; 60G22; 60F15.

1 Introduction

Swanson [13] using classical weak convergence theory proved that an appropriately scaled median
of n independent Brownian motions converges weakly to a mean zero Gaussian process. More
recently Kuelbs and Zinn [9], [10] have obtained central limit theorems for a time dependent quantile
process based on n independent copies of a wide variety of random processes, which may be zero
or perturbed to be not zero with probability 1 [w.p. 1] at zero. These include certain self-similar
processes of which fractional Brownian motion is a special case. Their approach is based on an
extension of a result of Vervaat [16] on the weak convergence of inverse processes in combination
with results from their deep study with Kurtz [Kurtz, Kuelbs and Zinn [8]] of central limit theorems
for time dependent empirical processes.

We shall begin by defining a time dependent empirical process based on n independent fractional
Brownian motions and describe strong approximations to it recently obtained by Kevei and Mason
[5]. We shall see that they lead to strong approximations and functional laws of the iterated loga-
rithm for the quantile or inverse of these empirical processes and are obtained via time dependent
Bahadur—Kiefer representations.
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1.1 Swanson (2007) result

Our work is motivated by the following result of Swanson [13].
Let {B](-l/ 2) }j>1 be a sequence of i.i.d. standard Brownian motions and let M, (¢) denote the median

of Bgl/ 2) (t),... ,Bfll/ 2) (t) for each n > 1 and ¢t > 0. Swanson [13] using classical weak convergence
theory proved that \/nM,(t) converges weakly to a continuous centered Gaussian process X on
[0,00) with covariance function defined for t1,te € [0,00) by

.1 [t Nt
F (X (tl)X (tg)) = \/tltg Sin 1 < ) .
Viit2
For a random particle motivation to look at such problems consult the Introduction in [13], where
possible fractional Brownian motion generalizations are hinted at.
One of the aims of this paper is to place this result within the framework of what has been long
known about the usual empirical and quantile processes.

1.2 Some classical quantile process lore

To put our study into a broader context, we recall here some classical quantile process lore.
Let X1,Xo,..., be iid. F. For a € (0,1) define the inverse or quantile function Q(«) =
inf {x : F'(z) > «a} and the empirical quantile function @, («) = inf {z : F,,(z) > «a}, where

n
Fn(:v):n_lzl{Xj <z}, zeR,
j=1

is the empirical distribution function based on X1,..., X,.
We define the empirical process

Un (I) = \/E{Fn (aj) - F(:U)}7 z €R,
and the quantile process
up (t) = vn{Qn (t) —Q 1)}, t € (0,1).

For a real-valued function T defined on a set S we shall use the notation
[T]lg = sup [T (s)] - (1)
sesS

The empirical and quantile processes are closely connected to each other through the following
Bahadur—Kiefer representation:

Let X1, Xo,..., be iid. F on [0,1], where F is twice differentiable on (0, 1), f(x) = F'(x), with

inf f(z)>0and sup |F"(z)| < oo.
z€(0,1) xe(0,1)

We have (Kiefer [6]) the Bahadur—Kiefer representation

i s n'/* o, (Q) + F(@)unl 0,1 1
nome. loglognylogn V2
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, a.s. (2)



The “Bahadur” is in reference to the original Bahadur [1] paper, where a less precise version of

(2) was first established. The function f(Q) is called the density quantile function. Deheuvels and

Mason [4] developed a general approach to such theorems. For corresponding LP versions of such

results we refer to Csérgé and Shi [2].

Next using a strong approximation result of Komlés, Major and Tusnddy [7] one has on the

same probability space an i.i.d. F' sequence X, Xo,..., and a sequence of i.i.d. Brownian bridges
L

Ui,Us,. .., on [0,1] such that
(log n)2>
= O( , a.s. 3
Vi llow~ O\ VA )

Using (3) it is easy see that under the conditions for which the above the Bahadur—Kiefer repre-
sentation (2) holds

vy (Q)

U,
| EEEE 4 £ Q) u on 1
lim sup — = ——, a.s.

00 Vl1oglogny/logn 2’

Deheuvels [3] has shown that this rate of strong approximation rate cannot be improved.

We shall develop analogues of these classical results for time dependent empirical and quantile
processes based on independent copies of fractional Brownian motion. In particular, we shall
extend the Swanson setup to fractional Brownian motion, which will put his result in a broader
context.

