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Abstract

We derive characteristic function identities for conditional distributions of

an r-trimmed Lévy process given its r largest jumps up to a designated time

t. Assuming the underlying Lévy process is in the domain of attraction of a

stable process as t ↓ 0, these identities are applied to show joint convergence

of the trimmed process divided by its large jumps to corresponding quantities

constructed from a stable limiting process. This generalises related results in

the 1-dimensional subordinator case developed in Kevei & Mason (2014) and

produces new discrete distributions on the infinite simplex in the limit.

1 Introduction and Lévy Process Setup

Deleting the r largest jumps up to a designated time t from a Lévy process gives

the “r-trimmed Lévy process”. We derive useful characteristic function identities

for conditional distributions of the process given some of its largest jumps. As
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corollaries, representations for the characteristic functions of the trimmed process

divided by its large jumps are found. Assuming X is in the domain of attraction of

a stable process as t ↓ 0, the representations are applied to show joint convergence of

those ratios to corresponding quantities constructed from the stable limiting process.

In the case of subordinators, Kevei & Mason (2014) considered one-dimensional

convergence to stable subordinators and derived the limit distribution of the ratio of

an r-trimmed subordinator to its rth largest jump occurring up till a specified time

t > 0, as t ↓ 0 or t → ∞. Perman (1993), also considering subordinators, derived

exact expressions for the joint density of the ratios of the first r largest jumps up till

time t = 1 of a subordinator, taken as ratios of the value of the subordinator itself

at time 1. In Perman’s case the canonical measure of the subordinator was assumed

to have a density with respect to Lebesgue measure. His results, when applied to a

Gamma subordinator, produce formulae for the Poisson-Dirichlet process.

For our asymptotic results we allow a general Lévy measure, making no conti-

nuity assumptions on it. Our main result, Theorem 2.1, is a multivariate version of

part of Theorem 1.1 of Kevei & Mason (2014), and, as a generalisation, we consider

a trimmed Lévy process in the domain of attraction of a stable distribution with

parameter α in (0, 2), taken as a ratio of one of its large jumps at time t. We show

the joint convergence of these ratios to corresponding quantities constructed from

the stable limiting process, as time t tends to 0.

When 0 < α < 1, the limit distribution in Theorem 2.1 is related to the gen-

eralised Poisson-Dirichlet distribution PD
(r)
α in Ipsen & Maller (2016) derived from

the trimmed stable subordinator, which includes as a special case the PD(α, 0) dis-

tribution in Pitman & Yor (1997). When α > 1 the process is not a subordinator,

and there is no direct connection with the Poisson-Dirichlet distribution. In this

case the process has to be centered appropriately to get the required convergence.

We note that (since the Lévy measure has infinite mass) there are always infinitely

many “large” jumps of Xt, a.s., in any right neighbourhood of 0.

These considerations form the basis of further generalised versions of Poisson-

Dirichlet distributions explored in Ipsen & Maller (2016). In the present paper we

limit ourselves to proving Theorem 2.1 (in Section 2) and the foundational results

needed for its proof (in Section 3). A second Theorem 2.2 proves a kind of “large

trimming” result, showing that the trimmed process is of small order of the largest

jump trimmed, uniformly in t, as the order tends to infinity. Section 4 contains the

proofs of the results in Section 2. For the remainder of this section we give a brief

introduction to the Lévy process ideas we will need.
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1.1 Lévy Process Setup

We consider a real valued Lévy process (Xt)t≥0 on a filtered probability space

(Ω, (Ft)t≥0,P), with canonical triplet (γ, σ2,Π); thus, having characteristic function

EeiθXt = etΨ(θ), t ≥ 0, θ ∈ R, with exponent

Ψ(θ) := iθγ − 1
2σ

2θ2 +

∫
R\{0}

(
eiθx − 1− iθx1{|x|≤1}

)
Π(dx). (1.1)

Here γ ∈ R, σ2 ≥ 0 and Π is a Lévy measure on R, i.e., a Borel measure on R with∫
R\{0}(x

2∧1)Π(dx) <∞. The positive, negative and two-sided tails of Π are defined

for x > 0 by

Π
+

(x) := Π{(x,∞)}, Π
−

(x) := Π{(−∞,−x)}, and Π(x) := Π
+

(x) + Π
−

(x). (1.2)

Let Π
+,←

denote the inverse function of Π
+

, defined by

Π
+,←

(x) = inf{y > 0 : Π
+

(y) ≤ x}, x > 0, (1.3)

and similarly for Π
←

. Throughout, let N := {1, 2, . . .} and N0 := {0, 1, 2, . . .}.
Write (∆Xt := Xt − Xt−)t>0, with ∆X0 = 0, for the jump process of X, and

∆X
(1)
t ≥ ∆X

(2)
t ≥ · · · for the jumps ordered by their magnitudes at time t >

0. Assume throughout that Π{(0,∞)} = ∞, so there are infinitely many positive

jumps, a.s., in any right neighbourhood of 0. Thus the ∆X
(i)
t are positive a.s. for

all t > 0 but limt↓0 ∆X
(i)
t = 0 for all i ∈ N. Our objective is to study the “one-sided

trimmed process”, by which we mean Xt minus its large positive jumps, at a given

time t. Thus, the one-sided r-trimmed version of Xt is

(r)Xt := Xt −
r∑
i=1

∆X
(i)
t , r ∈ N, t > 0 (1.4)

(and we set (0)Xt ≡ Xt). Detailed definitions and properties of this kind of ordering

and trimming are given in Buchmann, Fan & Maller (2016), where we identify the

positive ∆Xt with the points of a Poisson point process on [0,∞).

Our main result, in Theorem 2.1, is to show that ratios formed by dividing (r)Xt,

possibly after centering, by its ordered positive jumps, converge to the corresponding

stable ratios when X is in the domain of attraction of a non-normal stable law.

2 Convergence of Lévy Ratios to Stable Limits

Throughout, X will be assumed to be in the domain of attraction of a non-normal

stable random variable at 0 (or at∞).1 By this we mean that there are nonstochastic

1The convergences in this section can be worked out as t ↓ 0 or as t→∞. For definiteness and

in keeping with modern trends in the area we supply the versions for t ↓ 0, but little modification

is needed for the case t→∞.
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functions at ∈ R and bt > 0 such that (Xt − at)/bt
D−→ Y , for an a.s. finite random

variable Y , not degenerate at a constant, and not normally distributed, as t ↓ 0. The

Lévy tail Π(x) is then regularly varying of index −α at 0, and the balance conditions

lim
x↓0

Π
±

(x)

Π(x)
= a±, (2.1)

where a+ + a− = 1, are satisfied. If this is the case then the limit random variable

Y must be a stable random variable with index α in (0, 2). We consider one-sided

(positive) trimming, so we always assume a+ > 0, and then also Π
+

(x) is regularly

varying at 0 with index −α, α ∈ (0, 2).

Denote by RV0(α) (RV∞(α)) the regularly varying functions of index α ∈ R at

0 (or ∞). When Π
+

(·) ∈ RV0(−α) with 0 < α < ∞ or, equivalently, the inverse

function Π
+,←

(·) ∈ RV∞(−1/α) (e.g. Bingham, Goldie and Teugels (1987, Sect. 7,

pp.28-29)), we have the easily verified convergence

tΠ
+

(uΠ
+,←

(y/t)) ∼ Π
+

(uy−1/αΠ
+,←

(1/t))

Π
+

(Π
+,←

(1/t))
→ u−αy as t ↓ 0, for all u, y > 0. (2.2)

For r > 0 write

P(Γr ∈ dx) =
xr−1e−xdx

Γ(r)
1{x>0},

for the density of Γr, a Gamma(r, 1) random variable, which should not be confused

with the Gamma function, Γ(r) =
∫∞

0 xr−1e−xdx. Denote the Beta random variable

on (0, 1) with parameters a, b > 0 by Ba,b, having density function

fB(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 =

1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1.

