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Abstract

Precise asymptotics for Christoffel functions are established for
power type weights on unions of Jordan curves and arcs. The asymp-
totics involve the equilibrium measure of the support of the measure.
The result at the endpoints of arc components is obtained from the
corresponding asymptotics for internal points with respect to a differ-
ent power weight. On curve components the asymptotic formula is
proved via a sharp form of Hilbert’s lemniscate theorem while taking
polynomial inverse images. The situation is completely different on
the arc components, where the local asymptotics is obtained via a dis-
cretization of the equilibrium measure with respect to the zeros of an
associated Bessel function. The proofs are potential theoretical, and
fast decreasing polynomials play an essential role in them.
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1 Introduction

Christoffel functions have been the subject of many papers, see e.g. [12],
[13], [18], and the extended reference lists there. They are intimately con-
nected with orthogonal polynomials, reproducing kernels, spectral properties
of Jacobi matrices, convergence of orthogonal expansion and even to random
matrices, see [5], [13] and [18] for their various connections and applications.
The possible applications are growing, for example recently a new domain
recovery technique has been devised that use the asymptotic behavior of
Christoffel functions, see [6]; and in the last 4-5 years several important
methods for proving universality in random matrix theory were based on
them, see [1], [8], [9] and [10]. The aim of the present paper is to complete,
to a certain extent, the investigations concerning their asymptotic behavior
on Jordan curves and arcs.

Let µ be a finite Borel measure on the plane such that its support is
compact and consists of infinitely many points. The Christoffel functions
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associated with µ are defined as

λn(µ, z0) = inf
Pn(z0)=1

∫
|Pn|2dµ, (1.1)

where the infimum is taken for all polynomials of degree at most n that take
the value 1 at z. If pk(z) = pk(µ, z) denote the orthonormal polynomials
with respect to µ, i.e. ∫

pnpmdµ = δn,m,

then λn can be expressed as

λ−1
n (µ, z) =

n∑

k=0

|pk(z)|2.

In other words, λ−1(µ, z) is the diagonal of the reproducing kernel

Kn(z, w) =
n∑

k=0

pk(z)pk(w)

which makes it an essential tool in many problems. It is easy to see that,
with this reproducing kernel, the infimum in (1.1) is attained (only) for

Pn(z) =
Kn(z, z0)

Kn(z0, z0)
,

see e.g. [20, Theorem 3.1.3]).
The earliest asymptotics for Christoffel functions for measures on the

unit circle or on [−1, 1] go back to Szegő, see [21, Th. I’, p. 461]. He gave
their behavior outside the support of the measure, and for some special
cases he also found their behavior at points of (−1, 1). The first result for a
Jordan arc (a circular arc) was given in [4]. By now the asymptotic behavior
of Christoffel functions for measures defined on unions of Jordan curves and
arcs Γ is well understood: under certain assumptions we have for points
z ∈ Γ that are different from the endpoints of the arc components of Γ

lim
n→∞

nλn(µ, z0) =
w(z0)

ωΓ(z0)
, (1.2)

where w is the density of µ with respect to the arc measure sΓ on Γ, and
ωΓ is the density of the equilibrium measure (see below) with respect to sΓ.
For the most general results see [22] and [24].

What is left, is to decide the asymptotic behavior at the endpoints of
the arc components. It turns out that this problem is closely related to the
asymptotic behavior away from the endpoints, but for measures of the form
dµ(x) = |z − z0|αdsΓ(z), α > −1, and the aim of this paper is to find these
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asymptotic behaviors. When µ is of the just specified form, then we shall
show (for the exact formulation see the next section),

lim
n→∞

n1+αλn(µ, z0) =
1

(πωΓ(z0))α+1
2α+1Γ

(α+ 1

2

)
Γ
(α+ 3

2

)
(1.3)

when z0 is not the endpoint of an arc component of Γ, while at an endpoint

lim
n→∞

n2α+2λn(µ, z0) =
Γ(α+ 1)Γ(α+ 2)

(πM(Γ, z0))2α+2
,

where M(Γ, z0) is the limit of
√
|z − z0|ωΓ(z) as z → z0 along Γ.

