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Abstract In this paper the asymptotic behavior of the conditional least squares estimators of the offspring mean

matrix for a 2-type critical positively regular Galton–Watson branching process with immigration is described.

We also study this question for a natural estimator of the spectral radius of the offspring mean matrix, which

we call criticality parameter. We discuss the subcritical case as well.

Keywords Galton–Watson process · multi-type branching process · conditional least squares estimator ·
offspring mean matrix

Mathematics Subject Classification (2010) 60J80 · 62F12

1 Introduction

Branching processes have a number of applications in biology, finance, economics, queueing theory etc., see e.g.

Haccou, Jagers and Vatutin [6]. Many aspects of applications in epidemiology, genetics and cell kinetics were

presented at the 2009 Badajoz Workshop on Branching Processes, see [18].

The estimation theory for single-type Galton–Watson branching processes with immigration has a long

history, see the survey paper of Winnicki [21]. The critical case is the most interesting and complicated one.

There are two multi-type critical Galton–Watson processes with immigration for which statistical inference is

available: the unstable integer-valued autoregressive models of order 2 (which can be considered as a special 2-

type Galton–Watson branching process with immigration), see Barczy et al. [3] and the 2-type doubly symmetric

process, see Ispány et al. [9]. In the present paper the asymptotic behavior of the conditional least squares (CLS)

estimator of the offspring means and criticality parameter for the general 2-type critical positively regular

Galton–Watson process with immigration is described, see Theorem 3.1. It turns out that in a degenerate case
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Tel.: +36–30–6436554

E-mail: kormendi@math.u-szeged.hu

Gyula Pap

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H–6720 Szeged, Hungary
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this estimator is not even weakly consistent. We also study the asymptotic behavior of a natural estimator of

the spectral radius of the offspring mean matrix, which we call criticality parameter. We discuss the subcritical

case as well, but the supercritical case still remains open.

Let us recall the results for a single-type Galton–Watson branching process (Xk)k∈Z+ with immigration.

Assuming that the immigration mean mε is known, the CLS estimator of the offspring mean mξ based on

the observations X1, . . . , Xn has the form

m̂
(n)
ξ =

∑n
k=1 Xk−1(Xk −mε)∑n

k=1 X
2
k−1

on the set
∑n

k=1 X
2
k−1 > 0, see Klimko ans Nelson [14]. Suppose that mε > 0, and the second moment of the

branching and immigration distributions are finite.

If the process is subcritical, i.e., mξ < 1, then the probability of the existence of the estimator m̂
(n)
ξ tends

to 1 as n → ∞, and the estimator m̂
(n)
ξ is strongly consistent, i.e., m̂

(n)
ξ

a.s.−→ mξ as n → ∞. If, in addition,

the third moments of the branching and immigration distributions are finite, then

n1/2(m̂
(n)
ξ −mξ)

D−→ N
(
0,

Vξ E(X̃
3) + Vε E(X̃

2)
[
E(X̃2)

]2
)

as n → ∞, (1.1)

where Vξ and Vε denote the offspring and immigration variance, respectively, and the distribution of the

random variable X̃ is the unique stationary distribution of the Markov chain (Xk)k∈Z+ . Klimko and Nelson

[14] contains a similar results for the CLS estimator of (mξ,mε), and (1.1) can be derived by the method of

that paper, see also Theorem 3.4. Note that E(X̃2) and E(X̃3) can be expressed by the first three moments

of the branching and immigration distributions.

If the process is critical, i.e., mξ = 1, then the probability of the existence of the estimator m̂
(n)
ξ tends to

1 as n → ∞, and

n(m̂
(n)
ξ − 1)

D−→
∫ 1

0 Xt d(Xt −mεt)∫ 1

0
X 2

t dt
as n → ∞, (1.2)

where the process (Xt)t∈R+ is the unique strong solution of the stochastic differential equation (SDE)

dXt = mε dt+
√
VξX+

t dWt, t ∈ R+,

with initial value X0 = 0, where (Wt)t∈R+ is a standard Wiener process, and x+ denotes the positive part

of x ∈ R. Note that this so-called square-root process is also known as Feller diffusion, or Cox–Ingersoll–Ross

[4] model in financial mathematics. Wei and Winnicki [20] proved a similar results for the CLS estimator of

the offspring mean when the immigration mean is unknown, and (1.2) can be derived by the method of that

paper. Note that X (n) D−→ X as n → ∞ with X (n)
t := n−1X⌊nt⌋ for t ∈ R+, n ∈ N, where ⌊x⌋ denotes

the (lower) integer part of x ∈ R, see Wei and Winnicki [19]. We call the reader’s attention that we use the

notation
D−→ for the weak convergenge in the Skorokhod space and also for the weak convergence in R. Based

on the context it should be clear which convergence do we think of. If, in addition, Vξ = 0, then

n3/2(m̂
(n)
ξ − 1)

D−→ N
(
0,

3Vε

m2
ε

)
as n → ∞, (1.3)

see Ispány et al. [12].

If the process is supercritical, i.e., mξ > 1, then the probability of the existence of the estimator m̂
(n)
ξ

tends to 1 as n → ∞, the estimator m̂
(n)
ξ is strongly consistent, i.e., m̂

(n)
ξ

a.s.−→ mξ as n → ∞, and

( n∑

k=1

Xk−1

)1/2

(m̂
(n)
ξ −mξ)

D−→ N
(
0,

(mξ + 1)2

m2
ξ +mξ + 1

Vξ

)
as n → ∞. (1.4)
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Wei and Winnicki [20] showed the same asymptotic behavior for the CLS estimator of the offspring mean when

the immigration mean is unknown, and (1.4) can be derived by the method of that paper.

In Section 2 we recall some preliminaries on 2-type Galton–Watson models with immigration. Section 3

contains our main results. Section 4 contains a useful decomposition of the process. Sections 5 contains the

proofs. In Appendix A we present estimates for the moments of the processes involved. Appendix B is devoted

to the CLS estimators. An extended version of this paper with more detailed proofs is available on arXiv, see

[15].

2 Preliminaries on 2-type Galton–Watson models with immigration

Let Z+, N, R and R+ denote the set of non-negative integers, positive integers, real numbers and non-negative

real numbers, respectively. Every random variable will be defined on a fixed probability space (Ω,A,P).

For each k, j ∈ Z+ and i, ℓ ∈ {1, 2}, the number of individuals of type i in the kth generation will be

denoted by Xk,i, the number of type ℓ offsprings produced by the jth individual who is of type i belonging

to the (k − 1)th generation will be denoted by ξk,j,i,ℓ, and the number of type i immigrants in the kth

generation will be denoted by εk,i. Then we have

[
Xk,1

Xk,2

]
=

Xk−1,1∑

j=1

[
ξk,j,1,1

ξk,j,1,2

]
+

Xk−1,2∑

j=1

[
ξk,j,2,1

ξk,j,2,2

]
+

[
εk,1

εk,2

]
, k ∈ N. (2.1)

Here
{
X0, ξk,j,i, εk : k, j ∈ N, i ∈ {1, 2}

}
are supposed to be independent, where

Xk :=

[
Xk,1

Xk,2

]
, ξk,j,i :=

[
ξk,j,i,1

ξk,j,i,2

]
, εk :=

[
εk,1

εk,2

]
.

Moreover, {ξk,j,1 : k, j ∈ N}, {ξk,j,2 : k, j ∈ N} and {εk : k ∈ N} are supposed to consist of identically

distributed random vectors.

We suppose E(‖ξ1,1,1‖2) < ∞, E(‖ξ1,1,2‖2) < ∞ and E(‖ε1‖2) < ∞. Introduce the notations

mξi
:= E

(
ξ1,1,i

)
∈ R

2
+, mξ :=

[
mξ1

mξ2

]
∈ R

2×2
+ , mε := E

(
ε1
)
∈ R

2
+,

Vξi
:= Var

(
ξ1,1,i

)
∈ R

2×2, Vε := Var
(
ε1
)
∈ R

2×2, i ∈ {1, 2}.