Denote by (St)t≥0 a stable process of index α ∈ (0, 2) having Lévy measure

Λ(dx) = ΛS(dx) = −d(x−α)1{x>0} + (a−/a+)d(−x)−α1{x<0}, x ∈ R, (2.3)

with characteristic exponent

ΨS(θ) :=

∫
R\{0}

(
eiθx − 1− iθx1{|x|≤1}

)
Λ(dx), (2.4)

and by (∆St := St − St−)t>0 the jump process of S. Let

∆S
(1)
t ≥ ∆S

(2)
t ≥ · · · ≥ ∆S

(n)
t ≥ · · ·

be the ordered stable jumps at time t > 0. These are uniquely defined a.s. (no

tied values a.s.) since the Lévy measure of S has no atoms. The positive and

negative tails of Λ are Λ
+

(x) := Λ{(x,∞)} = x−α and Λ
−

(x) := Λ{(−∞,−x)} =
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(a−/a+)x−α, for x > 0. Since Λ
+

(0+) =∞, the ∆S
(i)
t are positive a.s., i = 1, 2, . . .,

but tend to 0 a.s. as t ↓ 0.

Define a centering function ρX(·) for X by

ρX(w) :=


γ −

∫
[−1,−w)∪[w,1]

xΠ(dx), 0 < w ≤ 1,

γ +
∫

[−w,−1)∪(1,w) xΠ(dx), w > 1,

(2.5)

and similarly for ρS(w), but with γ taken as 0 and Λ replacing Π in that case.

To state Theorem 2.1, we need some further notation. For each n = 2, 3, . . . and

0 < u < 1, suppose random variables J
(1)
n−1(u) ≥ J

(2)
n−1(u) ≥ · · · ≥ J

(n−1)
n−1 (u) are

distributed like the decreasing order statistics of n− 1 independent and identically

distributed (i.i.d.) random variables (Ji(u))1≤i≤n−1, each having the distribution

P(J1(u) ∈ dx) =
Λ(dx)1{1≤x≤1/u}

1− uα
, x > 0. (2.6)

Also let L
(1)
n−1 ≥ L

(2)
n−1 ≥ · · · ≥ L

(n−1)
n−1 be distributed like the decreasing order

statistics of n− 1 i.i.d. random variables (Li)1≤i≤n−1, each having the distribution

P(L1 ∈ dx) = Λ(dx)1{x>1}. (2.7)

Define

ψ(θ) =

∫
(−∞,1)

(
eiθx − 1− iθx1{|x|≤1}

)
Λ(dx), θ ∈ R, (2.8)

and choose θ0 > 0 such that |ψ(θ)| < 1 for |θ| ≤ θ0 (as is possible since ψ(0) = 0).

Also define φ(θ, u) = EeiθJ1(u), θ ∈ R, with J1(u) having the distribution in (2.6):

φ(θ, u) = (1− uα)−1

∫ 1/u

1
eiθxΛ(dx), 0 < u < 1. (2.9)

Let W = (Wv)v≥0 be a Lévy process on R with triplet (0, 0,Λ(dx)1(−∞,1)), and Γr+n

a Gamma (r + n,1) random variable independent of W .

When n = 2, 3, . . ., xk > 0, 1 ≤ k ≤ n− 1, xn = 1, and θk ∈ R, 1 ≤ k ≤ n, write

for shorthand

xn+ =

n∑
k=1

xk and θ̃n+ = θ̃n+(x1, . . . , xn) :=

n∑
k=1

θk
xk
, (2.10)

and let
∫
x↑≥1 denote integration over the region {x1 ≥ x2 ≥ · · · ≥ xn−1 ≥ 1} ⊆ Rn−1.

Recall that (0)X ≡ X.
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Theorem 2.1. Assume Π ∈ RV0(−α) for some 0 < α < 2 and (2.1).

(i) Then for each r ∈ N0, n ∈ N, as t ↓ 0, we have the joint convergence(
(r)Xt − tρX(∆X

(r+n)
t )

∆X
(r+1)
t

, . . . ,
(r)Xt − tρX(∆X

(r+n)
t )

∆X
(r+n)
t

)
D−→
(

(r)S1 − ρS(∆S
(r+n)
1 )

∆S
(r+1)
1

, . . . ,
(r)S1 − ρS(∆S

(r+n)
1 )

∆S
(r+n)
1

)
. (2.11)

(ii) When r ∈ N, n = 2, 3, . . ., the random vector on the RHS of (2.11) has

characteristic function which can be represented, for θk ∈ R, 1 ≤ k ≤ n, as

E exp

(
i
n∑
k=1

θk
(

(r)S1 − ρS(∆S
(r+n)
1 )

)
∆S

(r+k)
1

)
=∫

x↑≥1
eiθ̃n+xn+E

(
eiθ̃n+WΓr+n

)
P
(
J

(k)
n−1(B1/α

r,n ) ∈ dxk, 1 ≤ k ≤ n− 1
)
, (2.12)

where Br,n is a Beta(r, n) random variable independent of the (Ji(u)). Alternatively,

recalling (2.8), when max1≤k≤n |θk| ≤ θ0 the RHS of (2.12) can be written as∫
x↑≥1

eiθ̃n+xn+(
1− ψ(θ̃n+)

)r+nP
(
J

(k)
n−1(B1/α

r,n ) ∈ dxk, 1 ≤ k ≤ n− 1
)
. (2.13)

When r = 0, (2.12) and (2.13) remain true as stated if the rvs J
(k)
n−1(B

1/α
r,n ) are re-

placed respectively by L
(k)
n−1, being the order statistics associated with the distribution

in (2.7).

(iii) When r ∈ N, n ∈ N we have

(r)Xt − tρX(∆X
(r+n)
t )

∆X
(r+n)
t

D−→
(r)S1 − ρS(∆S

(r+n)
1 )

∆S
(r+n)
1

, as t ↓ 0, (2.14)

where, recalling (2.9), the random variable on the RHS of (2.14) has characteristic

function
eiθ

(1− ψ(θ))r+n
E
(
φn−1(θ,B1/α

r,n )
)
, θ ∈ R, |θ| ≤ θ0. (2.15)

When r = 0, (2.14) remains true, as does (2.15), if φ(θ,B
1/α
r,n ) in (2.15) is replaced

by φ(θ, 0) :=
∫∞

1 eiθxΛ(dx).

Setting n = 1 in (2.14), and (since (r)Xt/∆X
(r+1)
t = 1 + (r+1)Xt/∆X

(r+1)
t )

replacing r + 1 by r gives

Corollary 2.1. For each r ∈ N, θ ∈ R, |θ| ≤ θ0,

(r)Xt − tρX(∆X
(r)
t )

∆X
(r)
t

D−→
(r)S1 − ρS(∆S

(r)
1 )

∆S
(r)
1

, as t ↓ 0, (2.16)
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where

E
(
eiθ((r)S1−ρS(∆S

(r)
1 ))/∆S

(r)
1
)

= E
(
eiθWΓr

)
=

1(
1− ψ(θ)

)r . (2.17)

Further,
(

(r)S1 − ρS(∆S
(r)
1 )
)
/∆S

(r)
1

D
= WΓr , being a Gamma-subordinated Lévy pro-

cess, is infinitely divisible for each r ∈ N.