This paper uses some basic notions and results from potential theory.
See [2], [3], [16] or [19] for all the concepts we use and for the basic theory.
In particular, νΓ will denote the equilibrium measure of the compact set Γ.

Since the asymptotics reflect the support of the measure, in all such
questions a global condition, stating that the measure is not too small on
any part of Γ, is needed (for example, if µ is zero on any arc of Γ, then (1.3)
does not hold any more). This global condition is the regularity condition
from [19]: we say that µ, with support Γ, belongs to the Reg class if

sup
Pn

(
‖Pn‖Γ

‖Pn‖L2(µ)

)1/n

→ 1

as n → ∞, where the supremum is taken for all polynomials of degree at
most n, and where ‖Pn‖Γ denotes the supremum norm on Γ. The condition
says that in the n-th root sense the L∞(µ) and L2(µ)-norms are almost the
same. The assumption µ ∈ Reg is a very weak condition – see [19] for
several reformulations as well as conditions on the measure µ that implies
µ ∈ Reg. For example, if Γ consists of rectifiable Jordan curves and arcs
with arc measure sΓ, then any measure dµ(z) = w(z)dsΓ(z) with w(z) > 0
sΓ-almost everywhere is regular in this sense.

Actually, it is not even needed that the support Γ of the measure µ be
a system of Jordan curves or arcs, the main theorem below holds for any Γ
that is a finite union of continua (connected compact sets). However, it is
needed that z0 lies on a smooth arc J of the outer boundary of Γ: the outer
boundary of Γ is the boundary of the unbounded connected component
of C \ Γ. It is known that the equilibrium measure νΓ lives on the outer
boundary, and if J is a smooth (say C1-smooth) arc on the outer boundary,
then on J the equilibrium measure is absolutely continuous with respect
to the arc measure sJ on J : dνΓ(z) = ωΓ(z)dsJ(z). We call this ωΓ the
equilibrium density of Γ.

The following theorem describes the asymptotics of the Christoffel func-
tion at points that are different from the endpoints of the arc-components/parts
of Γ, see Figure 1 for illustration.
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z0

Figure 1: A typical position where Theorem 1.1 can be applied

Theorem 1.1 Let the support Γ of a measure µ ∈ Reg consist of finitely
many continua, and let z0 lie on the outer boundary of Γ. Assume that the
intersection of Γ with a neighborhood of z0 is a C2-smooth arc J which con-
tains z0 in its (one-dimensional) interior. Assume also that in this neighbor-
hood dµ(z) = w(z)|z − z0|αdsJ(z), where w is a strictly positive continuous
function and α > −1. Then

lim
n→∞

n1+αλn(µ, z0) =
w(z0)

(πωΓ(z0))α+1
2α+1Γ

(α+ 1

2

)
Γ
(α+ 3

2

)
. (1.4)

The second main theorem of this work is about the behavior of the
Christoffel function at an endpoint, see Figure 2. If z0 is an endpoint of a
smooth arc J on the outer boundary of Γ, then at z0 the equilibrium density
has a 1/

√
|z − z0| behavior (see the proof of Theorem 1.2), and we set

M(Γ, z0) := lim
z→z0, z∈Γ

√
|z − z0|ωΓ(z). (1.5)

Theorem 1.2 Let Γ and µ be as in Theorem 1.1, but now assume that the
intersection of Γ with a neighborhood of z0 is a C2-smooth Jordan arc J
with one endpoint at z0. Then

lim
n→∞

n2α+2λn(µ, z0) =
w(z0)

(πM(Γ, z0))2α+2
Γ(α+ 1)Γ(α+ 2). (1.6)

These results can be used, in particular, if the measure is supported on
a finite union of intervals on the real line, in which case the quantities ωΓ(x)
and M(Γ, x) have a rather explicit form. Let Γ = ∪k0

j=0[a2j , a2j+1] with
disjoint [a2j , a2j+1]. Then the equilibrium density of Γ is (see e.g. [23, (40),
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G

z0

Figure 2: A typical position where Theorem 1.2 can be applied

(41)] or [19, Lemma 4.4.1])