We call the parameters mξ and mε the offspring mean matrix and the immigration mean vector respectively.

Note that many authors define the offspring mean matrix as m⊤
ξ . For k ∈ Z+, let Fk := σ

(
X0,X1, . . . ,Xk

)
.

By (2.1),

E(Xk | Fk−1) = Xk−1,1 mξ1
+Xk−1,2 mξ2

+mε = mξ Xk−1 +mε. (2.2)

Consequently,

E(Xk) = mξ E(Xk−1) +mε, k ∈ N,

which implies

E(Xk) = mk
ξ E(X0) +

k−1∑

j=0

m
j
ξ mε, k ∈ N. (2.3)

Hence, the asymptotic behavior of the sequence (E(Xk))k∈Z+ depends on the asymptotic behavior of the

powers (mk
ξ)k∈N of the offspring mean matrix, which is related to the spectral radius r(mξ) := ̺ ∈ R+

of mξ (see the Perron–Frobenius theorem, e.g., Horn and Johnson [7, Theorems 8.2.11 and 8.5.1]). A 2-

type Galton–Watson process (Xk)k∈Z+ with immigration is referred to respectively as subcritical, critical or
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supercritical if ̺ < 1, ̺ = 1 or ̺ > 1 (see, e.g., Athreya and Ney [1, V.3] or Quine [17]). We will write the

offspring mean matrix of a 2-type Galton–Watson process with immigration in the form

mξ :=

[
α β

γ δ

]
. (2.4)

Then its spectral radius is

̺ =
α+ δ +

√
(α − δ)2 + 4βγ

2
. (2.5)

We study only critical 2-type Galton–Watson processes with immigration, i.e., when ̺ = 1, which is equivalent

to α, δ ∈ [0, 1] and β, γ ∈ [0,∞) with βγ = (1−α)(1− δ). We will focus only on the case when the offpring

mean matrix is positively regular, i.e., when there is a positive integer k ∈ N such that the entries of mk
ξ are

positive (see Kesten and Stigum [13]), which is equivalent to β, γ ∈ (0,∞), α, δ ∈ R+ with α+ δ > 0. Then

the matrix mξ has eigenvalues 1 and

λ := α+ δ − 1 ∈ (−1, 1).

By the Perron–Frobenius theorem (see, e.g., Horn and Johnson [7, Theorems 8.2.11 and 8.5.1]),

mk
ξ → urightu

⊤
left as k → ∞,

where uright is the unique right eigenvector of mξ (called the right Perron vector of mξ) corresponding to

the eigenvalue 1 such that the sum of its coordinates is 1, and uleft is the unique left eigenvector of mξ

(called the left Perron vector of mξ) corresponding to the eigenvalue 1 such that 〈uright,uleft〉 = 1, hence

we have

uright =
1

β + 1− α

[
β

1− α

]
, uleft =

1

1− λ

[
γ + 1− δ

β + 1− α

]
.

More precisely, using the so-called Putzer’s spectral formula (see, e.g., Putzer [16]) the powers of mξ can be

written in the form

mk
ξ =

1

1− λ

[
1− δ β

γ 1− α

]
+

λk

1− λ

[
1− α −β

−γ 1− δ

]

= urightu
⊤
left + λkvrightv

⊤
left, k ∈ N,

(2.6)

where vright and vleft are appropriate right and left eigenvectors of mξ, respectively, belonging to the

eigenvalue λ, for instance,

vright =
1

1− λ

[
−β − 1 + α

γ + 1− δ

]
, vleft =

1

β + 1− α

[
−1 + α

β

]
.

Next we will recall a convergence result for positively regular and critical 2-type CBI processes. For each n ∈ N,

consider the random step process

X
(n)
t := n−1X⌊nt⌋, t ∈ R+.

The following theorem is a special case of the main result in Ispány and Pap [11, Theorem 3.1].

2.1 Theorem. Let (Xk)k∈Z+ be a 2-type Galton–Watson process with immigration such that α, δ ∈ [0, 1)

and β, γ ∈ (0,∞) with α + δ > 0 and βγ = (1 − α)(1 − δ) (hence it is critical and positively regular),

X0 = 0, E(‖ξ1,1,1‖2) < ∞, E(‖ξ1,1,2‖2) < ∞ and E(‖ε1‖2) < ∞. Then

(X
(n)
t )t∈R+

D−→ (X t)t∈R+ := (Zturight)t∈R+ as n → ∞ (2.7)

in D(R+,R
d), where (Zt)t∈R+ is the pathwise unique strong solution of the SDE

dZt = 〈uleft,mε〉dt+
√
〈Vξuleft,uleft〉Z+

t dWt, t ∈ R+, Z0 = 0, (2.8)
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where (Wt)t∈R+ is a standard Brownian motion and

Vξ :=

2∑

i=1

〈ei,uright〉Vξi
=

βVξ1
+ (1− α)Vξ2

β + 1− α
(2.9)

is a mixed offspring variance matrix.

In fact, in Ispány and Pap [11, Theorem 3.1], the above result has been prooved under the higher moment

assumptions E(‖ξ1,1,1‖4) < ∞, E(‖ξ1,1,2‖4) < ∞ and E(‖ε1‖4) < ∞, which have been relaxed in Danka and

Pap [5, Theorem 3.1].

2.2 Remark. By Ikeda and Watanabe [8, Example 8.2, page 221], the SDE (2.8) has a unique strong solution

(Y(y)
t )t∈R+ for all initial values Y(y)

0 = y ∈ R, and if y > 0, then Y(y)
t is nonnegative for all t ∈ R+ with

probability one, hence Y+
t may be replaced by Yt under the square root in (2.8), see, e.g., Barczy et al. [2,

Remark 3.3]. ✷

Clearly, Vξ depends only on the branching distributions, i.e., on the distributions of ξ1,1,1 and ξ1,1,2. Note

that Vξ = Var(Y 1 |Y 0 = uright), where (Y k)k∈Z+ is a 2-type Galton–Watson process without immigration

such that its branching distributions are the same as that of (Xt)k∈Z+ , since for each i ∈ {1, 2}, Vξi
=

Var(Y 1 |Y 0 = ei).

For the sake of simplicity, we consider a zero start Galton–Watson process with immigration, that is, we

suppose X0 = 0. The general case of nonzero initial value may be handled in a similar way, but we renounce

to consider it. In the sequel we always assume mε 6= 0, otherwise Xk = 0 for all k ∈ N.

3 Main results

For each n ∈ N, any CLS estimator

m̂
(n)
ξ =

[
α̂n β̂n

γ̂n δ̂n

]

of the offspring mean matrix mξ based on a sample X1, . . . ,Xn has the form

m̂
(n)
ξ = BnA

−1
n (3.1)

on the set

Ωn := {ω ∈ Ω : det(An(ω)) > 0} , (3.2)

where

An :=

n∑

k=1

Xk−1X
⊤
k−1, Bn :=

n∑

k=1

(Xk −mε)X
⊤
k−1, (3.3)

see Lemma B.1. The spectral radius ̺ given in (2.5) can be called criticality parameter, and its natural

estimator is

̺̂n = r
(
m̂

(n)
ξ

)
:=

α̂n + δ̂n +

√
(α̂n − δ̂n)2 + 4β̂nγ̂n

2
, (3.4)

on the set on the set Ωn ∩ Ω̃n with

Ω̃n :=
{
ω ∈ Ωn : (α̂n(ω)− δ̂n(ω))

2 + 4β̂n(ω)γ̂n(ω) > 0
}
. (3.5)

By Lemma B.4, if 〈Vξvleft,vleft〉 > 0 and the assumptions of Theorem 3.1 hold, then P(Ωn ∩ Ω̃n) → 1 as

n → ∞.
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3.1 Theorem. Let (Xk)k∈Z+ be a 2-type Galton–Watson process with immigration such that α, δ ∈ [0, 1)

and β, γ ∈ (0,∞) with α+ δ > 0 and βγ = (1 − α)(1 − δ) (hence it is critical and and positively regular),

X0 = 0, E(‖ξ1,1,1‖8) < ∞, E(‖ξ1,1,2‖8) < ∞, E(‖ε1‖8) < ∞, and mε 6= 0. Suppose 〈Vξvleft,vleft〉 > 0.