2 A time dependent empirical process

In this section we recall some needed notation from [5]. Let {B(H )} U {B]('H)}j>1 be a sequence
of i.i.d. sample continuous fractional Brownian motions with Hurst index 0 < H < 1 defined on
[0,00). Note that BU) is a continuous mean zero Gaussian process on [0,00) with covariance
function defined for any s,t € [0, 00)

B (B (5)BI(0) = 3 (s + 124 |5 — 1)

By the Lévy modulus of continuity theorem for sample continuous fractional Brownian motion
B™H) with Hurst index 0 < H < 1, (see Corollary 1.1 of [17]), we have for any 0 < T' < oo, w.p. 1,

‘B(H) (t) _ BWH) (S)‘
=L< , 4
OgilglEgT fru(t—s) o0 (4)

where for ©v > 0
fu(u) = uw\/1V logu=! (5)

and a Vb = max{a,b}. We shall take versions of { B} U {B](-H)}j>1 such that (4) holds for all of
their trajectories. B

For any ¢t € [0,00) and z € R let F (t,z) = P {B(H) (t) <z} . Note that

F(t,x):(b(m/tH), (6)



where ® (x) = P{Z < z}, with Z being a standard normal random variable. For any n > 1 define
the time dependent empirical distribution function

F(t,z) =n"" f: 1 {B§H> (t) < x} .
j=1

Applying Theorem 5 in [8] (also see their Remark 8) one can show for any choice of 0 < v <1 <
T < oo that the time dependent empirical process indexed by (t,x) € T (),

on (t,2) = Vn{F, (t,z) — F (t,2)},

where

T (v) :=[T] xR,

converges weakly to a uniformly continuous centered Gaussian process G (t, z) indexed by (¢, ) €
T (), whose trajectories are bounded, having covariance function

E(G(5.2)G (t,y)) = P {B<H> (s) <z, B (1) < y} _P {B(H) (s) < x} P {B<H> (t) < y} ()

Here we restrict ourselves in stating this weak convergence result to positive v, since as pointed
out in Section 8.1 of [8] the empirical process vy (¢, z) indexed by 7 (0) := [0,7] x R does not
converge weakly to a uniformly continuous centered Gaussian process indexed by (t,z) € T (0),
whose trajectories are bounded. In the sequel, G (t,x) denotes a centered Gaussian process on
T (0) with covariance (7) that is uniformly continuous on 7 () with bounded trajectories for any
0<y<1<T <00

We shall also be using the following empirical process indexed by function notation. Let
X, X1, Xo,..., be iid. random variables from a probability space (2,4, P) to a measurable space
(S,8). Consider an empirical process indexed by a class G of bounded measurable real valued
functions on (5, S) defined by

S ¢ (Xi) —nEe(X)

an () == v/n(P, — P)p = n :

peg,

where

Py(p)=n"") ¢(X;) and P (p) = Ep(X).
=1

Keeping this notation in mind, let C [0, 7] be the class of continuous functions g on [0, 7] endowed
with the topology of uniform convergence. Define the subclass of C [0, T]

Co = {g: sup{w, 0§s,t§T}<oo}.

Further, let F(, 7 be the class of functions of g € C[0,T] — R, indexed by (t,7) € T (v), of the
form

ht,x (g) = 1{9 (t) <z,9€ Coo}



Here we permit v = 0. Since by (4) we can assume that each B(7), B

j , J=>1,is in Cy, We see
that for any ht . € F(4 1),

an (hes) = \}ﬁ zn: (1 {B§H> (t) < x} _p {B<H> (1) < x}) = v, (1) (8)
=1

We shall be using the notation «,, (h¢,) and vy, (¢, x) interchangeably.

Let G(,,r) denote the mean zero Gaussian process indexed by F(, 1), having covariance function
defined for hg z, bty € F(y,1)

E (G (hse) Gy (hey)) = P{ B (5) < 2, B (1) <y, B € C.c }

P {B<H> (s) <z, BU) ¢ coo} P {B(H> (t) <y, B ¢ coo} ,
which since P {B(H) € Coo} =1,
=E(G(s,2)G(t,y)),
i.e. G(y,1) (htz) defines a probabilistically equivalent version of the Gaussian process G (t,z) for

(t,z) € T (). We shall say that a process ;)7 is a probabilistically equivalent version of ) if 37 D V.

2.1 The Kevei and Mason (2016) strong approximation results for «,,

For future reference we record here two strong approximations for «,, that were recently established
by Kevei and Mason [5]. In the results that follow

2
1/0:2+E and Hy=1+ H. (9)

The main results in [5] are the following strong approximation theorems. Recall the notation (1).

Theorem 1. ([5]) For any 1 > v > 0, for all 1/(211(0)) < o < 1/71(0) and £ > 1 there
exist a p(a,&) > 0, a sequence of i.i.d. B%H),BéH),..., and a sequence of independent copies

G%)T), GE?T), ooy of Gy y sitting on the same probability space such that

max
1<m<n

=0 (nl/z_T(a) (log n)TQ) , a.s., (10)

Vimam =Y Gy
=1

F,1)

where 7 () = (am1(0) —1/2) /(1 + «) >0, 1(0) = 1/ (2+ 51p), 72 = (19H + 25)/(24H + 20) and
vy is defined in (9).

For any x > 0 let
G (k) ={t"he s : (t,x) € [0,T] x R}.