ωΓ(x) =

∏k0−1
j=0 |x− λj |

π
√∏2k0+1

j=0 |x− aj |
, x ∈ Int(Γ), (1.7)

where λj are the solutions of the system of equations

∫ a2k+2

a2k+1

∏k0−1
j=0 (t− λj)√∏2k0+1
j=0 |t− aj |

dt = 0, k = 0, . . . k0 − 1. (1.8)

It can be easily shown that these λj ’s are uniquely determined and there is
one λj on every contiguous interval (a2j+1, a2j+2). Now if a is one of the
endpoints of the intervals of Γ, say a = aj0 , then

M(Γ, a) =

∏k0−1
j=0 |a− λj |

π
√∏2k0

j=1, j 6=j0
|a− aj |

. (1.9)

This whole work is dedicated to proving Theorem 1.1 and Theorem 1.2.
Actually, the latter will be a relatively easy consequence of the former one,
so the main emphasis will be to prove Theorem 1.1. The main line of
reasoning will be the following. We start from some known facts for simple
measures like |x|αdx on the real line, and get some elementary results for
a model case on the unit circle via a transformation. Then we prove from
these simple cases that Theorem 1.1 is true for lemniscate sets, i.e. level sets
of polynomials. This part will use the polynomial mapping in question to
transform the already known result to the given lemniscate. Then we prove
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the theorem for finite unions of Jordan curves. Recall that a Jordan curve is
a homeomorhic image of a circle, while a Jordan arc is a homeomorhic image
of a segment. From the point of view of finding the asymptotics of Christoffel
functions there is a big difference between arcs and curves: Jordan curves
have interior and can be exhausted by lemniscates, so the polynomial inverse
image method of [23] is applicable for them, while for Jordan arcs that
method cannot be applied. Still, the pure Jordan curve case is used when
we go over to a Γ which may have arc components, namely it is used in
the lower estimate. The upper estimate is the most difficult part of the
proof; there Bessel functions enter the picture, and a discretization technique
is developed where the discretization of the equilibrium measure of Γ is
done using the zeros of appropriate Bessel functions combined with another
discretization based on uniform distribution. Once the case of Jordan curves
and arcs have been settled, the proof of Theorem 1.1 will easily follow by
approximating a general Γ by a family of Jordan curves and arcs.

2 Tools

In what follows, ‖ · ‖K denotes the supremum norm on a set K, and sΓ the
arc measure on Γ (when Γ consists of smooth Jordan arcs or curves).

We shall rely on some basic notions and facts from logarithmic potential
theory. See the books [2], [3], [16] or [17] for detailed discussion.

We shall often use the trivial fact that if µ, ν are two Borel measures,
then µ ≤ ν implies λn(µ, x) ≤ λn(ν, x) for all x. It is also trivial that
λn(µ, z) ≤ µ(C) (just use the identically 1 polynomial as a test function in
the definition of λn(µ, z)).

Another frequently used fact is the following: if {nk} is a subsequence of
the natural numbers such that nk+1/nk → 1 as k → ∞, then for any κ > 0

lim inf
n→∞

nκλn(µ, x) = lim inf
k→∞

nκ
kλnk

(µ, x), (2.1)

and
lim sup
n→∞

nκλn(µ, x) = lim sup
k→∞

nκ
kλnk

(µ, x). (2.2)

In fact, since λn(µ, x) is a monotone decreasing function of n, for nk ≤ n ≤
nk+1 we have

(
n

nk+1

)κ

nκ
k+1λnk+1

(µ, x) ≤ nκλn(µ, x) ≤
(

n

nk

)κ

nκ
kλnk

(µ, x),

and both claims follow because n/nk and n/nk+1 tend to 1 as n (or nk)
tends to infinity.
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2.1 Fast decreasing polynomials

The following lemmas on the existence of fast decreasing polynomials will
be a constant tool in the proofs.