Then the probability of the existence of the estimators m̂
(n)
ξ , and ̺̂n tends to 1 as n → ∞. Furthermore

n1/2(m̂
(n)
ξ −mξ)

D−→ (1− λ2)1/2

〈Vξvleft,vleft〉1/2
V

1/2

ξ

∫ 1

0
Yt dW̃t∫ 1

0
Yt dt

v⊤
left, (3.6)

n(̺̂n − 1)
D−→
∫ 1

0
Yt d(Yt − t〈uleft,mε〉)∫ 1

0
Y2
t dt

, (3.7)

as n → ∞, where (Yt)t∈R+ is the pathwise unique strong solution of the SDE (2.8), and (W̃t)t∈R+ is a

2-dimenional standard Wiener processes independent of (Wt)t∈R+ .

3.2 Remark. We note that in the critical positively regular case the limit distribution for the CLS estimator

of the offspring mean matrix mξ is concentrated on the 2-dimensional subspace R
2v⊤

left ⊂ R
2×2. Surprisingly,

the scaling factor of the CLS estimators of mξ is
√
n, which is the same as in the subcritical case. The reason

of this strange phenomenon can be understood from the joint asymptotic behavior of det(An) and DnÃn

given in Theorem 4.1. One of the decisive tools in deriving the needed asymptotic behavior is a good bound for

the moments of the involved processes, see Corollary A.3. ✷

3.3 Remark. One of the assumptions of Theorem 3.1 is that 〈Vξvleft,vleft〉 > 0. Since V ξ is a positive

semidefinite matrix the only time this condition can fail is when 〈Vξvleft,vleft〉 = 0. In this case the scaling

factor of the CLS estimator of mξ is 1 instead of
√
n, therefore this estimator is not consistent. This is due to

the fact that if 〈Vξvleft,vleft〉 = 0 then the limit in the second and fourth convergence of Theorem 4.1 is 0. The

extended paper on arXiv contains the explicit limit distribution along with the full proofs in this degenerate

case. ✷

It would be useful to know the asymptotics of these estimations not just in the critical case, but in the sub-

and supercritical cases as well. We include here the results for the subcritical case. The proof is based on the

martingale central limit theorem, and it can be found in the extended version of this paper on the arXiv. The

same problem in the supercritical case is still open.

3.4 Theorem. Let (Xk)k∈Z+ be a 2-type Galton–Watson process with immigration such that α, δ ∈ [0, 1)

and β, γ ∈ (0,∞) with α + δ > 0 and βγ < (1 − α)(1 − δ) (hence it is subcritical and positively regular),

X0 = 0, E(‖ξ1,1,1‖2) < ∞, E(‖ξ1,1,2‖2) < ∞, E(‖ε1‖2) < ∞, mε 6= 0, and at least one of the matrices

Vξ1
, Vξ2

, Vε is invertible. Then the probability of the existence of the estimators m̂
(n)
ξ and ̺̂n tends to 1

as n → ∞, and the estimators m̂
(n)
ξ and ̺̂n are strongly consistent, i.e., m̂

(n)
ξ

a.s.−→ mξ and ̺̂n a.s.−→ ̺ as

n → ∞.

If, in addition, E(‖ξ1,1,1‖6) < ∞, E(‖ξ1,1,2‖6) < ∞ and E(‖ε1‖6) < ∞, then

n1/2(m̂
(n)
ξ −mξ)

D−→ Z, (3.8)

n1/2(̺̂n − ̺)
D−→ Tr(RZ)

D
= N

(
0,Tr

[
R⊗2

E(Z⊗2)
])
, (3.9)

as n → ∞, where Z is a 2× 2 random matrix having a normal distribution with zero mean and with

E(Z⊗2) =

{
2∑

i=1

E
[
(ξ1,1,i − E(ξ1,1,i))

⊗2
]
E

[
X̃i

(
X̃

⊤)⊗2
]

+ E
[
(ε1 − E(ε1))

⊗2
]
E

[(
X̃

⊤)⊗2
]}([

E

(
X̃X̃

⊤)]⊗2
)−1

,
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where the distribution of the 2-dimensional random vector X̃ is the unique stationary distribution of the

Markov chain (Xk)k∈Z+ , and

R := (∇r(mξ))
⊤ =

1

2
I2 +

1

2
√
(α− δ)2 + 4βγ

[
α− δ 2β

2γ δ − α

]
.

4 Decomposition of the process

Applying (2.2), let us introduce the sequence

Mk := Xk − E(Xk | Fk−1) = Xk −mξXk−1 −mε, k ∈ N, (4.1)

of martingale differences with respect to the filtration (Fk)k∈Z+ . By (4.1), the process (Xk)k∈Z+ satisfies the

recursion

Xk = mξXk−1 +mε +Mk, k ∈ N. (4.2)

By (3.1), for each n ∈ N, we have

m̂
(n)
ξ −mξ = DnA

−1
n

on the set Ωn given in (3.2), where An is defined in (3.3), and

Dn :=

n∑

k=1

MkX
⊤
k−1, n ∈ N.

By (2.7) and the continous mapping theorem one can derive

n−3An =
1

n3

n∑

k=1

XkX
⊤
k

D−→
∫ 1

0

X tX
⊤
t dt =

∫ 1

0

Y2
t dturightu

⊤
right =: A

as n → ∞. However, since det(A) = 0, the continuous mapping theorem can not be used for determining the

weak limit of the sequence (n3A−1
n )n∈N. To avoid this, we can write

m̂
(n)
ξ −mξ = DnA

−1
n =

1

det(An)
DnÃn, n ∈ N, (4.3)

on the set Ωn, where Ãn denotes the adjugate of An (also called the matrix of cofactors) given by

Ãn :=
n∑

k=1

[
X2

k−1,2 −Xk−1,1Xk−1,2

−Xk−1,1Xk−1,2 X2
k−1,1

]
, n ∈ N.

In order to prove Theorem 3.1 we will find the asymptotic behavior of the sequence (det(An),DnÃn)n∈N.

First we derive a useful decomposition for Xk, k ∈ N. Let us introduce the sequence

Uk := 〈uleft,Xk〉 =
(γ + 1− δ)Xk,1 + (β + 1− α)Xk,2

1− λ
, k ∈ Z+.

One can observe that Uk > 0 for all k ∈ Z+, and

Uk = Uk−1 + 〈uleft,mε〉+ 〈uleft,Mk〉, k ∈ N, (4.4)

since 〈uleft,mξXk−1〉 = u⊤
leftmξXk−1 = u⊤

leftXk−1 = Uk−1, because uleft is a left eigenvector of the mean

matrix mξ belonging to the eigenvalue 1. Hence (Uk)k∈Z+ is a nonnegative unstable AR(1) process with

positive drift 〈uleft,mε〉 and with heteroscedastic innovation (〈uleft,Mk〉)k∈N. Note that the solution of the

recursion (4.4) is

Uk =

k∑

j=1

〈uleft,M j +mε〉, k ∈ N, (4.5)



8 Kristóf Körmendi, Gyula Pap

and, by the continous mapping theorem

(n−1U⌊nt⌋)t∈R+ = (〈uleft,X
(n)
t 〉)t∈R+

D−→ (〈uleft,X t〉)t∈R+

D
= (Yt)t∈R+ as n → ∞, (4.6)

where (Yt)t∈R+ is the pathwise unique strong solution of the SDE (2.8). Moreover, let

Vk := 〈vleft,Xk〉 =
−(1− α)Xk,1 + βXk,2

β + 1− α
, k ∈ Z+.