For g € G (k), with some abuse of notation, we shall write
G (9) =t"Gor) (hts) -

b}



Also, in analogy with (1), in the following theorem,

1= sup {
G(x)

Theorem 2. ([5]) For any x > 0, for all 1/ (27]) < a < 1/7{, and & > 1 there exist a p' (o, &) > 0,

| -3l

=1

o (hie) =153 Gl (i)

=1

:(t,x)E[O,T]xR}.

a sequence of i.i.d. B%H),BQH),..., and a sequence of independent copies Gg(l))T)’GE?))T)’ e, of
G(o,1) sitting on the same probability space such that
nax Vmay, — z; GES),T) =0 (nl/Q*T @) (log n)”) , a.s., (11)
= G(x)

where 7' () = (o] —1/2) /(1 + «) > 0 and 71 = 71(k) = k/(5Ho + K(2 + 5wp)).

Notice that (10) and (11) trivially imply that for some 1/2 > ¢ >0

1Zmn Vmam — ZGE?,T) =0 <n‘5) , a.s.,
o =1 F.1)
and
1902 Vmagm, — Z GE(?,T) =0 (n—g) ,  a.s.
- i=1 G(r)

2.2 Applications to LIL

Kevei and Mason [5] point out that the following compact law of the iterated logarithm (LIL) for
ay, follows from their Theorem 1, namely

Hogtagn = <70} = { gl 0970} 0

is, w.p. 1, relatively compact in {o, (]:(%T)) (the space of bounded functions T on F(, 7y equipped
with supremum norm HTH]:(7 ) = SWPeer,, 1 |'T (p)]) and its limit set is the unit ball of the repro-

ducing kernel Hilbert space determined by the covariance function F (G(%T) (hsz) Gy my (ht’y)) =
E (G (s,2) G (t,y)). In particular we get that

llwm | 7 vn (t, )
lim sup ——22~ — limsup su — L =0 (y,T), as.
n_wop v2loglogn n—>oop (t,x)e%) v2loglogn (. T)
where )
o2 (v, T) = sup {E (G%%T) (ht,:r)) thg € ]:(%T)} =71

Furthermore, they derive from their Theorem 2 the following compact LIL, for all 0 < k < o0,

t"ay, (he ) t"vy, (t,x)
— . € F = ——T " (t, 0, 7T xR 13
{ 2loglogn tw € (O’T)} { 2loglogn (tz) €l I (13)

6



is, w.p. 1, relatively compact in fo (G (k)) and its limit set is the unit ball of the reproducing
kernel Hilbert space determined by the covariance function E (s"t*G(, 1y (hsa) Gyr (hey)) =
E (s"t"G (s,z) G (t,y)) . This implies that

lim sup M =limsup  sup Lo b) | ox (T), a.s (14)
n—oo 2 log logn n—o0 (t7x)e[07T}><]R \ 210g logn " ’ U
where
TQH
o2 (T) = sup {E (G%O’T) (t“hm)) iy, €0 (H)} - (15)

3 Bahadur—Kiefer representations and strong approximations for
time dependent quantile processes
3.1 A time dependent quantile process

For each t € (0,00) and « € (0,1) define the time dependent inverse or quantile function
To(t) = inf {z: F (t,x) > a},
and the time dependent empirical inverse or empirical quantile function

Th(t) =inf{z: F, (t,z) > a}, (16)

«

and the corresponding time dependent quantile process

Un(t, @) ==/ (12(t) — 1a(t)) .
Notice that by (6), for each fixed ¢t > 0, F' (¢,x) has density

1,'2

—>, —o00 < x < 00.

1
NG ( 22 H

Further, for each t € (0,00) and « € (0,1), 74 (¢) is uniquely defined by

¢(tv x) =

To (t) =t 24, where P{Z < z,} = a, (17)

which says that ¢ (¢, 74 (t)) = tHxl/ﬂ exp (—%) .

3.2 Our results for time dependent quantile processes

We shall prove the following uniform time dependent Bahadur—Kiefer representations for the quan-
tile process u, (t,«). We shall see that one easily infers from them LIL and strong approximations
for such processes.

Introduce the condition on a sequence of constants 0 < v, <1

lo
S _ g Tn
logn

— 1, asn — oo. (18)



Theorem 3. Whenever 0 < v = v, < 1 satisfies (18) for some 0 < n < 1/(2H), then for any
0<p<l/2andT >1

sup |on(t, Ta (1)) + ¢(t, 7o (t))un(t, )| = O (n_1/4fy,;H/2 (loglog n)'/* (log n)1/2> , ..
(t,)€lyn, T]x[p,1=p] (19)
19

Remark 1. It is noteworthy here to point out that when v, = v is constant, the rate in (19)
corresponds to the known exact rate in (2) in the classic uniform Bahadur—Kiefer representation of
sample quantiles. Refer to Deheuvels and Mason [4] for more results in this direction.