Proposition 2.1 Let K be a compact subset on C, Ω the unbounded com-
plement of C \ K and let z0 ∈ ∂Ω. Suppose that there is a disk in Ω that
contains z0 on its boundary. Then, for every γ > 1, there are constants
cγ , Cγ, and for every n ∈ N polynomials Sn,z0,K of degree at most n such
that Sn,z0,K(z0) = 1, |Sn,z0,K(z)| ≤ 1 for all z ∈ K and

|Sn,z0,K(z)| ≤ Cγe
−ncγ |z−z0|γ , z ∈ K. (2.3)

For details, see [22, Theorem 4.1]. This theorem will often be used in the
following form.

Corollary 2.2 With the assumptions of Proposition 2.1 for every 0 < τ <
1, there exists constants cτ , Cτ , τ0 > 0 and for every n ∈ N a polynomial
Sn,z0,K of degree o(n) such that Sn,z0,K(z0) = 1, |Sn,z0,K(z)| ≤ 1 for all
z ∈ K, and

|Sn,z0,K(z)| ≤ Cτe
−cτnτ0

, |z − z0| ≥ n−τ . (2.4)

Proof. Let 0 < ε be sufficiently small and select γ > 1 so that 1−ε−τγ >
0. Lemma 2.1 tells us that there is a polynomial Pn with deg(Pn) ≤ n1−ε

such that
|Pn(z)| ≤ Cγe

−cγn1−(ε+τγ)
, |z − z0| ≥ n−τ ,

and this proves the claim with Sn,z0,K = Pn.

There is a version of Lemma 2.1 where the decrease is not exponentially
small, but starts much earlier than in Lemma 2.1.

Proposition 2.3 Let K be as in Proposition 2.1. Then, for every β < 1,
there are constants cβ, Cβ > 0, and for every n = 1, 2, . . . polynomials Pn of
degree at most n such that Pn(z0) = 1, |Pn(z)| ≤ 1 for z ∈ K and

|Pn(z)| ≤ Cβe
−cβ(n|z−z0|)β , z ∈ K. (2.5)

See [25, Lemma 4].
It will be convenient to use these results when n > 1 is not necessarily

integer (formally one has to take the integral part of n, but the estimates
will hold with possibly smaller constants in the exponents).
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2.2 Polynomial inequalities

We shall also need some inequalities for polynomials that are used several
times in the rest of the paper.

We start with a Bernstein-type inequality.

Lemma 2.4 Let J be a C2 closed Jordan arc and J1 a closed subarc of J
not having common endpoint with J . Then, for every D > 0, there is a
constant CD, such that

|P ′

n(z)| ≤ CDn‖Pn‖J , dist(z, J1) ≤ D/n,

holds for any polynomials Pn of degree n = 1, 2, . . ..

See [22, Corollary 7.4].
Next, we continue with a Markov-type inequality.

Lemma 2.5 Let K be a continuum. If Qn is a polynomial of degree at most
n = 1, 2, . . ., then

‖Q′
n‖K ≤ e

2cap(K)
n2‖Qn‖K , (2.6)

where cap(K) denotes the logarithmic capacity of K.
In particular, if K has diameter 1, then

‖Q′
n‖K ≤ 2en2‖Qn‖K . (2.7)

For (2.6) see [15, Theorem 1], and for the last statement note that if K has
diameter 1, then its capacity is at least 1/4 ([16, Theorem 5.3.2(a)]).

Next, we prove a Remez-type inequality.

Lemma 2.6 Let Γ be a C1 Jordan curve or arc, and assume that for every
n = 1, 2, . . ., Jn is a subarc of Γ, and J∗

n is a subset of Jn such that

sΓ(Jn \ J∗
n) = o(n−2)sΓ(Jn),

where sΓ denotes the arc-length measure on Γ. Then, for any sequence
{Qn}of polynomials of degree at most n = 1, 2, . . ., we have

‖Qn‖Jn = (1 + o(1))‖Qn‖J∗
n
. (2.8)

Proof. It is clear from the C1 property that sΓ(Jn) ∼ diam(Jn) uniformly
in Jn (meaning that the ratio of the two sides lies in between two positive
constants).