The unwieldy centering functions ρX and ρS in (2.11)–(2.17) can be simplified in

many cases. Especially, when X is a subordinator with drift dX , ρX can be replaced

by dX , and without loss of generality we can assume dX = 0. The convergences in

(2.11)–(2.16) can then be written in terms of Laplace transforms. This case recovers

a result proved in Theorem 1.1 of Kevei & Mason (2014): assume X is a driftless

subordinator in the domain of attraction (at 0) of a stable random variable with

index α ∈ (0, 1). Then for r ∈ N

(r)Xt

∆X
(r)
t

D−→ (r)Y, as t ↓ 0, (2.18)

where (r)Y is an a.s. finite non-degenerate random variable. From Theorem 2.1 we

can identify (r)Y as having the distribution of (r)S1/∆S
(r)
1 , in our notation. Kevei

and Mason show, conversely, in this subordinator case, that when (2.18) holds with
(r)Y a finite non-degenerate random variable, then X is in the domain of attraction

(at 0) of a stable random variable with index α ∈ (0, 1). They also give in their

Theorem 1.1 a formula for the Laplace transform of (r)Y . We can state an equivalent

version as: suppose (2.18) holds. Then (2.17) becomes

E
(
e−λ

(r)S1/∆S
(r)
1
)

= E
(
e−λWΓr

)
=

1

(1 + Ψ(λ))r
, r ∈ N, (2.19)

where now W = (Wv)v≥0 is a driftless subordinator with measure Λ(dx)1(0,1), and

Ψ(λ) =

∫
(0,1)

(
1− e−λx

)
Λ(dx), λ > 0.

Remark 2.1 (Negative Binomial Point Process). The form of the Laplace trans-

form in (2.19) suggests a connection with the negative binomial point process of

Gregoire (1984). That connection is developed in detail in Ipsen & Maller (2018),

and also forms the basis for a general point measure treatment when 0 ≤ α ≤ ∞
in Ipsen et al. (2017), which contains a converse proof generalising that of Kevei &

Mason (2014). Those results motivate further investigation of the “large trimming”

properties of general Lévy processes in the spirit of Buchmann, Maller & Resnick

(2016).
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Remark 2.2 (Modulus Trimming). Rather than removing large jumps from X

as we do in (1.4), we can remove jumps large in modulus and obtain analogous

formulae and results, with appropriate modifications. The centering function ρX in

(2.5) should then be changed to γ −
∫

[−1,−w]∪[w,1] xΠ(dx) when 0 < w ≤ 1, and to

γ+
∫

(−w,−1)∪(1,w) xΠ(dx) when w > 1, and similarly for ρS . The norming in Theorem

2.1 would then be by jumps large in modulus rather than by large (positive) jumps,

and the convergence would be to the analogous modulus trimmed stable process.

The identities in Section 3 required for the modified proofs can be obtained from

analogous formulae for modulus trimming in Buchmann, Fan & Maller (2016).

Remark 2.3 (Connection with PD
(r)
α ). When X is a driftless subordinator, we

obtain from (2.11) with n ∈ N that(
∆X

(r+1)
t

(r)Xt
, . . . ,

∆X
(r+n)
t

(r)Xt

)
D−→
(

∆S
(r+1)
1

(r)S1
, . . . ,

∆S
(r+n)
1

(r)S1

)
, as t ↓ 0. (2.20)

When n → ∞, the n-vector on the RHS tends to a vector (V
(r)

1 , V
(r)

2 , . . .) on the

infinite simplex with the generalised Poisson-Dirichlet distribution PD
(r)
α defined in

Ipsen & Maller (2016). When r = 0, this reduces to the Poisson-Dirichlet distribu-

tion generated from the stable subordinator, denoted by PD(α, 0) in Pitman & Yor

(1997), which was first noted by Kingman (1975).

To complete this section we continue to consider the case when X is a driftless

subordinator. Our final result shows that ratios of the form (r+n)Xt/∆X
(r)
t as in

(2.20) have strong stability properties. In the next theorem the interesting aspect

is the uniformity of convergence in neighbourhoods of 0; although ∆X
(r)
t ↓ 0 a.s. as

t ↓ 0, the remainder after removing an increasing number of jumps, r+n, from X is

shown to be small order ∆X
(r)
t , in probability as n→∞, uniformly on compacts.

Theorem 2.2. Suppose X is a driftless subordinator with Π ≡ Π
+ ∈ RV0(−α) for

some 0 < α < 1. Then for each r ∈ N
(r+n)Xt

∆X
(r)
t

P→ 0, as n→∞, (2.21)

uniformly in t ∈ (0, t0], for any t0 > 0.

Remark 2.4. By the uniform in probability convergence in Theorem 2.2 we mean

lim
n→∞

P((r+n)Xt > ε∆X
(r)
t ) = 0, uniformly in 0 < t ≤ t0, for all ε > 0. (2.22)

Since (r+n)Xt is monotone in n, this is equivalent to a kind of “uniform almost sure”

convergence, as follows. With “i.o.” standing for “infinitely often”, and ε > 0, t > 0,

P((r+n)Xt > ε∆X
(r)
t i.o., n→∞) = lim

m→∞
P((r+n)Xt > ε∆X

(r)
t for some n > m)
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≤ lim
m→∞

P((r+m)Xt > ε∆X
(r)
t ) = 0,

where the convergence is uniform in 0 < t ≤ t0, by (2.22).

3 Representations for Trimmed Lévy Processes

In the present section we revert to considering an arbitrary real valued Lévy process

(Xt)t≥0, set up as in Section 1 (see (1.1) and (1.2)), and derive the identities required

for the proofs of the results in Section 2. Fundamental to these identities is a

general representation for the joint distribution of (r)Xt and its large jumps, given

in Buchmann et al. (2016), which allows for possible tied values in the jumps.2 Our

main theorem in this section, Theorem 3.1, applies it to derive formulae for the

conditional distributions of the trimmed Lévy given some of its large jumps. We

expect these formulae will have useful applications in other areas too.

To state the Buchmann et al. (2016) representation, recall the definition of the

right-continuous inverse Π
+,←

(x) of Π
+

in (1.3), and for each v > 0 introduce a

Lévy process (Xv
t )t≥0 having the canonical triplet(

γv, σ2, Πv(dx)
)

:=(
γ − 1{Π+,←

(v)≤1}

∫
Π

+,←
(v)≤x≤1

xΠ(dx), σ2, Π(dx)1{x<Π
+,←

(v)}

)
. (3.1)

Further, let Gvt = Π
+,←

(v)Ytκ(v) for v > 0, t > 0, with κ(v) := Π
+

(Π
+,←

(v)−) − v
and (Yt)t≥0 a homogeneous Poisson process with E(Y1) = 1, independent of (Xv

t )t≥0.

Let r ∈ N and recall that (Γi) are Gamma(i, 1) random variables, i ∈ N. Assume

that (Xv
t )t≥0, (Gvt )t≥0 and (Γi) are independent as random elements for each v > 0.

Then Theorem 2.1, p.2329, together with Lemma 1, p.2333, of Buchmann et al.