Remark 2. Let oo ([v,T] % [p,1 — p]) denote the class of bounded functions on [y,T] X [p,1 — p].
Notice when 0 < v < 1 is fixed, we immediately get from (12) and (19) that

{ P(t, Ta(t)) un(t, o)
v2loglogn

is, w.p. 1, relatively compact in £ ([, 7] X [p, 1 — p]) and its limit set is the unit ball of the repro-
ducing kernel Hilbert space determined by the covariance function defined for (t1,a1), (t2, a2) €

[, T] x [p,1 = p] by

K ((t1,01), (t2, a2)) = E(G (t1, T, (t1)) G (t2, Tay (t2)))
=P {B(H) (tl) S t{IZal,B(H) (tQ) S tgzoe} — X109,

(t,a) € 1. T] % [p,l—p]}

Also we get when 0 < v < 1 is fixed the following strong approximation, namely on the probability
space of Theorem 1,

VI G(t, Ta(t) un(t, @) + Y Gilt, 7a(t))

i=1

sup
(t,a)G h:T] X [pvl_p]

=0 (nl/Q*T(a) (log n)TZ) , a.s.,

where G;(t,74(t)) = GE?T) (Pt 7o(ty)- This follows from Theorems 1 and 3, since () < 1/4.

Corollary 1. For any 0 < p<1/2, T > 1 and § > 0 we have

22
exp (%)
sup tHUn t, 7o (1) + —Fu, (t,a)| =0 n71/6+5 , a.s. 20
(t,0)€[0,T)x [p,1—p] (87 (8) NG (t,) ( ) (20)

Remark 3. Let {o ([0,T] x [p,1 — p]) denote the class of bounded functions on [0,7] x [p,1 — p].
Observe that (20) combined with the compact LIL pointed out in (13), immediately imply that

2,2
exp <77‘3‘) Up (t, @)
V2m+/2loglogn

c(t,a) €0,T] x [p, 1 —p]



is, w.p. 1, relatively compact in 4o ([0,7] X [p,1 — p|) and its limit set is the unit ball the repro-
ducing kernel Hilbert space determined by the covariance function defined for (¢1,aq), (t2, a2) €
[O7T] X [pa 1- p] by

K ((t1,01) , (t2, 2)) = ' t5 B (G(t1, Ta, (11)) G (t2, Tay (t2)))
— iyl (P {B(H)(tl) <tHz,  BUE)(t,) < tﬁ’zag} _ 011012) .

We also get the following strong approximation, namely on the probability space of Theorem 2
with k = H, for some 1/2 > & >0

2
exp (—%‘”) Un(t, @) 1 & .
sup + — Gt 1)) =0 (n7¢) . as., 21
(t,a)€[0,T]x[p,1—p] V2m Vn ; ( ®) ( ) (21)

where G;(t,74(t)) = GE?,T) (Pt ro(ty)- This follows from (11), noting that 7/(ar) > 0, combined with
(20).
Remark 4. Let { ([0, T]) denote the class of bounded functions on [0,7]. Applying the compact
LIL pointed out in the previous remark with H = 1/2, to the median process considered by Swanson
[13], i.e

VM, (t) = up (,1/2) = \/ET?/Q (t), t>0,

(el <07}

is, w.p. 1, relatively compact in £ ([0,77]), and its limit set is the unit ball of the reproducing
kernel Hilbert space determined by the covariance function defined for t1,¢2 € [0, 7]

21K (t1,t2) = 2mv/tita E (G (t1,0) G (t2,0))
- 27r\/tlT( {3(1/2 (t1) < 0, B2 (1) < 0} - 1/4)

we get for any T > 0, that

which equals

.1 [t Nt
t1tg sin 1 < ) . 22
Vv T (22)

In particular we get

IVnMallo 7y
li si Tn/2,
im sup ————— JoToalogn =\/T =/T7/2, as.

n—oo

Moreover, since a mean zero Gaussian process X (¢), ¢ > 0, with covariance function (22) is equal in

distribution to —v27tG(t,0), t > 0, we see from (21) that there exist a sequence B(1/2) B§1/2), e
ii.d. BA/? and a sequence of processes X, X&) . iid. X sitting on the same probabllity space
such that, a.s.

=o0(1).
[0,7]

| AT
My — —=>" X

Of course, this implies the Swanson result that /nM,, converges weakly on [0, 7] to the process X.



4 Proofs of Theorem 3 and Corollary 1

To ease the notation we suppress the upper index from the fractional Brownian motions, that is,
in the following B, Bi, Bo, ... are i.i.d. fractional Brownian motions with Hurst index H.

4.1 Proof of Theorem 3

Before we can prove Theorem 3 we must first gather together some facts about 77 (t), defined in
(16). In the following [x] denotes the ceiling function, which is the smallest integer > .