Make a linear transformation z → Cz such that, after this transfor-
mation, the arc J̃n that we obtain from Jn has diameter 1. Under this
transformation J∗

n goes into a subset J̃∗
n of J̃n for which

sJ̃n(J̃n \ J̃∗
n) = o(n−2)sJ̃n(J̃n), (2.9)
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and Qn changes into a polynomial Q̃n of degree at most n. (2.8) is clearly
equivalent to its -̃version.

Let M = ‖Q̃n‖J̃n . By Lemma 2.5, the absolute value of Q̃′
n is bounded

on J̃n by 2en2M , hence if z, w ∈ J̃n, then

|Q̃n(z)− Q̃n(w)| ≤ 2en2MsJ̃n(zw), (2.10)

where zw is the arc of J̃n lying in between z and w. By the assumption
(2.9) for every z ∈ J̃n there is a w ∈ J̃∗

n with

sJ̃n(zw) = o(n−2)sJ̃n(J̃n) = o(n−2)

because sJ̃n(J̃n) ∼ diam(J̃n) = 1. Choose here z ∈ J̃n such that |Q̃n(z)| =
M . Since |Q̃n(w)| ≤ ‖Q̃n‖J̃∗

n
, we get from (2.10)

M = |Q̃n(z)| ≤ ‖Q̃n‖J̃∗
n
+ o(1)M,

and the claim follows.

We shall frequently use the following, so called Nikolskii-type inequalities
for power type weights. In it we write that a Jordan arc is C1+-smooth if
there is a θ > 0 such that the arc in question is C1+θ-smooth.

Lemma 2.7 Let J be a C1+-smooth Jordan arc and let J∗ ⊂ J be a subarc
of J which has no common endpoint with J . Let z0 ∈ J be a fixed point,
and for α > −1 define the measure να on J by dνα(u) = |u − z0|αdsJ(u).
Then there is a constant C depending only on α, J and J∗ such that for any
polynomials Pn of degree at most n = 1, 2, . . . we have

‖Pn‖J∗ ≤ Cn(1+α)/2‖Pn‖L2(να), (2.11)

if α ≥ 0, and
‖Pn‖J∗ ≤ Cn1/2‖Pn‖L2(να), (2.12)

if −1 < α < 0.
The same is true if dνα(u) = w(u)|u − z0|αdsJ(u) with some strictly

positive and continuous w.

Proof. In view of [26, Lemmas 3.8 and Corollary 3.9] (use also that να is
a doubling weight in the sense of [26]) uniformly in z ∈ J∗ we have for large
n the relation

λn(να, z) ∼ να(l1/n(z)),
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where A ∼ B means that the ratio lies in between two constants, and where
l1/n(z) is the arc of J consisting of those points of z that lie of distance
≤ 1/n from z. If α ≥ 0, then

να(l1/n(z)) ≥
c

n1+α
,

while for −1 < α < 0
να(l1/n(z)) ≥

c

n
,

with some positive constant c which depends only on α, J and J∗. Therefore,
we have for all z ∈ J∗ the inequality

λn(να, z) ≥
c

n1+α
(2.13)

if α ≥ 0 and

λn(να, z) ≥
c

n
(2.14)

when −1 < α < 0.
For example, (2.13) means that if α ≥ 0 and |Pn(z)| = 1 for some z ∈ J∗,

then necessarily
n1+α

c

∫

J
|Pn|2dνα ≥ 1,

which is equivalent to saying that for any Pn and z ∈ J∗

n1+α

c

∫

J
|Pn|2dνα ≥ |Pn(z)|2,

and this is (2.11). In a similar manner, (2.12) follows from (2.14).
It is clear that this proof does not change if να is as in the last sentence

of the lemma.

Lemma 2.8 If α > −1, then there is a constant Cα such that for any
polynomial Pn of degree at most n the inequality

‖Pn‖[−1,1] ≤ Cαn
(1+α∗)/2

(∫ 1

−1
|Pn(x)|2|x|αdx

)1/2

(2.15)

holds with α∗ = max(1, α).

Proof. We follow the preceding proof, but now both J and J∗ agree with
[−1, 1].