(2016) give, for each t > 0, r,m ∈ N, 1 ≤ m ≤ r,((r)
Xt, ∆X

(m)
t , . . . ,∆X

(r)
t

) D
=
(
X

Γr/t
t +G

Γr/t
t , Π

+,←
(Γm/t), . . . ,Π

+,←
(Γr/t)

)
. (3.2)

We need some further notions. For each y > 0 introduce another Lévy process

(X
(y)
t )t≥0 having the canonical triplet(
γ(y), σ2, Π(y)(dx)

)
:=

(
γ − 1{y≤1}

∫
y≤x≤1

xΠ(dx), σ2, Π(dx)1{x<y}

)
, (3.3)

and another process (G
(y,v)
t ) defined such that G

(y,v)
t = yYtκ(y,v) for y, v, t > 0, where

again (Yt)t≥0 is a homogeneous Poisson process with E(Y1) = 1, now independent

of (X
(y)
t )t≥0, and κ(y, v) := Π

+
(y−)− v.

2A different but equivalent distributional representation when X is a subordinator is in Propo-

sition 1 of Kevei & Mason (2013).
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We need to distinguish situations when Π
+

is or is not continuous at a point.

Let AΠ denote the points of discontinuity of Π
+

in (0,∞). When yi ∈ AΠ, set

ai = ai(yi) = Π
+

(yi) < bi = bi(yi) = Π
+

(yi−). (3.4)

Note that Π
+,←

(v) takes the same value, namely, yi, for any v ∈ [ai, bi). When

r,m ∈ N with 1 ≤ m ≤ r and yr ∈ AΠ, define conditional expectations

Km,r(θ, t, ym, . . . , yr) = E
(
eiθG

(yr,Γr/t)
t

∣∣Γi/t ∈ [ai, bi), m ≤ i ≤ r
)
, (3.5)

for t > 0, θ ∈ R. When yr /∈ AΠ, i.e., Π
+

(yr) = Π
+

(yr−), we set G
(yr,·)
t = 0 and in

this case we understand Km,r(θ, t, ym, . . . , yr) = 1. When yr ∈ AΠ but yi /∈ AΠ for

one or more i, m ≤ i < r, we understand the corresponding events {Γi/t ∈ [ai, bi)}
are omitted from the conditioning in (3.5).

With this notation in place we can now state Theorem 3.1, the main result of this

section, which provides in characteristic function form the conditional distribution

of (r)Xt, given ∆X
(r)
t , or given ∆X

(m)
t , . . . ,∆X

(r)
t .

Theorem 3.1. Take integers r,m ∈ N with 1 ≤ m ≤ r, and real numbers ym ≥
· · · ≥ yr > 0, θ ∈ R, t > 0. Then we have the identities

E
(
eiθ(r)Xt

∣∣∆X(r)
t = yr

)
= E

(
eiθX

(yr)
t
)
Kr,r(θ, t, yr) (3.6)

and

E
(
eiθ(r)Xt

∣∣∆X(i)
t = yi, m ≤ i ≤ r

)
= E

(
eiθX

(yr)
t
)
Km,r(θ, t, ym, . . . , yr). (3.7)

Proof of Theorem 3.1: We prove (3.6), then show how it can be extended to (3.7).

First suppose yr ∈ AΠ. From (3.2) we have

P(∆X
(r)
t = yr) = P

(
Π

+,←
(Γr/t) = yr

)
= P(Γr/t ∈ [Π

+
(yr),Π

+
(yr−))) = P(Γr/t ∈ [ar, br)) > 0. (3.8)

(In the last equality, recall (3.4).) Since the probability in (3.8) is positive, we can

compute, by elementary means, using (3.2) again,

P((r)Xt ≤ x
∣∣∆X(r)

t = yr) =
P((r)Xt ≤ x, ∆X

(r)
t = yr)

P(∆X
(r)
t = yr)

=
P
(
X

Γr/t
t +G

Γr/t
t ≤ x,Γr/t ∈ [ar, br)

)
P(Γr/t ∈ [ar, br))

= P
(
X

Γr/t
t +G

Γr/t
t ≤ x

∣∣Γr/t ∈ R(yr)
)
, (3.9)
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where R(yr) := [ar, br). Going over to characteristic functions, we find, since Xv
t ,

Gvt and Γr are independent for each v > 0,

E
(
eiθ(r)Xt

∣∣∆X(r)
t = yr

)
=

∫
v∈R(yr)

E(eiθXv
t ) E(eiθGvt )

P (Γr/t ∈ dv)

P(Γr/t ∈ R(yr))
. (3.10)

Whenever v ∈ R(yr), then Π
+,←

(v) = yr and Xv
t = X

(yr)
t (recall (3.3)), while

κ(v) = Π
+

(yr−) − v = κ(yr, v) and Gvt = yrYtκ(yr,v) = G
(yr,v)
t . Consequently the

RHS of (3.10) is

E(eiθX
(yr)
t )E

(
eiθG

(yr,Γr/t)
t

∣∣Γr/t ∈ R(yr)
)

= E
(
eiθX

(yr)
t
)
Kr,r(θ, t, yr),

as required for (3.6).

The conditional probability in (3.9) is in fact the Radon-Nikodym derivative of

the measure P
(

(r)Xt ≤ x, ∆X
(r)
t ≤ ·

)
with respect to the measure P

(
∆X

(r)
t ≤ ·

)
on

(0,∞) when yr is an atom of Π. Alternatively, suppose Π is continuous at yr. Then

we write, from (3.2), for t > 0, yr > 0,

P
(

(r)Xt ≤ x, ∆X
(r)
t ≤ yr

)
=

∫
{v>0: Π

+,←
(v)≤yr}

P (Xv
t +Gvt ≤ x) P (Γr/t ∈ dv)

(3.11)

and

P
(
∆X

(r)
t ≤ yr

)
=

∫
{v>0: Π

+,←
(v)≤yr}

P (Γr/t ∈ dv) . (3.12)

Since P (Γr/t ∈ ·) is absolutely continuous with respect to Lebesgue measure we

can use the differentiation formula in Thm.2, p.156 of Zaanen (1958) to calculate

the Radon-Nikodym derivative. Thus we evaluate (3.11) and (3.12) over intervals

(yr − ε−, yr + ε+) and take the limit of the ratio as ε± ↓ 0. This produces

P((r)Xt ≤ x
∣∣∆X(r)

t = yr) = P(X
(yr)
t ≤ x), (3.13)

and since Kr,r(θ, t, yr) = 1 in this case, we get (3.6) again.

This completes the proof of (3.6). Next we extend it to (3.7). Assume ym ≥
· · · ≥ yr > 0 are in AΠ. Then (3.8) generalises straightforwardly to

P(∆X
(i)
t = yi,m ≤ i ≤ r) = P(Γi/t ∈ [ai, bi), m ≤ i ≤ r) > 0, (3.14)

and (3.9) becomes

P((r)Xt ≤ x
∣∣∆X(i)

t = yi, m ≤ i ≤ r)
= P

(
X

Γr/t
t +G

Γr/t
t ≤ x

∣∣Γi/t ∈ [ai, bi), m ≤ i ≤ r
)
. (3.15)

Going over to characteristic functions and recalling Km,r(θ, t, ym, . . . , yr) in (3.5) we

get (3.7).

The cases when some or all of the yi are continuity points of Π can be analysed

as for (3.6). Since we do not need these formulae for the proofs we omit details. �
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Remark 3.1. (i) When calculating conditional probabilities, we should check that

they have the requisite measurability and integrability properties. The expressions in

(3.9) and (3.15) are clearly measurable with respect to their variables, and that they

integrate to give the respective joint distributions of (r)Xt and the relevant ∆X
(i)
t

is easily checked by decomposing integrals into discrete and absolutely continuous

components. Effectively, since all of our calculations ultimately involve integration

with respect to the absolutely continuous gamma distributions, the needed properties

follow automatically.