Proposition 1. With probability 1 for any choice of 0 < p < 1/2 uniformly int > 0, n > 1 and
O<p<a<l—p
OSFn(t7Tg(t))_a§m/n7

where m = 2([2/H] + 1).
Proof We require a lemma.

Lemma 1. Let Bj, j =1,...,n, be i.i.d. fractional Brownian motions on [0,00) with Hurst index
0 < H <1, where n > 2[2/H]| + 2. Then w.p. zero does there exist a subset {i1,...,im} C
{1,...,n}, where m = 2[2/H] + 2, such that for some t > 0

B, (t)=---= By, ().

Proof If such a subset exists then the paths of the independent fractional Brownian motions in R*
with 2k = m,

X'=(By,....B;,) and X* = (B;,,,,...,Bi,,) (23)
would have non-empty intersection except at 0, which, since k > 2/H, contradicts the following

special case of Theorem 3.2 in Xiao [18]:

Theorem. (Xiao) Let X'(t), t > 0, and X2(t), t > 0, be two independent fractional Brownian
motions in RY with index 0 < H < 1. If2/H < d, then w.p. 1,

X1 ([0,00)) N X2 ((0,00)) = 0.

We apply this result with X! and X? as in (23). O

Returning to the proof of Proposition 1, choose n > 2[2/H| + 2 and for any choice of ¢t > 0
let B1)(t) < .-+ < B, (t) denote the order statistics of Bi(t),..., By(t). We see that for any
ae (0,1),

Fy (ta B(fwﬂ)(t)) > ’Van—| /TL >«

and
Fn (ta B(M?ﬂ)(t)_) < ([O&?ﬂ - 1) /n <a.
Thus
T (t) =inf{z : F, (t,x) > a} = Ban) (t).

«

10



Since by the above lemma, w.p. 1, for all ¢ > 0
> 1{B; (t) = Biany (t)} <m =2[2/H] +2,
j=1

we see that
a<[an]/n < F, (72 @) < ([an]+m—1)/n < a+m/n.

Thus w.p. 1 for any choice of 0 < p < 1/2 uniformly int > 0,n > 2[2/H|+2and0<p<a<1—p
0< F,(t, 7} (t) —a <m/n.
Note that this bound is trivially true for 1 <n < 2[2/H] + 2. O

Proposition 2. For any H > § > 0 and p € (0,1/2) there is a Dy = Do(p,T) > 0 (depending
only on p and T') such that, w.p. 1 there is an ng = ng(d), such that for all n > ng, uniformly in
(a,t) € [p,1— p] X (an(0), T,

- tH=9Dy+/loglog n

[7a (1) = 74 (2)]

Jn )
with
n = an(d) = C <1°g1:g”> Ve , (24)
where C' = C(6,p,T) depends only on d,p and T'.
Proof By Proposition 1, w.p. 1,
swp|Fu(t,72 (1) — o] <m/n. (25)

(Oz,t)e[p,l—p} X(O’T]

We see by (14) that for any H > ¢ > 0 w.p. 1 there is an ng, such that for all n > ng

sup B F, (410 (1) — F (170 (1)) < 220 VIoglogn
(a,t)Elp,1—p] x (0,T] vn

where, as in (15), 02 (T) = TT% < TTQ. Thus by (25) and noting that F (¢, 74 (t)) = @ we have w.p. 1
for all large enough n

sup 191 (£, 70 (t) — F (£,77 (t))| < 2Tyloglogn. (26)
(et)E[p,1—p]x (0,7 \/ﬁ

Recall the notation in (17). Notice that whenever t#2 — 7, (t) > t/8, for some t > 0 and
a€lp,1—p],

Ta

/“; 1 < u2>d
= exp | —— | du
2e V2T P 2

zZa+1/8 1 U2
> L exp (“E s dy >0,
Za \4 27T p< 2 > =0

11

tHy 2
Cpetin) = [ e (-
|F (t,7a (t) — F (¢, t"2)| —/ o tH\/%exp< 2t2H> dy




where
Zat1/8 u2
dlzinf{ . mexp<—2>du:a€[p,1—p]}.
Similarly, whenever 7, (t) — tfx >t /8 for some t > 0 and o € [p,1 — p],
|F (t,7a () — F (t,t"2)| > dy.
We have shown that whenever [t 2 — 7, (t)| > t¥ /8, for some ¢t > 0, and a € [p,1 — p], then
|F(t, 7a(t)) — F(t, t72)| > d; > 0.
Choose C (8, p,T) = (2T /dy)"/° in (24). Then

2T'\/loglogn _s 2T

SIVIESTe =6 28

NG el

Now, (26) implies that w.p. 1 for all large n we have |7, (t) —77(t)| < t¥ /8, whenever t > a,,, which
together with a € [p,1 — p] implies that

= d;. (27)