Let J = J∗ = [−1, 1], z0 = 0, ∆n(z) = 1/n2 if z ∈ [−1,−1+1/n2] or z ∈
[1−1/n2, 1], and set ∆n(z) =

√
1− z2/n if z ∈ [−1+1/n2, 1−1/n2]. If now

l1/n(z) is the interval [z−∆n(z), z+∆n(z)] intersected with [−1, 1], then [26,
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Lemmas 3.8 and Corollary 3.9] state that for dνα(x) = |x− z0|αdx = |x|αdx
on [−1, 1] we have

λn(να, z) ∼ να(l1/n(z)).

If α ≥ 0, then

να(l1/n(z)) ≥ cmin

(
1

n2
,

1

n1+α

)
,

while for −1 < α < 0
να(l1/n(z)) ≥

c

n2
,

with some positive constant c. Hence,

λn(να, z) ≥
c

n2

if −1 < α ≤ 1, while

λn(να, z) ≥
c

n1+α

if α ≥ 1, from which (2.15) follows exactly as before.

The Nikolskii inequalties can be combined with the following estimate
to get an upper bound for the extremal polynomials that produce λn(µ, z).

Lemma 2.9 With the assumptions of Theorem 1.1 we have

λn(µ, z0) ≤ Cn−(α+1)

with some constant C that is independent of n.

Proof. Just use the polynomials Pn from Proposition 2.3 with β = 1/2
and K = Γ. Let δ > 0 be so small that in the δ-neighborhood of z0 we
have the dµ(z) = w(z)|z − z0|αdsΓ(z) representation for µ. Outside this
δ-neighborhood |Sn,z0,Γ| is smaller than Cβ exp(−cβ(nδ)

1/2), so
∫

|Sn,z0,Γ|2dµ ≤ C

∫
e−2cβ(n|t|)

1/2 |t|αdt+ Ce−2cβ(nδ)
1/2 ≤ Cn−α−1,

which proves the claim.

We close this section with the classical Bernstein-Walsh lemma, see [27,
p. 77].

Lemma 2.10 Let K ⊂ C be a compact subset of positive logarithmic capac-
ity, let Ω be the unbounded component of C\K, and gΩ the Green’s function
of this unbounded component with pole at infinity. Then, for polynomials Pn

of degree at most n = 1, 2, . . ., we have for any z ∈ C

|Pn(z)| ≤ engΩ(z)‖Pn‖K .
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3 The model cases

3.1 Measures on the real line

Our first goal is to establish asymptotics for the Christoffel function at 0
with respect to the measure dµ(x) = |x|αdx, x ∈ [−1, 1]. We do this by
transforming some previously known results.

In what follows, for simpler notations, if dµ(x) = w(x)dx, then we shall
write λn(w(x), z) for λn(µ, z).

Proposition 3.1 For α > −1 we have

lim
n→∞

n2α+2λn

(
|x|α

[0, 1]
, 0

)
= Γ(α+ 1)Γ(α+ 2). (3.1)

Proof. It follows from [10, (1.10)] or [9, Theorem 4.1] that

lim
n→∞

n2α+2λn

(
(1− x)α

[−1, 1]
, 1

)
= 2α+1Γ(α+ 1)Γ(α+ 2), (3.2)

from which the claim is an immediate consequence if we apply the linear
transformation x → (1− x)/2.

Proposition 3.2 For α > −1 we have

lim
n→∞

nα+1λn

(
|x|α

[−1, 1]
, 0

)
= Lα, (3.3)

where

Lα := 2α+1Γ
(α+ 1

2

)
Γ
(α+ 3

2

)
. (3.4)

Proof. Let us agree that in this proof, whenever we write Pn, Rn etc. for
polynomials, then it is understood that the degree is at most n.

We use that (for continuous f)

∫ 1

0
f(x)|x|αdx =

∫ 1

−1
f(x2)|x|2α+1dx. (3.5)

Assume first that P2n is extremal for λ2n

(
|x|α

[−1, 1]
, 0

)
, i.e. P2n(0) = 1

and ∫ 1

−1
|P2n(x)|2|x|αdx = λ2n

(
|x|α

[−1, 1]
, 0

)
.