Note that we have

Vk = λVk−1 + 〈vleft,mε〉+ 〈vleft,Mk〉, k ∈ N, (4.7)

since 〈vleft,mξXk−1〉 = v⊤
leftmξXk−1 = λv⊤

leftXk−1 = λVk−1, because vleft is a left eigenvector of the mean

matrix mξ belonging to the eigenvalue λ. Thus (Vk)k∈N is a stable AR(1) process with drift 〈vleft,mε〉
and with heteroscedastic innovation (〈vleft,Mk〉)k∈N. Note that the solution of the recursion (4.7) is

Vk =

k∑

j=1

λk−j〈vleft,M j +mε〉, k ∈ N. (4.8)

By (2.1) and (4.1), we obtain the decomposition

Mk =

Xk−1,1∑

j=1

(
ξk,j,1 − E(ξk,j,1)

)
+

Xk−1,2∑

j=1

(
ξk,j,2 − E(ξk,j,2)

)
+
(
εk − E(εk)

)
, k ∈ N. (4.9)

The recursion (4.2) has the solution

Xk =
k∑

j=1

m
k−j
ξ (mε +M j), k ∈ N.

Consequently, using (2.6),

Xk =

k∑

j=1

(
urightu

⊤
left + λk−jvrightv

⊤
left

)
(mε +M j)

= urightu
⊤
left

k∑

j=1

(Xj −mξXj−1) + vrightv
⊤
left

k∑

j=1

λk−j(Xj −mξXj−1)

= urightu
⊤
left

k∑

j=1

(Xj −Xj−1) + vrightv
⊤
left

k∑

j=1

[
λk−jXj − λk−j+1Xj−1

]

= urightu
⊤
leftXk + vrightv

⊤
leftXk = Ukuright + Vkvright,

hence

Xk =

[
Xk,1

Xk,2

]
=
[
uright vright

] [Uk

Vk

]
=

[
β

β+1−αUk − β+1−α
1−λ Vk

1−α
β+1−αUk +

γ+1−δ
1−λ Vk

]
, k ∈ Z+. (4.10)

This decomposition yields

det(An) =

(
n−1∑

k=1

U2
k

)(
n−1∑

k=1

V 2
k

)
−
(

n−1∑

k=1

UkVk

)2

, (4.11)
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since

det(An) = det

(
n∑

k=1

Xk−1X
⊤
k−1

)

= det



[
uright vright

] n∑

k=1

[
Uk−1

Vk−1

][
Uk−1

Vk−1

]⊤ [
uright vright

]⊤



= det




n∑

k=1

[
Uk−1

Vk−1

][
Uk−1

Vk−1

]⊤

[
det
([

uright vright

])]2
,

where

det
([

uright vright

])
= 1. (4.12)

Theorem 3.1 will follow from the following statement by the continuous mapping theorem and by Slutsky’s

lemma.

4.1 Theorem. Suppose that the assumptions of Theorem 3.1 hold. If 〈Vξvleft,vleft〉 > 0, then

n∑

k=1

n−5/2Uk−1Vk−1
P−→ 0 as n → ∞,

n∑

k=1




n−3U2
k−1

n−2V 2
k−1

n−2MkUk−1

n−3/2MkVk−1




D−→




∫ 1

0 Y2
t dt

〈Vξvleft,vleft〉
1−λ2

∫ 1

0
Yt dt

∫ 1

0
Yt dMt

〈Vξvleft,vleft〉
1/2

(1−λ2)1/2
V

1/2

ξ

∫ 1

0
Yt dW̃t




as n → ∞.

Proof of Theorem 3.1. In order to derive the statements, we can use the continuous mapping theorem and

Slutsky’s lemma.

Theorem 4.1 implies (3.6). Indeed, we can use the representation (4.3), where the adjugate Ãn can be

written in the form

Ãn =

[
0 1

−1 0

]
n∑

ℓ=1

Xℓ−1X
⊤
ℓ−1

[
0 −1

1 0

]
, n ∈ N.

Using (4.10), we have

DnÃn =
n∑

k=1

Mk

[
Uk−1

Vk−1

]⊤ [
u⊤
right

v⊤
right

][
0 1

−1 0

][
u⊤
right

v⊤
right

]⊤ n∑

ℓ=1

[
Uℓ−1

Vℓ−1

][
Uℓ−1

Vℓ−1

]⊤ [
u⊤
right

v⊤
right

][
0 −1

1 0

]
.

Here we have [
u⊤
right

v⊤
right

][
0 1

−1 0

][
u⊤
right

v⊤
right

]⊤
=

[
0 1

−1 0

]
,

[
u⊤
right

v⊤
right

][
0 −1

1 0

]
=

[
−v⊤

left

u⊤
left

]
.

Theorem 4.1 implies asymptotic expansions

n∑

k=1

Mk

[
Uk−1

Vk−1

]⊤
= n2Dn,1 + n3/2Dn,2,

n∑

ℓ=1

[
Uℓ−1

Vℓ−1

] [
Uℓ−1

Vℓ−1

]⊤
= n3An,1 + n5/2An,2 + n2An,3,
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where

Dn,1 := n−2
n∑

k=1

MkUk−1e
⊤
1

D−→
∫ 1

0

Yt dMt e
⊤
1 =: D1,

Dn,2 := n−3/2
n∑

k=1

MkVk−1e
⊤
2

D−→ 〈Vξvleft,vleft〉1/2
(1− λ2)1/2

V
1/2

ξ

∫ 1

0

Yt dW̃t e
⊤
2 =: D2,

An,1 := n−3
n∑

ℓ=1

[
U2
ℓ−1 0

0 0

]
D−→
∫ 1

0

Y2
t dt

[
1 0

0 0

]
=: A1,

An,2 := n−5/2
n∑

ℓ=1

[
0 Uℓ−1Vℓ−1

Uℓ−1Vℓ−1 0

]
D−→ 0,

An,3 := n−2
n∑

ℓ=1

[
0 0

0 V 2
ℓ−1

]
D−→ 〈Vξvleft,vleft〉

1− λ2

∫ 1

0

Yt dt

[
0 0

0 1

]
=: A3

jointly as n → ∞. Consequently, we obtain an asymptotic expansion

DnÃn = (n2Dn,1 + n3/2Dn,2)

[
0 1

−1 0

]
(n3An,1 + n5/2An,2 + n2An,3)

[
−v⊤

left

u⊤
left

]

= (n5Cn,1 + n9/2Cn,2 + n4Cn,3 + n7/2Cn,4)

[
−v⊤

left

u⊤
left

]
,

where

Cn,1 := Dn,1

[
0 1

−1 0

]
An,1 = n−5

n∑

k=1

n∑

ℓ=1

MkUk−1U
2
ℓ−1e

⊤
1

[
0 1

−1 0

][
1 0

0 0

]
= 0

for all n ∈ N, and

Cn,2 := Dn,1

[
0 1

−1 0

]
An,2 +Dn,2

[
0 1

−1 0

]
An,1

D−→ D2

[
0 1

−1 0

]
A1,

Cn,3 := Dn,1

[
0 1

−1 0

]
An,3 +Dn,2

[
0 1

−1 0

]
An,2

D−→ D1

[
0 1

−1 0

]
A3,

Cn,4 := Dn,2

[
0 1

−1 0

]
An,3

D−→ D2

[
0 1

−1 0

]
A3

as n → ∞. Using again Theorem 4.1 and (4.11), we conclude

[
n−5 det(An)

n−9/2DnÃn

]
D−→




〈Vξvleft,vleft〉
1−λ2

∫ 1

0
Y2
t dt

∫ 1

0
Yt dt

D2

[
0 1

−1 0

]
A1

[
−v⊤

left

u⊤
left

]


 as n → ∞.
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Here

D2

[
0 1

−1 0

]
A1

[
−v⊤

left

u⊤
left

]

=
〈Vξvleft,vleft〉1/2

(1− λ2)1/2

∫ 1

0

Y2
t dtV

1/2

ξ

∫ 1

0

Yt dW̃t e
⊤
2

[
0 1

−1 0

] [
1 0

0 0

][
−v⊤

left

u⊤
left

]

=
〈Vξvleft,vleft〉1/2

(1− λ2)1/2

∫ 1

0

Y2
t dtV

1/2

ξ

∫ 1

0

Yt dW̃t v
⊤
left.