Ta(t), 70(t) € t7 [z, — 1/8, 21— + 1/8] =: t" [a, D] . (28)
We get for t > a,
|[F(t,7a(t)) = F(t, 72 (1) = [@(ra ()t ) — @(r2 ()t )] =t |70 (t) — 72 (1)|0(€),

where & € [z, — 1/8, 21—, + 1/8], ¢ is the standard normal density and

©(€) > min ¢(y) =: dy > 0.
yE[a,b}

Therefore by (26), w.p. 1, for all large n, for t > a,, and « € [p,1 — p]

< 2r tH=9/loglogn
— d2 \/ﬁ Y

so the statement is proved, with Dy = 2T'/ds. O

[7a(t) = 74 (t)]

For future reference we point out here that for any a, (¢) as in (24) and 1 > =, > 0 satisfying
(18) for some 1) < 5%

. —logay(6) 1 1 . —logv,
lim —— = — =
n—oo  logn 20 — 2 n—oo logmn

Thus for all n sufficiently large

Note that
un (6,75 (1) —Vn{a = F (t, 73 (1)} = Vn (F, (8,74 (1) — a) = Ay (t,a), (30)
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for which by Proposition 1 we have

m

[An (80| < Nk

uniformly int >0, 0<p<a<l-—pandn>1. (31)

Rewriting (30) as
Un(t7 Tg(t)) = _\/H{F(t> Tg(t)) - a} + An(ta Oé),

we get using a Taylor expansion applied to F'(¢, 72 (t)) — «,

un(t, 75 (1)) = —vné(t, 7a(t)) (ra(t) — 7a(t)) — %\/ﬁqﬁ' (t, 0 (1)) (72 (8) = 7a (1)) + An(t, @), (32)
where 0" (t) is between 74(t) and 7% (t) and ¢’ (¢t,x) = 9¢(t,z)/dx. Write

Vnd' (8,04 (1) (72 (1) = 7a ())* = Vat? ¢/ (2,00 (£)) ¢ (72 () — 7a (£)).
Observe that by (29) with [a, b] as given in (28), w.p. 1, for all large n

sup { |27/ (¢, 0% ()| : (a,t) € [p,1 = p] X [y, T]} < sup sup {7 ¢’ (t,2)] : z € " [a, B]}

= sup{’qﬁ’ (l,x)} :x € [a,b]} < oo,
Further by (29), we can apply Proposition 2 with 6 = H/4 to get, w.p. 1,

’y,;H/Q log log n)

sup 2 (73 (1) = 70 (1)* = O ( -

(at)€lp,1=p] X [yn,T]

Therefore, substituting back into (32) from the definition of u,, and from (31) we see that w.p. 1,

fng/Q log log n)

NG (33)

sup [on (£, 7o () + & (¢, 7a (£)) un (t, )| = O <

(ait) € [pvl_p] X [’7" 7T]

Next we control the size of |vy, (t, 7 (t)) — vy (¢, 72 ()| uniformly in (a,t) € [p,1 — p| X [Vn, 1]
for appropriate 0 < 7, < 1. For this purpose we need to introduce some more notation.

Recall the notation (5). For any K > 1 denote the class of real-valued functions on [0, 77,
CE)={g: |9(s) —g)| < Kfu(ls—1]),0<s,t<T}.

One readily checks that C (K) is closed in C [0, T']. The following class of functions C [0,7] — R will
play an essential role in our proof:

F(K,7) = {1 (9) =119 () Sz g € C(K)}: (bo) e T ()}

For any ¢ > 0, n > e and 1 < T denote the class of real-valued functions on [0, 77,
Coi=C(V/elogn) = {g: lg(s) = g (1) < V/elognfulls — ), 0< st <T}.  (34)
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Define the class of functions C [0,7] — R indexed by [yn,T] X R =T ()

Fp = {ht(x T () = 1{g (1) < 2,9 € Ca} : (1,2) € T(’Yn)} -

To simplify our previous notation we shall write here

n Veclogn
B (g) = B (g)

For hg? € F, write
n " 1{B;(t) <xz,B;€C,} — P{B(t)<xz,BelC,
an(h;x))zz {Bi(t) }\/ﬁ {B(1) }_
=1

Using (8), note that for each (t,z) € T (y,), when B; € Cy, fori=1,...,n,

an (hg?) =uv, (t,x) +vnP{B () <xz,B¢&C,}
— an (hew) + VAP {B(t) <a,B ¢ Cp}.