(ii) (3.5), (3.6) and (3.7) show that in general the Markov property for the ordered

large jumps does not hold, as K1,r(θ, t, y1, . . . , yr) 6= Kr,r(θ, t, yr) in general. But

when yr is a continuity point of Π
+

, then equality does hold here and we do have

the Markov property. This parallels the similar situation for order statistics of i.i.d.

random variables.

Using Theorem 3.1 and (3.3), conditional characteristic functions of (r)Xt can

be written as in the next corollary. For (3.16) and (3.17), set m = 1 ≤ r in (3.7).

Corollary 3.1. For r ∈ N, y1 ≥ y2 ≥ · · · ≥ yr > 0, θ ∈ R, t > 0,

E
(
eiθ(r)Xt

∣∣∆X(i)
t = yi, 1 ≤ i ≤ r

)
= exp

(
iθtγ(yr) − 1

2 tσ
2θ2 + t

∫
(−∞,yr)

(
eiθx − 1− iθx1{|x|≤1}

)
Π(dx)

)
×K1,r(θ, t, y1, y2, . . . , yr). (3.16)

Suppose X is a subordinator (so σ2 = 0) with drift dX := γ −
∫

0<x≤1 xΠ(dx).

Then the RHS of (3.16) can be replaced by

exp

(
iθtdX + t

∫
(0,yr)

(
eiθx − 1

)
Π(dx)

)
×K1,r(θ, t, y1, y2, . . . , yr). (3.17)

The next corollary follows immediately from (3.7). Recall the definition of ρX

in (2.5). For (3.18), replace r by r + n and set m = r in (3.7).

Corollary 3.2. For r ∈ N, n ∈ N0, yr ≥ · · · ≥ yr+n > 0, θ ∈ R, t > 0,

E

(
exp

(
iθ

(r+n)Xt − tρX(∆X
(r+n)
t )

∆X
(r+n)
t

)∣∣∣∆X(k)
t = yk, r ≤ k ≤ r + n

)
= e−tσ

2θ2/2y2
r+n×

exp
(
t

∫
(−∞,1)

(
eiθx − 1− iθx1{|x|≤1}

)
Π
(
yr+ndx

))
×Kr,r+n(θ/yr+n, t, yr, . . . , yr+n).

(3.18)

Suppose X is a subordinator with drift dX . Then

E

(
exp

(
iθ

(r)Xt − tdX
∆X

(r)
t

)∣∣∣∆X(i)
t = yi, 1 ≤ i ≤ r

))
= exp

(
t

∫
(0,1)

(
eiθx − 1

)
Π
(
yrdx

))
×K1,r(θ/yr, t, y1, y2, . . . , yr). (3.19)

12



Proof of Corollaries 3.1 and 3.2: (3.16) follows from Theorem 3.1, using (3.3).

Then (3.17) follows from (3.16) by rearranging the centering terms. (3.18) follows

from (3.16) and (2.5), and (3.19) follows from (3.18). �

Another formula follows similarly from (3.17):

Corollary 3.3. Suppose X is a subordinator with drift dX . Then for θ ∈ R, t > 0,

r ∈ N, n ∈ N,

E
(

exp

(
iθ

(r+n)Xt − tdX
∆X

(r)
t

)∣∣∣∣∆X(i)
t = yi, r ≤ i ≤ r + n

)
= exp

(
t

∫
(0,yr+n)

(
eiθx/yr − 1

)
Π(dx)

)
×Kr,r+n(θ/yr, t, yr, . . . , yr+n). (3.20)

For the proofs in Section 4 we also need the following result.

Proposition 3.1. Suppose Π(·) ∈ RV0(−α) with α ∈ (0, 2), and keep r ∈ N and

n = 2, 3, . . .. Take xk ≥ 1 for 1 ≤ k ≤ n− 1. Then for x > 0

lim
t↓0

P

(
∆X

(r+k)
t

∆X
(r+n)
t

> xk, 1 ≤ k ≤ n− 1
∣∣∣∆X(r+n)

t = xΠ
+,←

(1/t)

)
= P

(
J

(k)
n−1

(
B1/α
r,n

)
> xk, 1 ≤ k ≤ n− 1

)
, (3.21)

where J
(1)
n−1(u) ≥ J

(2)
n−1(u) ≥ · · · ≥ J

(n−1)
n−1 (u) are the order statistics associated

with the distribution in (2.6), Br,n is a Beta(r, n) random variable independent of

(Ji(u))1≤i≤n−1, and the limit is taken as t ↓ 0 through points x such that xΠ
+,←

(1/t)

is a point of decrease of Π
+

.

When r = 0, (3.21) remains true if the RHS is replaced by

P(L
(k)
n−1 > xk, 1 ≤ k ≤ n− 1) (3.22)

where L
(k)
n−1 are the order statistics associated with the distribution in (2.7).

Remark 3.2. (3.21) and (3.22) can be stated in a unified fashion if we make the

convention that B0,n ≡ 0 a.s., put u = 0 in (2.6), and identify (Ji(0)) with a sequence

(Li) of independent and identically distributed random variables each having the

distribution in (2.7). Similarly for the corresponding statements in Theorem 2.1.

Proof of Proposition 3.1: This is a variant of the proof of Theorem 3.1. Assume

Π(·) ∈ RV0(−α) with α ∈ (0, 2) and choose r ∈ N0, n = 2, 3, . . ., xk ≥ 1. For brevity

write qt := Π
+,←

(1/t), t > 0. First suppose Π
+

is discontinuous at xqt, x > 0, so

P(∆X
(r+n)
t = xqt) = P(Γr+n ∈ [at(x), bt(x)),

13



where at(x) := tΠ
+

(xqt) < bt(x) := tΠ
+

(xqt−), and consider the ratio

P
(
∆X

(r+k)
t > xk∆X

(r+n)
t , 1 ≤ k ≤ n− 1, ∆X

(r+n)
t = xqt

)
P
(
∆X

(r+n)
t = xqt

)
=

P
(
Π

+,←
(Γr+k/t) > xkxqt, 1 ≤ k ≤ n− 1, at(x) ≤ Γr+n < bt(x)

)
P
(
at(x) ≤ Γr+n < bt(x)

) . (3.23)

With fr+n(y) as the bounded, continuous, density of Γr+n, the denominator in (3.23)

is, by the mean value theorem,∫ bt(x)

at(x)
fr+n(y)dy = (bt(x)− at(x))fr+n(ξt(x)), (3.24)

for some ξt(x) ∈ [at(x), bt(x)). Let ct(xk, x) := tΠ
+

(xkxqt). Recalling (3.2), the

numerator in (3.23) can be written as

P
(
Γr+k < tΠ

+
(xkxqt), 1 ≤ k ≤ n− 1, at(x) ≤ Γr+n < bt(x)

)
=

∫ bt(x)

at(x)
P
(
Γr+k < ct(xk, x), 1 ≤ k ≤ n− 1

∣∣Γr+n = y
)
fr+n(y)dy

=

∫ bt(x)

at(x)
P

(
Γr+k
Γr+n

<
ct(xk, x)

y
, 1 ≤ k ≤ n− 1

)
fr+n(y)dy. (3.25)

In the last equation we used that (Γr+k/Γr+n)1≤k≤n−1 is independent of Γr+n (using

“beta-gamma algebra”; see, e.g., Pitman (2006, p.11)).