Since mε 6= 0, by the SDE (2.8), we have P(Yt = 0 for all t ∈ [0, 1]) = 0, which implies that

P
(∫ 1

0
Y2
t dt

∫ 1

0
Yt dt > 0

)
= 1, hence the continuous mapping theorem implies (3.6).

The proof of (3.7) can be carried out similarly. For the details see the extended paper on arXiv. ✷

5 Proof of Theorem 4.1

The first convergence in Theorem 4.1 follows from Lemma B.2.

For the second convergence in Theorem 4.1, consider the sequence of stochastic processes

Z
(n)
t :=



M

(n)
t

N
(n)
t

P
(n)
t


 :=

⌊nt⌋∑

k=1

Z
(n)
k with Z

(n)
k :=




n−1Mk

n−2MkUk−1

n−3/2MkVk−1


 =




n−1

n−2Uk−1

n−3/2Vk−1


⊗Mk

for t ∈ R+ and k, n ∈ N, where ⊗ denotes Kronecker product of matrices. The second convergence in

Theorem 4.1 follows from Lemma B.3 and the following theorem (this will be explained after Theorem 5.1).

5.1 Theorem. Suppose that the assumptions of Theorem 4.1 hold. Then we have

Z(n) D−→ Z as n → ∞, (5.1)

where the process (Zt)t∈R+ with values in (R2)3 is the unique strong solution of the SDE

dZt = γ(t,Zt)

[
dWt

dW̃t

]
, t ∈ R+, (5.2)

with initial value Z0 = 0, where (Wt)t∈R+ and (W̃ t)t∈R+ are independent 2-dimensional standard Wiener

processes, and γ : R+ × (R2)3 → (R2×2)3×2 is defined by

γ(t,x) :=




(〈uleft,x1 + tmε〉+)1/2 0

(〈uleft,x1 + tmε〉+)3/2 0

0
〈Vξvleft,vleft〉

1/2

(1−λ2)1/2
〈uleft,x1 + tmε〉


⊗ V

1/2

ξ

for t ∈ R+ and x = (x1,x2,x3) ∈ (R2)3.

Note that the statement of Theorem 5.1 holds even if 〈Vξvleft,vleft〉 = 0, when the last 2-dimensional coordinate

process of the unique strong solution (Zt)t∈R+ is 0.
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The SDE (5.2) has the form

dZt =



dMt

dN t

dP t


 =




(〈uleft,Mt + tmε〉+)1/2 V
1/2

ξ dWt

(〈uleft,Mt + tmε〉+)3/2 V
1/2

ξ dWt

〈Vξvleft,vleft〉
1/2

(1−λ2)1/2
〈uleft,Mt + tmε〉V

1/2

ξ dW̃t


 , t ∈ R+. (5.3)

One can prove that the first 2-dimensional equation of the SDE (5.3) has a pathwise unique strong solution

(M
(y0)
t )t∈R+ with arbitrary initial value M

(y0)
0 = y0 ∈ R

2, see the proof of Ispány and Pap [11, Theorem

3.1]. Thus the SDE (5.2) has a pathwise unique strong solution with initial value Z0 = 0, and we have

Zt =



Mt

N t

P t


 =




∫ t

0 〈uleft,Ms + smε〉1/2 V
1/2

ξ dWs

∫ t

0 〈uleft,Ms + smε〉dMs

〈Vξvleft,vleft〉
1/2

(1−λ2)1/2

∫ t

0 〈uleft,Ms + smε〉V
1/2

ξ dW̃s


 , t ∈ R+.

By the method of the proof of X (n) D−→ X in Theorem 3.1 in Barczy et al. [2] one can derive

[
X (n)

Z(n)

]
D−→
[
X̃

Z

]
as n → ∞, (5.4)

where

X
(n)
t := n−1X⌊nt⌋, X̃ t := 〈uleft,Mt + tmε〉uright, t ∈ R+, n ∈ N.

Next, similarly to the proof of (B.3), by the continous mapping theorem, convergence (5.4) with Uk−1 =

〈uleft,Xk−1〉 and Lemma B.3 implies

n∑

k=1




n−3U2
k−1

n−2V 2
k−1

n−2MkUk−1

n−3/2MkVk−1




D−→




∫ 1

0 〈uleft, X̃ t〉2 dt
〈Vξvleft,vleft〉

1−λ2

∫ 1

0
〈uleft, X̃ t〉dt

∫ 1

0
Yt dMt

〈Vξvleft,vleft〉
1/2

(1−λ2)1/2

∫ 1

0
YtV

1/2

ξ dW̃t




as n → ∞.

This limiting random vector can be written in the form as given in Theorem 4.1, since 〈uleft, X̃ t〉 = Yt for all

t ∈ R+.

Proof of Theorem 5.1. In order to show convergence Z(n) D−→ Z , we apply a theorem concerning the

convergence of random step processes (see [10], Corollary 2.2) with the special choices U := Z , U
(n)
k := Z

(n)
k ,

n, k ∈ N, (F (n)
k )k∈Z+ := (Fk)k∈Z+ and the function γ which is defined in Theorem 5.1. Note that the

discussion after Theorem 5.1 shows that the SDE (5.2) admits a unique strong solution (Zz
t )t∈R+ for all initial

values Zz
0 = z ∈ (R2)3. The conditional variance has the form

Var
(
Z

(n)
k | Fk−1

)
=




n−2 n−3Uk−1 n−5/2Vk−1

n−3Uk−1 n−4U2
k−1 n−7/2Uk−1Vk−1

n−5/2Vk−1 n−7/2Uk−1Vk−1 n−3V 2
k−1


⊗ VMk

for n ∈ N, k ∈ {1, . . . , n}, with VMk
:= Var(Mk | Fk−1), and γ(s,Z(n)

s )γ(s,Z(n)
s )⊤ has the form




〈uleft,M
(n)
s + smε〉 〈uleft,M

(n)
s + smε〉2 0

〈uleft,M
(n)
s + smε〉2 〈uleft,M

(n)
s + smε〉3 0

0 0
〈Vξvleft,vleft〉

1−λ2 〈uleft,M
(n)
s + smε〉2


⊗ Vξ



Statistical inference of 2-type critical Galton–Watson processes with immigration 13

for s ∈ R+, where we used that 〈uleft,M
(n)
s + smε〉+ = 〈uleft,M

(n)
s + smε〉, s ∈ R+, n ∈ N. Indeed, by

(4.1), we get

〈uleft,M
(n)
s + smε〉 =

1

n

⌊ns⌋∑

k=1

〈uleft,Xk −mξXk−1 −mε〉+ 〈uleft, smε〉

=
1

n

⌊ns⌋∑

k=1

〈uleft,Xk −Xk−1 −mε〉+ s〈uleft,mε〉

=
1

n
〈uleft,X⌊ns⌋〉+

ns− ⌊ns⌋
n

〈uleft,mε〉 =
1

n
U⌊ns⌋ +

ns− ⌊ns⌋
n

〈uleft,mε〉 ∈ R+

(5.5)

for s ∈ R+, n ∈ N, since u⊤
leftmξ = u⊤

left implies 〈uleft,mξXk−1〉 = u⊤
leftmξXk−1 = u⊤

leftXk−1 =

〈uleft,Xk−1〉.
We need to prove that for each T > 0,

sup
t∈[0,T ]