Set
Fule)={(f,f") e Fr:dp (£, f') <&}
and

Gu(e)={f =1 (}.J) € Fale)},

where

ap (£, ') = \JE(f (B) - ' (B))*.
Note that ’ is not a derivative here. By the arguments given in the Appendix of Kevei and Mason
[5] the classes F, (¢) and Gy, (¢) are pointwise measurable. This means that the use of Talagrand’s
inequality below is justified.
Fix n > 1. Let By,...,B, be iid. B, and €q,...,¢, be independent Rademacher random

variables mutually independent of By, ..., B,. Write for € > 0,
Observe that as long as € = ¢, and y = -, satisfy

Vnen/\/logn — oo (35)

i (e)=E{ sup
f—f’Egn(E)

jﬁ S a(f- 1) B)
=1

and |
log<0gn>/logn—>§>0, as n — 0o, (36)
671 n
we have
1
Vvne, /| log ( ogn) — 00, as N — 00,
EnTn

14



which by (57) in [5] implies that for all large enough n for a suitable A; > 0

logn
iy (en) < Areny |log <€n%>'

This, in turn, by (36) gives for all large enough n, for some A} > 0

p5 (en) < Aleny/logn.

Therefore by Talagrand’s inequality (45) applied with M = 1, we have for suitable finite positive
constants Dy, D} and Ds and for all z > 0,

P{IViaallg, e,y = Dileny/nlogn + 2)} < P{|[Vnanllg,(c.) = Di(Vpss (=) + 2)}

<2< exp —2272 + exp(—Dsz) ¢ .
no-gn(sn)

en = c1v 12 (loglog n/n)1/4, for some ¢; > 0. (38)
Recall that -, satisfies (18) with n < 1/(2H), which implies €, — 0. Further, ¢, fulfills (35) and

Let

log (252) H

nYn

A (-2 ) =c >0
logn 4+77( 2) N

which says that (36) holds. Also

nog, ) =n sup Var(g(B)) < nep.
gegn(sn)

Dy2? Dy2?
2 {exp (—222> + exp (—Dgz)} <2 {exp (— 22 > + exp (—DQZ)} ,
no ne
gn(en) n
which, with z = e, \/dnlogn/D, for some d > 0, is

<2 {exp (—dlogn) + exp (—\/dDgsn\/nlogn)} .

Hence,

By choosing d > 0 large enough, (37) combined with the Borel-Cantelli lemma gives that, w.p. 1,

lanllg, ey = sup {|an (A% = ()| : (s,2) . (by) € T (), db (nCD 117 ) < <2}
=0 (nil/‘lfng/z (log log n)1/4 (log n)1/2> .

Recall that T (v,) = [yn, T] x R. Since for v, <t <T

@ (b7 n{3) = EL(1{B(t) < o} — 1{B() <y)1{B € C,}”

t,x
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< E[L{B(t) <2} —1{B(t) Sy} = |F (t.x) = F (t,y)] <3 e —yl,

ie. |x —y| < c2/(loglogn)/n implies that hg? - h(g) € Gn(en). This says that, w.p. 1, with ¢; as
in (38),

n n c?v/loglogn
sup { o (42 = W) |+t € b T o ol < TYEEERL < g

where w.p. 1,
@nllgaeny = O (04972 (1oglog m)/* (log n)"/?) .

Next note that

A, :=sup {

an (htz) — on (hgz))‘ (t,x) € T(’yn)}

< VA B¢ C) + VAP (B £ Ca).

We readily get using inequality (46) that for any w > 2 there exists a ¢ > 0 in (34) such that
P{B ¢ C,} <n™%, which implies

P {An > \/ﬁn_w} <ntv.

Thus we easily see by using the Borel-Cantelli lemma that, w.p. 1,

c3y/loglogn }

sup { o (e = )|+ € [ T o = o] < V28

(39)
=0 (n_1/47;H/2 (log log n)1/4 (log n)1/2> .

Applying Proposition 2 with § = H/4, keeping (29) in mind, and by choosing ¢; > 0 large enough
in the definition of €,, we see that, w.p. 1, for all large n

n T31/4 Dy /loglog n c2\/loglogn
sip e () =T (B)] < < ,
(@t)elp1—plx [y T] v v

which says that, w.p. 1, for all large enough n uniformly in («,t) € [p,1 — p] X [yn, T,

sup {[n (t,7a (1)) — v (6,72 ()] < (a,8) € [p,1 — p] x [0, T}

< sup {|an (htg — hey)| :t € [y, T], |z —y| < N

Thus by (39), w.p. 1, for large enough ¢ > 0 and ¢; > 0,

sup {|vn (¢, 7a (8)) = vn (6,7 (8)] = (1) € [p, 1 = p] X [y, T1}
=0 (n_1/4'y,:H/2 (loglog n)1/4 (log n)1/2> .