Again using the mean value theorem the last expression in (3.25) equals

(bt(x)− at(x))fr+n(ηt(x))P

(
Γr+k
Γr+n

<
ct(xk, x)

ηt(x)
, 1 ≤ k ≤ n− 1

)
(3.26)

for some ηt(x) ∈ [at(x), bt(x)). Recall (2.2) and that qt := Π
+,←

(1/t) to see that

each of at(x), bt(x), ξt(x) and ηt(x) tends to x−α, that fr+n(ξt(x)) and fr+n(ηt(x))

both tend to fr+n(x−α), and that ct(xk, x) tends to (xkx)−α, all as t ↓ 0. Take the

ratio of the numerator of (3.23) in the form (3.26) to the denominator in the form

(3.24), and let t ↓ 0 to get the limit of the ratio in (3.23) as

P

(
Γr+k
Γr+n

< x−αk , 1 ≤ k ≤ n− 1

)
. (3.27)

This gives an expression for the limits on the lefthand side of (3.21) and (3.22).

To write them in the forms of the righthand sides of (3.21) and (3.22), first take

r ∈ N, and use the fact that, conditionally on Γr/Γr+n = s > 0,(
Γr+1

Γr+n
, . . . ,

Γr+n−1

Γr+n

)
D
=
(
U

(1)
n−1, . . . , U

(n−1)
n−1

)
, (3.28)
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where (U
(i)
n−1)1≤i≤n−1 are the order statistics of a sample (s+(1−s)Ui)1≤i≤n−1, with

(Ui)1≤i≤n−1 i.i.d. uniform [0, 1]. Thus for 0 < s < 1 ≤ x

P(s+ (1− s)U1 ≤ x−α) = P

(
U1 ≤

x−α − s
1− s

)
=
x−α − s

1− s
.

This equals P(J1(s1/α) ≤ x−α) as calculated from (2.6) so we get the required

representation in (3.21). When r = 0, (3.28) remains true with (U
(i)
n−1)1≤i≤n−1 the

order statistics of (Ui)1≤i≤n−1 i.i.d. uniform [0, 1], and since P(U1 ≤ x−α) = x−α =

P(L1 > x), with L1 as in (2.7), we get (3.22).

Next suppose Π
+

is continuous at xqt, x > 0, and xqt is a point of decrease of

Π
+

. Hold t > 0 fixed. The continuous case analogue of the ratio in (3.23) is

lim
ε↓0

P
(
∆X

(r+k)
t > xk∆X

(r+n)
t , 1 ≤ k ≤ n− 1, xqt − ε < ∆X

(r+n)
t ≤ xqt + ε

)
P
(
xqt − ε < ∆X

(r+n)
t ≤ xqt + ε

) .

(3.29)

Letting at(x, ε) := tΠ
+

(xqt + ε) < bt(x, ε) := tΠ
+

(xqt − ε) for ε ∈ (0, xqt), the

denominator in (3.29) is∫ bt(x,ε)

at(x,ε)
fr+n(y)dy = (bt(x, ε)− at(x, ε))fr+n(ξt(x, ε)), (3.30)

for some ξt(x, ε) ∈ [at(x, ε), bt(x, ε)). Note that the righthand side of (3.30) is

positive since xqt is a point of decrease of Π
+

. Let ct(xk, x, ε) := tΠ
+

(xk(xqt − ε)).
By a similar calculation as in (3.25) (but noting the inequalities in (3.29) as opposed

to the equality in (3.23)), the numerator in (3.29) is not greater than∫ bt(x,ε)

at(x,ε)
P

(
Γr+k
Γr+n

<
ct(xk, x, ε)

y
, 1 ≤ k ≤ n− 1

)
fr+n(y)dy

= (bt(x, ε)− at(x, ε))fr+n(ηt(x, ε))P

(
Γr+k
Γr+n

<
ct(xk, x, ε)

ηt(x, ε)
, 1 ≤ k ≤ n− 1

)
where ηt(x, ε) ∈ [at(x, ε), bt(x, ε)). Letting ε ↓ 0 we find an upper bound of the form

P

(
∆X

(r+k)
t > xk∆X

(r+n)
t , 1 ≤ k ≤ n− 1

∣∣∆X(r+n)
t = xqt

)
≤ P

(
Γr+k
Γr+n

<
tΠ

+
(xkxqt−)

tΠ
+

(xqt)
, 1 ≤ k ≤ n− 1

)
at points t > 0, x > 0, such that xqt is a point of decrease of Π

+
. Similarly we get a

lower bound with tΠ
+

(xkxqt) replacing tΠ
+

(xkxqt−). Then as t ↓ 0, on account of

the regular variation of Π
+

, both bounds approach the expression in (3.27), which

can be re-expressed in terms of the Ji and Li, as shown. Having reached the same

limit in both cases, we have proved Proposition 3.1. �
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4 Proofs for Section 2

Throughout this section X will be a Lévy process in the domain of attraction at 0 of

a non-normal stable random variable. Thus the Lévy tail Π is regularly varying of

index −α, α ∈ (0, 2), at 0, and the balance condition (2.1) holds at 0. Since a+ > 0

in (2.1), also Π
+ ∈ RV0(−α) at 0.

Proof of Theorem 2.1: (i) Take r ∈ N0, n ∈ N, and choose x1 ≥ · · · ≥ xn−1 ≥ 1,

xn = 1, θk ∈ R, 1 ≤ k ≤ n, and v > 0. For shorthand, write M
(r+n)
t for

ρX(∆X
(r+n)
t ). We proceed by finding the limit as t ↓ 0 of the conditional char-

acteristic function

E

(
exp

(
i

n∑
k=1

θk(
(r)Xt − tM (r+n)

t )

∆X
(r+k)
t

)∣∣∣∣∆X(r+k)
t

∆X
(r+n)
t

= xk, 1 ≤ k < n,
∆X

(r+n)
t

Π
+,←

(1/t)
= v−1/α

)

= E

(
exp

(
i
n∑
k=1

θk
xk

((r)Xt − tM (r+n)
t )

∆X
(r+n)
t

)
∣∣∣∣∆X(r+k)

t

∆X
(r+n)
t

= xk, 1 ≤ k ≤ n− 1,
∆X

(r+n)
t

Π
+,←

(1/t)
= v−1/α

)
.