∥∥∥∥
1

n2

⌊nt⌋∑

k=1

VMk
−
∫ t

0

〈uleft,M
(n)
s + smε〉Vξ ds

∥∥∥∥
P−→ 0, (5.6)

sup
t∈[0,T ]

∥∥∥∥
1

n3

⌊nt⌋∑

k=1

Uk−1VMk
−
∫ t

0

〈uleft,M
(n)
s + smε〉2 Vξ ds

∥∥∥∥
P−→ 0, (5.7)

sup
t∈[0,T ]

∥∥∥∥
1

n4

⌊nt⌋∑

k=1

U2
k−1VMk

−
∫ t

0

〈uleft,M
(n)
s + smε〉3 Vξ ds

∥∥∥∥
P−→ 0, (5.8)

sup
t∈[0,T ]

∥∥∥∥
1

n3

⌊nt⌋∑

k=1

V 2
k−1VMk

− 〈Vξvleft,vleft〉
1− λ2

∫ t

0

〈uleft,M
(n)
s + smε〉2 Vξ ds

∥∥∥∥
P−→ 0, (5.9)

sup
t∈[0,T ]

∥∥∥∥
1

n5/2

⌊nt⌋∑

k=1

Vk−1VMk

∥∥∥∥
P−→ 0, (5.10)

sup
t∈[0,T ]

∥∥∥∥
1

n7/2

⌊nt⌋∑

k=1

Uk−1Vk−1VMk

∥∥∥∥
P−→ 0 (5.11)

as n → ∞.

First we show (5.6). By (5.5),

∫ t

0

〈uleft,M
(n)
s + smε〉ds =

1

n2

⌊nt⌋−1∑

k=1

Uk +
nt− ⌊nt⌋

n2
U⌊nt⌋ +

⌊nt⌋+ (nt− ⌊nt⌋)2
2n2

〈uleft,mε〉.

Using Lemma A.1, we have VMk
= Uk−1Vξ + Vk−1Ṽ ξ + Vε, thus, in order to show (5.6), it suffices to prove

n−2

⌊nT⌋∑

k=1

|Vk| P−→ 0, n−2 sup
t∈[0,T ]

U⌊nt⌋
P−→ 0, (5.12)

n−2 sup
t∈[0,T ]

[
⌊nt⌋+ (nt− ⌊nt⌋)2

]
→ 0 (5.13)

as n → ∞. Using (A.3) with (ℓ, i, j) = (2, 0, 1) and (A.4) with (ℓ, i, j) = (2, 1, 0), we have (5.12). Clearly,

(5.13) follows from |nt− ⌊nt⌋| 6 1, n ∈ N, t ∈ R+, thus we conclude (5.6).
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One can verify conditions (5.7) and (5.8) the same way. Checking conditions (5.8), (5.9) and (5.10) requires

some more work. We only prove (5.9) here, but the same idea of decomposition can be used for the latter

conditions as well. In order to prove (5.9) first we show that

n−3 sup
t∈[0,T ]

∥∥∥∥∥∥

⌊nt⌋∑

k=1

V 2
k−1VMk

− 〈Vξvleft,vleft〉
1− λ2

⌊nt⌋∑

k=1

U2
k−1Vξ

∥∥∥∥∥∥
P−→ 0 (5.14)

as n → ∞ for all T > 0. Using Lemma A.1, we obtain

⌊nt⌋∑

k=1

V 2
k−1VMk

=

⌊nt⌋∑

k=1

Uk−1V
2
k−1Vξ +

⌊nt⌋∑

k=1

V 3
k−1Ṽξ +

⌊nt⌋∑

k=1

V 2
k−1Vε. (5.15)

Using (A.3) with (ℓ, i, j) = (6, 0, 3) and (ℓ, i, j) = (4, 0, 2), we have

n−3

⌊nT⌋∑

k=1

|Vk|3 P−→ 0, n−3

⌊nT⌋∑

k=1

V 2
k

P−→ 0 as n → ∞,

hence (5.14) will follow from

n−3 sup
t∈[0,T ]

∥∥∥∥∥∥

⌊nt⌋∑

k=1

Uk−1V
2
k−1 −

〈Vξvleft,vleft〉
1− λ2

⌊nt⌋∑

k=1

U2
k−1

∥∥∥∥∥∥
P−→ 0 as n → ∞ (5.16)

for all T > 0. The aim of the following discussion is to decompose
∑⌊nt⌋

k=1 Uk−1V
2
k−1 as a sum of a martingale

and some other terms. Using recursions (4.7), (4.4) and formulas (A.1) and (A.2), we obtain

E(Uk−1V
2
k−1 | Fk−2) = E

(
(Uk−2 + 〈uleft,Mk−1 +mε〉)

(
λVk−2 + 〈vleft,Mk−1 +mε〉

)2 ∣∣∣Fk−2

)

= λ2Uk−2V
2
k−2 + v⊤

left E(Mk−1M
⊤
k−1 | Fk−2)vleft Uk−2

+ constant + linear combination of Uk−2Vk−2, V 2
k−2, Uk−2 and Vk−2

= λ2Uk−2V
2
k−2 + 〈Vξvleft,vleft〉U2

k−2 + constant

+ linear combination of Uk−2Vk−2, V 2
k−2, Uk−2 and Vk−2.

Thus

⌊nt⌋∑

k=1

Uk−1V
2
k−1 =

⌊nt⌋∑

k=2

[
Uk−1V

2
k−1 − E(Uk−1V

2
k−1 | Fk−2)

]
+

⌊nt⌋∑

k=2

E(Uk−1V
2
k−1 | Fk−2)

=

⌊nt⌋∑

k=2

[
Uk−1V

2
k−1 − E(Uk−1V

2
k−1 | Fk−2)

]
+ λ2

⌊nt⌋∑

k=2

Uk−2V
2
k−2 + 〈Vξvleft,vleft〉

⌊nt⌋∑

k=2

U2
k−2

+O(n) + linear combination of

⌊nt⌋∑

k=2

Uk−2Vk−2,

⌊nt⌋∑

k=2

V 2
k−2,

⌊nt⌋∑

k=2

Uk−2 and

⌊nt⌋∑

k=2

Vk−2.
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Consequently,

⌊nt⌋∑

k=1

Uk−1V
2
k−1 =

1

1− λ2

⌊nt⌋∑

k=2

[
Uk−1V

2
k−1 − E(Uk−1V

2
k−1 | Fk−2)

]

+
〈Vξvleft,vleft〉

1− λ2

⌊nt⌋∑

k=2

U2
k−2 −

λ2

1− λ2
U⌊nt⌋−1V

2
⌊nt⌋−1 +O(n)

+ linear combination of

⌊nt⌋∑

k=2

Uk−2Vk−2,

⌊nt⌋∑

k=2

V 2
k−2,

⌊nt⌋∑

k=2

Uk−2 and

⌊nt⌋∑

k=2

Vk−2.

Using (A.5) with (ℓ, i, j) = (8, 1, 2) we have

n−3 sup
t∈[0,T ]

∣∣∣∣∣

⌊nt⌋∑

k=2

[
Uk−1V

2
k−1 − E(Uk−1V

2
k−1 | Fk−2)

]
∣∣∣∣∣

P−→ 0 as n → ∞.