On account of (33) this finishes the proof of Theorem 3. O
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4.2 Proof of Corollary 1
Let v, =n~", where 0 <n < 1/(2H) is to be determined later. By Theorem 3

2
T ) B
Sup Un s Tow ——(—Up ,Oé
(t,2)E|yn, T X [p,1—p] 21 (40)
=0 ((log log n)1/4 (log n)1/2 n*i+’7%> , &.S.
Next

sup [t v, (t, 70 (£))] < sup {[t" e, (hew) | 1 (t,2) € [0,7,] x R} . (41)
(tva)e[oﬂ’n}x[p:l*p}

Now by a simple Borel-Cantelli argument based on inequality (47) the right side of (41) is equal to
O ((log n)t/? n_”H> , a.s. (42)
Next, by Proposition 2, for any 0 < § < H

sup {|uy, (t, )| : (a,t) € [p,1 — p] X (an, 1]} = O ((loglogn)l/2 n*"(H*5)> , a.s.

so the same holds without the logarithmic factor
sup {Jun (£, @) : (a,8) € [p,1 = p] X (an, W]} = O (077D, as. (43)

The latter rate is larger than the one in (42). Furthermore, comparing (40) and (43) one sees that
the optimal choice for 17 is 7 = 1/(6H), and the best rate is n='/6*% (due to the arbitrariness of §
in the last step we changed 1 to §). That is the statement is proved for t > a,.

Now we handle the ¢t < a,, case. Put

Ay (ap) :==sup{Jun (t, )] : 0<t <a,,0<p<a<l-—np}.
Observe that forall 0 <t <a, and 0 < p<a<1l-—p,

72 (6] < o M (an)

where for 1 <i <n, M; (an) =sup {|B; (ans)| : 0 < s < 1}. Notice that B(a,s),0 < s <1, is equal
in distribution to aTIL{ B(s), 0 < s < 1. Further, as an application of the Landau—Shepp theorem
(46) we have for some c¢o > 0 and dy > 0

P{ sup |B(s)| > y} < dpexp (—c0y2) , for all y > 0. (44)
0<s<1

We get now using a simple Borel-Cantelli lemma argument based on inequality (44) and

D
M (an) = agsup{]Bl(s)\ :0<s<1},
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that with D = /3/co, w.p. 1, for all n sufficiently large,

: < Dall :
s M; (ay,) < Da,, \/logn

Hence, w.p. 1, uniformly 0 <t < a, and 0 < p < a <1 — p, for all large enough n,
17 (t)| < Dall\/logn.
Also trivially we have uniformly 0 <t <apand 0<p<a<1l-—p
1Ta (t)] = tH‘Zoz| < ale_p.
Thus, w.p. 1, uniformly 0 < ¢ <a, and 0 < p < a <1 — p, for all large enough n,

A, (ap) < 2Dal\/nlogn.
Note that

o " B u (loglogn H/(29)
pn :=2Da,, \/nlogn =2DC" | ———— v/nlogn,
n

satisfies | H 1 H_§
- — === —>0.
logn 26 2 24

For some ¢ > 0 small enough (H — 0)/(2) > 1/6, therefore

An(an) = O(n~%), as.

which together with (40), and (42) finish the proof of the corollary. O

5 Appendix: Useful inequalities

5.1 Talagrand’s inequality
We shall be using the following exponential inequality due to Talagrand [14].

Talagrand Inequality. Let G be a pointwise measurable class of measurable real-valued functions
defined on a measure space (S,S) satisfying ||g||lcc < M, g € G, for some 0 < M < co. Let X, X,,,

n > 1, be a sequence of i.i.d. random variables defined on a probability space (2, A, P) and taking
values in S, then for all z > 0 we have for suitable finite constants Dy, Dy > 0,

D222 DQZ
<2 — 2 - 45
+ z < exp( naé>+ exp( M>’ (45)

where o} = sup,eg Var(g(X)) and €n, n > 1, are independent Rademacher random variables mu-
tually independent of X, n > 1.

n

> eig(Xi)

=1

P |Vnanllg > Dy | E

g
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5.2 Application of Landau—Shepp Theorem

(H)

By the Lévy modulus of continuity theorem for fractional Brownian motion B\’ with Hurst index

0 < H <1 (see Corollary 1.1 of Wang [17]), we have for any 0 < T < oo, w.p. 1,

‘B(H) (t) — BUD) (s)‘
sup

=: L < 0.
0<s<t<T fu (t—s)

Therefore we can apply the Landau and Shepp [11] theorem (also see Sato [12] and Proposition
A.2.3 in [15]) to infer that for appropriate constants ¢y > 0 and dy > 0, for all z > 0,

P{L >z} <dpexp (70022) . (46)

5.3 A maximal inequality

The following inequality is proved in Kevei and Mason [5], where it is Inequality 2.

Inequality For all0 < v < 1 and 7 > 0 we have for some E(7) and for suitable finite positive
constants D3, Dy > 0, for all z > 0

P { max sup  [VmtTam, (hig)| > Dsv/n (E(T)(27)" + z)}

1SmSn (1,2)€[0,] xR (47)

<2 {exp (—D4z2 (27)_27) + exp (—D4z\/ﬁ(2fy)_7)} :

Acknowledgement. Kevei’s research was funded by a postdoctoral fellowship of the Alexander
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