(4.1)

Decompose (r)Xt as follows:

(r)Xt

∆X
(r+n)
t

=
n∑
k=1

∆X
(r+k)
t

∆X
(r+n)
t

+
(r+n)Xt

∆X
(r+n)
t

, (4.2)

and recall the definitions of xn+ and θ̃n+ in (2.10). Given the conditioning in (4.1),

the first component on the RHS of (4.2) equals
∑n

k=1 xk = xn+, so we can write the

RHS of (4.1) as

eiθ̃n+xn+ × E

(
exp

(
iθ̃n+

(r+n)Xt − tM (r+n)
t

∆X
(r+n)
t

)∣∣∣∣ ∆X
(r+k)
t

Π
+,←

(1/t)
= xkv

−1/α, 1 ≤ k ≤ n
)

(4.3)

(recall xn = 1). Then by (3.18) with θ replaced by θ̃n+, yk replaced by yk(t) :=

xkv
−1/αΠ

+,←
(1/t), and σ2 = 0, the expression in (4.3) equals

eiθ̃n+xn+ × exp

(∫
(−∞,1)

(
eiθ̃n+x − 1− iθ̃n+x1{|x|≤1}

)
tΠ
(
v−1/αΠ

+,←
(1/t)dx

))
×Kr+1,r+n(θ̃n+/yr+n(t), t, yr+1(t), . . . , yr+n(t)) (4.4)

(again, recall xn = 1). By (2.2), we have tΠ
+

(v−1/αΠ
+,←

(1/t)) → v, and hence

tΠ
+

(v−1/αΠ
+,←

(1/t)dx)→ vΛ(dx), x > 0, vaguely, as t ↓ 0. The limit of the second

factor in (4.4) can then be found straightforwardly using integration by parts and

applying (2.1) and (2.2).
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The term containing K in (4.4) is negligible here, as follows. Note that Π
+

in

RV0(−α) implies ∆Π
+

(x) := Π
+

(x−)−Π
+

(x) = o(Π
+

(x)) as x ↓ 0. Recall Kr,r+n is

defined in (3.5), and κ(y, v) = Π
+

(y−)− v. Substituting yr+n(t) = v−1/αΠ
+,←

(1/t)

for y gives

tκ(yr+n(t), v/t) = tΠ
+

(v−1/αΠ
+,←

(1/t)−)− v
= tΠ

+
(v−1/αΠ

+,←
(1/t))− v + t∆

(
Π

+
(v−1/αΠ

+,←
(1/t))

)
= tΠ

+
(v−1/αΠ

+,←
(1/t))− v + o

(
tΠ

+
(v−1/αΠ

+,←
(1/t))

)
→ v − v = 0, as t ↓ 0. (4.5)

Furthermore, G
(yr+n(t),Γr+n/t)
t /yr+n(t) has the distribution of Ytκ(yr+n(t),Γr+n/t) and

hence tends to 0 in probability when t ↓ 0. So we can ignore the K term in (4.4).

We conclude that the expression in (4.4) tends as t ↓ 0 to

eiθ̃n+xn+ × exp

(
v

∫
(−∞,1)

(
eiθ̃n+x − 1− iθ̃n+x1{|x|≤1}

)
Λ(dx)

)
. (4.6)

Thus, by (4.2), to find the limit as t ↓ 0 of

E exp

(
i

n∑
k=1

θk(
(r)Xt − tM (r+n)

t )

∆X
(r+k)
t

)
,

we multiply (4.6) by the limit, as t ↓ 0 through points v such that v−1/αΠ
+,←

(1/t)

is a point of decrease of Π
+

, of

P

(
∆X

(r+k)
t

∆X
(r+n)
t

∈ dxk, 1 ≤ k ≤ n− 1

∣∣∣∣ ∆X
(r+n)
t

Π
+,←

(1/t)
= v−1/α

)
×P

(
∆X

(r+n)
t

Π
+,←

(1/t)
∈ d(v−1/α)

)
,

and then integrate over v and the xk.
3

From (3.21) when r ∈ N and from (3.22) when r = 0 we see that the limit of the

conditional probability depends only on the J
(k)
n−1 or L

(k)
n−1 and Br,n, and not on v,

while by (2.2)

P
(
∆X

(r+n)
t > v−1/αΠ

+,←
(1/t)

)
= P

(
Π

+,←
(Γr+n/t) > v−1/αΠ

+,←
(1/t)

)
= P

(
Γr+n < tΠ

+
(v−1/αΠ

+,←
(1/t))

)
→ P

(
Γr+n ≤ v

)
, as t ↓ 0.

3We use the result:
∫
ft(ω)Pt(dω)→

∫
f(ω)P(dω) when Pt

w−→ P are probability measures and

ft → f , f continuous, |f | ≤ 1. In (4.1), the ft are characteristic functions and the limit distribution

P in (4.7) is continuous in all its variables.
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Putting the RHS of (3.21) or (3.22) together with the expression in (4.6) we can

write the limiting characteristic function of the n-vector on the LHS of (2.11) as∫
x↑≥1

eiθ̃n+xn+

∫ ∞
0

exp

(
v

∫ 1

−∞

(
eiθ̃n+x − 1− iθ̃n+x1{|x|≤1}

)
Λ(dx)

)
P (Γr+n ∈ dv)

× P
(
J

(k)
n−1

(
B1/α
r,n

)
∈ dxk, 1 ≤ k ≤ n− 1

)
(4.7)

when r ∈ N, and with each J
(k)
n−1(B

1/α
r,n ) replaced by L

(k)
n−1 when r = 0. Recall that∫

x↑≥1 denotes integration over the region {x1 ≥ x2 ≥ · · · ≥ xn−1 ≥ 1}.
Note that, with Λ defined as in (2.3), Λ(x) ∈ RV0(−α) and Λ

+
and Λ

−
satisfy

(2.1). So exactly the same calculation4 with ∆S
(k)
1 replacing ∆X

(k)
t , for r + 1 ≤

k ≤ r + n, and Λ replacing Π (and no limit on t is necessary), shows that the

characteristic function of the vector of stable ratios on the RHS of (2.11) equals

(4.7) when r ∈ N or the corresponding version when r = 0.

(ii) To derive (2.12) and the corresponding version when r = 0, observe that the

exponent inside the integral in (4.7) is the characteristic function of a Lévy process

(Wv)v≥0 having Lévy triplet (0, 0,Λ(dx)1(−∞,1)), that is, of a Stable(α) process with

jumps truncated below 1. So the integral with respect to v in (4.7) is∫
v>0

E
(
eiθ̃n+Wv

)
P (Γr+n ∈ dv) = E

(
eiθ̃n+WΓr+n

)
,

and thus we obtain (2.12) when r ∈ N and the corresponding version when r = 0

with the Ji replaced by Li.

When r ∈ N and n = 2, 3, . . ., the alternative representation in (2.13) is obtained

by evaluating the dv integral in (4.7), resulting in (recall ψ(·) defined in (2.8)):

E exp

(
i
n∑
k=1

θk
(

(r)Xt − tρX(∆X
(r+n)
t )

)
∆X

(r+n)
t

)

→ E exp

(
i

n∑
k=1

θk
(

(r)S1 − ρS(∆S
(r+n)
1 )

)
∆S

(r+n)
1

)

=

∫
x↑≥1

eiθ̃n+xn+

∫
v>0

vr+n−1e−v(1−ψ(θ̃n+))

Γ(r + n)
dv

× P
(
J

(k)
n−1(B1/α

r,n ) ∈ dxk, 1 ≤ k ≤ n− 1
)
, (4.8)

equal to the expression in (2.13). When r ∈ N0, n = 1, similar working shows that

(4.7) can be replaced by

lim
t↓0

E
(
eiθ
(

(r)Xt−tρX(∆X
(r+1)
t )

)
/∆X

(r+1)
t

)
4This easy correspondence is the reason for adopting the nonstandard centering in (2.4).
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= eiθ ×
∫
v>0

exp

(
v

∫
(−∞,1)

(
eiθx − 1− iθx1{|x|≤1}

)
Λ(dx)

)
P (Γr+1 ∈ dv)

= eiθ × E
(
eiθWΓr+1

)
, θ ∈ R. (4.9)

(iii) Finally, to prove (2.15) when r ∈ N, set θ1 = · · · = θn−1 = 0, θn = θ (so

θ̃n+ = θ and, recall, xn+ = x1 + · · · + xn−1 + 1) in (4.8) to get the characteristic

function of the RHS of (2.14) equal to∫
x↑≥1

eiθxn+

(1− ψ(θ))r+n
P
(
J

(k)
n−1(B1/α

r,n ) ∈ dxk, 1 ≤ k ≤ n− 1
)