Thus, in order to show (5.16), it suffices to prove

n−3

⌊nT⌋∑

k=1

|UkVk| P−→ 0, n−3

⌊nT⌋∑

k=1

V 2
k

P−→ 0, (5.17)

n−3

⌊nT⌋∑

k=1

Uk
P−→ 0, n−3

⌊nT⌋∑

k=1

|Vk| P−→ 0, (5.18)

n−3 sup
t∈[0,T ]

U⌊nt⌋V
2
⌊nt⌋

P−→ 0, n−3/2 sup
t∈[0,T ]

U⌊nt⌋
P−→ 0 (5.19)

as n → ∞. Using (A.3) with (ℓ, i, j) = (2, 1, 1); (ℓ, i, j) = (4, 0, 2); (ℓ, i, j) = (2, 1, 0), and (ℓ, i, j) = (2, 0, 1),

we have (5.17) and (5.18). By (A.4) with (ℓ, i, j) = (4, 1, 2), and (ℓ, i, j) = (4, 1, 0), we have (5.19). Thus we

conclude (5.16), and hence (5.14). By Lemma A.1 and (A.3) with (ℓ, i, j) = (2, 1, 1) and (ℓ, i, j) = (2, 1, 0), we

get

n−3 sup
t∈[0,T ]

∥∥∥∥∥∥

⌊nt⌋∑

k=1

Uk−1VMk
−

⌊nt⌋∑

k=1

U2
k−1Vξ

∥∥∥∥∥∥
P−→ 0 (5.20)

as n → ∞ for all T > 0. As a last step, using (5.7), we obtain (5.9).

Finally, we check the conditional Lindeberg condition

⌊nT⌋∑

k=1

E
(
‖Z(n)

k ‖21
{‖Z

(n)
k

‖>θ}

∣∣Fk−1

) P−→ 0 for all θ > 0 and T > 0. (5.21)

We have E
(
‖Z(n)

k ‖21
{‖Z

(n)
k

‖>θ}

∣∣Fk−1

)
6 θ−2

E
(
‖Z(n)

k ‖4
∣∣Fk−1

)
and

‖Z(n)
k ‖4 6 3

(
n−4 + n−8U4

k−1 + n−6V 4
k−1

)
‖Mk−1‖4.

Hence
⌊nT⌋∑

k=1

E
(
‖Z(n)

k ‖21
{‖Z

(n)
k ‖>θ}

)
→ 0 as n → ∞ for all θ > 0 and T > 0,

since E(‖Mk‖4) = O(k2), E(‖Mk‖4U4
k−1) 6

√
E(‖Mk‖8)E(U8

k−1) = O(k6) and E(‖Mk‖4V 4
k−1) 6

√
E(‖Mk‖8)E(V 8

k−1) = O(k4) by Corollary A.3. This yields (5.21). ✷



16 Kristóf Körmendi, Gyula Pap

We call the attention to the fact that our eighth order moment conditions E(‖ξ1,1,1‖8) < ∞, E(‖ξ1,1,2‖8) <
∞ and E(‖ε1‖8) < ∞ are used for applying Corollary A.3.

Appendices

A Estimations of moments

In the proof of Theorem 3.1, good bounds for moments of the random vectors and variables (Mk)k∈Z+
, (Xk)k∈Z+

, (Uk)k∈Z+

and (Vk)k∈Z+
are extensively used. First note that, for all k ∈ N, E(Mk | Fk−1) = 0 and E(Mk) = 0, since Mk =

Xk − E(Xk | Fk−1). We present these results without proofs as they can be proven the same way as in Appendix B of [9].

A.1 Lemma. Let (Xk)k∈Z+
be a 2-type Galton–Watson process with immigration and with X0 = 0. If E(‖ξ1,1,1‖

2) < ∞,

E(‖ξ1,1,2‖
2) < ∞ and E(‖ε1‖2) < ∞ then

Var(Mk | Fk−1) = Xk−1,1Vξ1
+Xk−1,2Vξ2

+ Vε = Uk−1Vξ + Vk−1Ṽξ + Vε (A.1)

for all k ∈ N, where

Ṽξ :=
2∑

i=1

〈ei,vright〉Vξi
=

βVξ1
− (1− δ)Vξ2

β + 1− δ
.

If E(‖ξ1,1,1‖
3) < ∞, E(‖ξ1,1,2‖

3) < ∞ and E(‖ε1‖3) < ∞ then, for all k ∈ N,

E(M⊗3
k | Fk−1) = Xk−1,1 E[(ξ1,1,1 − E(ξ1,1,1)

⊗3]

+Xk−1,2 E[(ξ1,1,2 − E(ξ1,1,2)
⊗3] + E[(ε1 − E(ε1)

⊗3].

(A.2)

A.2 Lemma. Let (Xk)k∈Z+
be a 2-type Galton–Watson process with immigration such that α, δ ∈ [0, 1) and β, γ ∈ (0,∞)

with α+δ > 0 and βγ = (1−α)(1−δ) (hence it is critical and and positively regular). Suppose X0 = 0, and E(‖ξ1,1,1‖
ℓ) < ∞,

E(‖ξ1,1,2‖
ℓ) < ∞, E(‖ε1‖ℓ) < ∞ with some ℓ ∈ N. Then E(‖Xk‖

ℓ) = O(kℓ), i.e., supk∈N k−ℓ E(‖Xk‖
ℓ) < ∞.

A.3 Corollary. Let (Xk)k∈Z+
be a critical, positively regular 2-type Galton–Watson process. Suppose X0 = 0, and

E(‖ξ1,1,1‖
ℓ) < ∞, E(‖ξ1,1,2‖

ℓ) < ∞, E(‖ε1‖ℓ) < ∞ with some ℓ ∈ N. Then

E(‖Xk‖
i) = O(ki), E(M⊗i

k ) = O(k⌊i/2⌋), E(U i
k) = O(ki), E(V 2j

k ) = O(kj)

for i, j ∈ Z+ with i 6 ℓ and 2j 6 ℓ.

A.4 Corollary. Let (Xk)k∈Z+
be a critical, positively regular 2-type Galton–Watson process. Suppose X0 = 0, and

E(‖ξ1,1,1‖
ℓ) < ∞, E(‖ξ1,1,2‖

ℓ) < ∞, E(‖ε1‖ℓ) < ∞ with some ℓ ∈ N. Then

(i) for all i, j ∈ Z+ with max{i, j} 6 ⌊ℓ/2⌋, and for all κ > i+ j
2
+ 1, we have

n−κ
n∑

k=1

|U i
kV

j
k |

P
−→ 0 as n → ∞, (A.3)

(ii) for all i, j ∈ Z+ with max{i, j} 6 ℓ, for all T > 0, and for all κ > i+ j
2
+ i+j

ℓ
, we have

n−κ sup
t∈[0,T ]

|U i
⌊nt⌋V

j
⌊nt⌋

|
P

−→ 0 as n → ∞, (A.4)

(iii) for all i, j ∈ Z+ with max{i, j} 6 ⌊ℓ/4⌋, for all T > 0, and for all κ > i+ j
2
+ 1

2
, we have

n−κ sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

[U i
kV

j
k − E(U i

kV
j
k | Fk−1)]

∣∣∣∣∣∣
P

−→ 0 as n → ∞. (A.5)

A.5 Remark. In some parts of this paper we need the above statements with a smaller κ than it is provided by Corollary A.4.

Fortunately we can use a decomposition argument in those cases to sharpen the statements, for example see the proof of (5.9) and

Lemma B.2.
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B CLS estimators

For each n ∈ N, a CLS estimator m̂
(n)
ξ

of mξ based on a sample X1, . . . ,Xn can be obtained by minimizing the sum of

squares
n∑

k=1

∥∥Xk − E(Xk | Fk−1)
∥∥2 =

n∑

k=1

∥∥Xk −mξXk−1 −mε

∥∥2

with respect to mξ over R
2×2. In what follows, we use the notation x0 := 0. For all n ∈ N, we define the function

Qn : (R2)n × R2×2 → R by

Qn(x1, . . . ,xn;m
′
ξ) :=

n∑

k=1

∥∥∥xk −m′
ξxk−1 −mε

∥∥∥
2

for all m′
ξ
∈ R2×2 and x1, . . . ,xn ∈ R2. By definition, for all n ∈ N, a CLS estimator of mξ is a measurable function

Fn : (R2)n → R2×2 such that

Qn(x1, . . . ,xn;Fn(x1, . . . ,xn)) = inf
m′

ξ
∈R2×2

Qn(x1, . . . ,xn;m
′
ξ)

for all x1, . . . ,xn ∈ R2. Next we give the solutions of this extremum problem.

B.1 Lemma. For each n ∈ N, any CLS estimator of mξ is a measurable function Fn : (R2)n → R
2×2 for which

Fn(x1, . . . ,xn) = Hn(x1, . . . ,xn)Gn(x1, . . . ,xn)
−1 (B.1)

on the set {
(x1, . . . ,xn) ∈ (R2)n : det(Gn(x1, . . . ,xn)) > 0

}
,

where

Gn(x1, . . . ,xn) :=
n∑

k=1

xk−1x
⊤
k−1, Hn(x1, . . . ,xn) :=

n∑

k=1

(xk −mε)x
⊤
k−1.

For the existence of these CLS estimators in case of a critical symmetric 2-type Galton–Watson process, i.e., when ̺ = 1, we

need the following approximations.

B.2 Lemma. Suppose that the assumptions of Theorem 3.1 hold. Then for each T > 0,

n−5/2 sup
t∈[0,T ]

∣∣∣∣
⌊nt⌋∑

k=1

Uk−1Vk−1

∣∣∣∣
P

−→ 0 as n → ∞.

Proof. The aim of the following discussion is to decompose
∑⌊nt⌋

k=1 Uk−1Vk−1 as a sum of a martingale and some other terms.

Using the recursions (4.7), (4.4) and Lemma A.1, we obtain

E(Uk−1Vk−1 | Fk−2) = E

(
(Uk−2 + 〈uleft,Mk−1 +mε〉)

(
λVk−2 + 〈vleft,Mk−1 +mε〉

) ∣∣∣Fk−2

)

= λUk−2Vk−2 + 〈vleft,mε〉Uk−2 + λ〈uleft,mε〉Vk−2 + u⊤
leftmεm

⊤
ε vleft

+ u⊤
E(Mk−1M

⊤
k−1 | Fk−2)v

= λUk−2Vk−2 + constant + linear combination of Uk−2 and Vk−2.

Thus

⌊nt⌋∑

k=1

Uk−1Vk−1 =

⌊nt⌋∑

k=2

[
Uk−1Vk−1 − E(Uk−1Vk−1 | Fk−2)

]
+

⌊nt⌋∑

k=2

E(Uk−1Vk−1 | Fk−2)

=

⌊nt⌋∑

k=2

[
Uk−1Vk−1 − E(Uk−1Vk−1 | Fk−2)

]
+ λ

⌊nt⌋∑

k=2

Uk−2Vk−2

+O(n) + linear combination of

⌊nt⌋∑

k=2

Uk−2 and

⌊nt⌋∑

k=2

Vk−2.
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Consequently

⌊nt⌋∑

k=2

Uk−1Vk−1 =
1

1− λ

⌊nt⌋∑

k=2

[
Uk−1Vk−1 − E(Uk−1Vk−1 | Fk−2)

]

−
λ

1− λ
U⌊nt⌋−1V⌊nt⌋−1 +O(n) + linear combination of

⌊nt⌋∑

k=2

Uk−2 and

⌊nt⌋∑

k=2

Vk−2.

Using (A.5) with (ℓ, i, j) = (4, 1, 1) we have

n−5/2 sup
t∈[0,T ]

∣∣∣∣∣

⌊nt⌋∑

k=2

[
Uk−1Vk−1 − E(Uk−1Vk−1 | Fk−2)

]
∣∣∣∣∣

P
−→ 0 as n → ∞.

Thus, in order to show the statement, it suffices to prove

n−5/2
⌊nT⌋∑

k=1

Uk
P

−→ 0, n−5/2
⌊nT⌋∑

k=1

|Vk|
P

−→ 0, n−5/2 sup
t∈[0,T ]

|U⌊nt⌋V⌊nt⌋|
P

−→ 0 (B.2)

as n → ∞. Using (A.3) with (ℓ, i, j) = (2, 1, 0) and (ℓ, i, j) = (2, 0, 1), and (A.4) with (ℓ, i, j) = (3, 1, 1) we have (B.2), thus we

conclude the statement. ✷

Using the same ideas as above one can prove the following.

B.3 Lemma. Suppose that the assumptions of Theorem 3.1 hold. For each T > 0, we have

n−2 sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

V 2
k −

〈Vξ vleft,vleft〉

1− λ2

⌊nt⌋∑

k=1

Uk−1

∣∣∣∣∣∣
P

−→ 0 as n → ∞.

Now we can prove asymptotic existence and uniqueness of CLS estimators of the offspring mean matrix and of the criticality

parameter.

B.4 Proposition. Suppose that the assumptions of Theorem 3.1 hold, and 〈Vξvleft,vleft〉 + 〈Vεvleft,vleft〉 + 〈vleft,mε〉2 > 0.

Then limn→∞ P(Ωn) = 1, where Ωn is defined in (3.2), and hence the probability of the existence of a unique CLS estimator

m̂
(n)
ξ

converges to 1 as n → ∞, and this CLS estimator has the form given in (3.1) on the set Ωn. If 〈Vξvleft,vleft〉 > 0 then

limn→∞ P(Ω̃n) = 1, where Ω̃n is defined in (3.5), and hence the probability of the existence of the estimator ̺̂n converges to

1 as n → ∞.

Proof. Recall convergence (n−1U⌊nt⌋)t∈R+

D
−→ (Yt)t∈R+

from (4.6). Using Lemmas B.3, B.2, and a version of the continuous

mapping theorem (see [10], Lemma 3.1), one can show

n∑

k=1




n−3U2
k−1

n−5/2Uk−1Vk−1

n−2V 2
k−1




D
−→




∫ 1
0
Y2
t dt

0

〈vleft,mε〉
1−λ

∫ 1
0 Yt dt


 as n → ∞.

By (4.11) and continuous mapping theorem,

n−5 det(An)
D
−→

〈Vξvleft,vleft〉

1− λ2

∫ 1

0
Y2
t dt

∫ 1

0
Yt dt as n → ∞. (B.3)

Since mε 6= 0, by the SDE (2.8), we have P(Yt = 0 for all t ∈ [0, 1]) = 0, which implies that P
(∫ 1

0 Y2
t dt

∫ 1
0 Yt dt > 0

)
= 1.

Consequently, the distribution function of
∫ 1
0
Y2
t dt

∫ 1
0
Yt dt is continuous at 0.

If 〈Vξvleft,vleft〉 > 0 then, by (B.3),

P(Ωn) = P (det(An) > 0) = P
(
n−5 det(An) > 0

)

→ P

(
〈Vξvleft, vleft〉

1− λ2

∫ 1

0
Y2
t dt

∫ 1

0
Yt dt > 0

)
= P

(∫ 1

0
Y2
t dt

∫ 1

0
Yt dt > 0

)
= 1

as n → ∞.

If 〈Vξvleft,vleft〉 > 0, then (3.6) yields m̂
(n)
ξ

D
−→ mξ as n → ∞, and hence m̂

(n)
ξ

P
−→ mξ as n → ∞, thus

(α̂n − δ̂n)2 + 4β̂nγ̂n
P

−→ (α− δ)2 + 4βγ = (1 − λ)2 > 0, implying

P(Ω̃n) = P
(
(α̂n − δ̂n)

2 + 4β̂nγ̂n > 0
)
→ 1 as n → ∞,

hence we obtain the satement. ✷
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