=
eiθ

(1− ψ(θ))r+n

∫
0<u<1

E exp

(
iθ

n−1∑
k=1

J
(k)
n−1(u)

)
P
(
B1/α
r,n ∈ du

)
=

eiθ

(1− ψ(θ))r+n

∫
0<u<1

(
EeiθJ1(u)

)n−1
P
(
B1/α
r,n ∈ du

)
=

eiθ

(1− ψ(θ))r+n
E
(
φn−1(θ,B1/α

r,n )
)
,

where φ(θ, u) = EeiθJ1(u) as in (2.9), with |ψ(θ)| < 1 when |θ| ≤ θ0. Similarly, (4.9)

can alternatively be written as eiθ times the expression in (2.17). The r = 0 case

follows as before. �

Proof of Theorem 2.2: In this proof X is a driftless subordinator whose Lévy tail

measure is in RV0(−α), 0 < α < 1. From (3.2) we obtain the Laplace transform

E exp

(
− λ

(r+n)Xt

∆X
(r)
t

)
=

∫
y>0

∫
w>y

e
−t

∫
(0,a)(1−e−λx/b)Π(dx)−tκ(w/t)(1−e−λa/b)

× P (Γr ∈ dy,Γr+n ∈ dw) , (4.10)

where λ > 0 and for brevity

a = a(w, t) := Π
←

(w/t) ≤ b = b(y, t) := Π
←

(y/t), t > 0, w > y > 0

(we can write Π and Π
←

for Π
+

and Π
+,←

in (3.20)). We derive an upper bound

for the exponent in (4.10) as follows. Keep 0 < t ≤ t0 for a fixed t0 > 0, throughout.

First, the integral in the exponent of (4.10) is

t

∫
(0,a)

(
1− e−λx/b

)
Π(dx) ≤ t(λ/b)

∫ a

0
e−λx/bΠ(x)dx (integrate by parts)

= tλ

∫ a/b

0
e−λxΠ(bx)dx. (4.11)

Now a(w, t) → Π
←

(+∞) = 0 as w → ∞ or t ↓ 0, and b(y, t) → Π
←

(+∞) = 0 as

y → ∞ or t ↓ 0. To compare the magnitudes of a and b we use the Potter bounds
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(Bingham, Goldie and Teugels (1987, p.25)). Since Π ∈ RV0(−α) with 0 < α < 1,

given η > 0 there are constants c > 0 and z0 = z0(η) > 0 such that

Π(µz)

Π(z)
≤ cµ−α−η for all µ ∈ (0, 1), z ∈ (0, z0); (4.12)

and since Π
← ∈ RV∞(−1/α) we also have

Π
←

(µz)

Π
←

(z)
≤ cµ−1/α+η for all µ > 1, z > 1/z0 (4.13)

(where c and z0 may be chosen the same in both cases, and η < 1/α). Thus for

0 < x ≤ a/b ≤ 1 and 0 < b ≤ z0, using (4.12),

tΠ(bx) ≤ ctx−α−ηΠ(b) = ctx−α−ηΠ(Π
←

(y/t)) ≤ cyx−α−η,

and we have b ≤ z0 if Π
←

(y/t) ≤ z0, i.e., if y/t ≥ Π(z0). For w > y and y/t ≥ 1/z0,

using (4.13),

a

b
=

Π
←

(w/t)

Π
←

(y/t)
=

Π
←

((w/y)(y/t))

Π
←

(y/t)
≤ c

(
w

y

)−1/α+η

= c
( y
w

)1/α−η
. (4.14)

Now keep y/t ≥ z1 := Π(z0)∨ (1/z0) and 0 < η < 1− α (so also η < 1/α). Then by

(4.11)

t

∫
(0,a)

(
1− e−λx/b

)
Π(dx) ≤ tλ

∫ a/b

0
e−λxΠ(bx)dx

≤ cλy
∫ a/b

0
x−α−ηdx =

cλy

1− α− η

(a
b

)1−α−η

≤ c′λy
( y
w

)β
=: λg1(w, y), (4.15)

where c′ := c2−α−η/(1− α− η) > 0 and β := (1− α− η)(1/α− η) > 0.

Alternatively, when y/t < z1, we have b = Π
←

(y/t) ≥ Π
←

(z1), while t ≤ t0

implies a = Π
←

(w/t) ≤ Π
←

(w/t0). Then

t

∫
(0,a)

(
1− e−λx/b

)
Π(dx) ≤ t(λ/b)

∫
(0,a)

xΠ(dx)

≤ t0(λ/Π
←

(z1))

∫
(0,Π

←
(w/t0))

xΠ(dx)

=: λg2(w). (4.16)

For the term containing κ in (4.10), we have, for all x ∈ (0, z0),

∆Π(x) = Π(x−)−Π(x) ≤ Π(x/2)−Π(x) ≤ 2α+ηcΠ(x)

by (4.12). Thus for all t > 0 and w > y > 0, using (4.5),

tκ(w/t) ≤ t∆Π(Π
←

(w/t)) ≤ 2α+ηctΠ(Π
←

(w/t)) ≤ 2α+ηcw,
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because we kept y/t > Π(z0), as a consequence of which Π
←

(w/t) ≤ Π
←

(y/t) ≤
z0. Then tκ(w/t)(1 − e−λa/b) ≤ c2α+ηwλa/b. When w > y and y/t ≥ 1/z0,

tκ(w/t)(1 − e−λa/b) ≤ 2α+ηc2λw(y/w)1/α−η by (4.14). When y/t < z1, so b ≥
Π
←

(z1), tκ(w/t)(1 − e−λa/b) ≤ 2α+ηcwλΠ
←

(w/t0)/Π
←

(z1). So an overall upper

bound for the term containing κ in (4.10) is

tκ(w/t)(1− e−λa/b)

≤ λg3(w, y) := 2α+η max
(
c2λw(y/w)1/α−η, cwλΠ

←
(w/t0)/Π

←
(z1)

)
. (4.17)

Combine (4.15)–(4.17) to get an upper bound for the negative of the exponent

in (4.10) of the form

λg(w, y) := λ
(

max(g1(w, y), g2(w)) + g3(w, y)
)
.

So, for all 0 < t ≤ t0, n ∈ N,

E exp

(
−λ

(r+n)Xt

∆X
(r)
t

)
≥

∫
y>0

∫
w>y

e−t0λg(w,y)P (Γr ∈ dy,Γr+n ∈ dw)

= E
(
e−t0λg(Γr+n,Γr)

)
. (4.18)

Now when w → ∞, g1(w, y) → 0 for each y > 0 (see (4.15)) and g2(w) → 0 as

w → ∞ because Π
←

(w) → 0 as w → ∞ (see (4.16)); while g3(w, y) → 0 for each

y > 0 because Π
← ∈ RV∞(−1/α) and 0 < α < 1 (see (4.17)).

Finally, since Γr+n
P→ ∞ as n → ∞ for each r ∈ N, we can let n → ∞ and use

Fatou’s lemma in (4.18) to see that

E exp

(
−λ

(r+n)Xt

∆X
(r)
t

)
→ 1, as n→∞,

for each r ∈ N, uniformly in λ > 0 and t ∈ (0, t0]. We deduce convergence in

probability in (2.21) uniformly in t ∈ (0, t0] from this.
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