Define

R2n(x) =
P2n(x) + P2n(−x)

2
.
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Then R2n(0) = 1, and R2n is a polynomial in x2, hence R2n(x) = R∗
n(x

2)
with some polynomial R∗

n, for which R∗
n(0) = 1 and deg(R∗

n) ≤ n. Now we
have
∫ 1

−1
|R2n(x)|2|x|αdx =

∫ 1

−1
|R∗

n(x
2)|2|x|αdx =

∫ 1

0
|R∗

n(x)|2|x|
α−1
2 dx

≥ λn

(
|x|α−1

2

[0, 1]
, 0

)
.

With the Cauchy-Schwarz inequality and with the symmetry of the measure
|x|αdx, we have

∫ 1

−1
|R2n(x)|2|x|αdx ≤ 1

4

∫ 1

−1

(
|P2n(x)|2 + 2|P2n(x)||P2n(−x)|+ |P2n(−x)|2

)
|x|αdx

≤ 1

2

∫ 1

−1
|P2n(x)|2|x|αdx

+
1

2

(∫ 1

−1
|P2n(x)|2|x|αdx

)1/2(∫ 1

−1
|P2n(−x)|2|x|αdx

)1/2

=

∫ 1

−1
|P2n(x)|2|x|αdx = λ2n

(
|x|α

[−1, 1]
, 0

)
.

Combining these two estimates, we obtain

λn

(
|x|α−1

2

[0, 1]
, 0

)
≤ λ2n

(
|x|α

[−1, 1]
, 0

)
.

On the other hand, if now Pn is extremal for λn

(
|x|α−1

2

[0, 1]
, 0

)
, then

λn

(
|x|α−1

2

[0, 1]
, 0

)
=

∫ 1

0
|Pn(x)|2|x|

α−1
2 dx =

∫ 1

−1
|Pn(x

2)|2|x|αdx

≥ λ2n

(
|x|α

[−1, 1]
, 0

)
,

therefore we actually have the equality

λn

(
|x|α−1

2

[0, 1]
, 0

)
= λ2n

(
|x|α

[−1, 1]
, 0

)
, (3.6)

from which the claim follows via Proposition 3.1 (see also (2.1) and (2.2)
with nk = 2k).

Note also that this proves also that if Pn(x) is the n-degree extremal

polynomials for the measure |x|α−1
2

[0, 1]
, then Pn(x

2) is the 2n-degree ex-

tremal polynomial for the measure |x|α
[−1, 1]

.
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3.2 Measures on the unit circle

Let µT be the measure on the unit circle T defined by dµT(e
it) = wT(e

it)dt,
where

wT(e
it) =

|e2it + 1|α
2α

|e2it − 1|
2

, t ∈ [−π, π). (3.7)

We shall prove
lim
n→∞

nα+1λn(µT, e
iπ/2) = 2α+1Lα (3.8)

where Lα is from (3.4), by transforming the measure µT into a measure
µ[−1,1] supported on the interval [−1, 1] and comparing the Christoffel func-
tions for them. With the transformation eit → cos t, we have

∫ π

−π
f(cos t)wT(e

it)dt = 2

∫ 1

−1
f(x)w[−1,1](x)dx,

where
w[−1,1](x) = |x|α.

Set dµ[−1,1](x) = w[−1,1](x)dx.
Let Pn be the extremal polynomial for λn(µ[−1,1], 0) and define

Sn(e
it) = Pn(cos t)

(
1 + ei(t−π/2)

2

)⌊ηn⌋

ein(t−π/2),

where η > 0 is arbitrary. This Sn is a polynomial of degree 2n+ ⌊ηn⌋ with
Sn(e

iπ/2) = 1. For any fixed 0 < δ < 1

∫ π/2+δ

π/2−δ
|Sn(e

it)|2wT(e
it)dt ≤

∫ π/2+δ

π/2−δ
|Pn(cos t)|2wT(e

it)dt

≤
∫ 1

−1
|Pn(x)|2w[−1,1](x)dx

= λn(µ[−1,1], 0).

(3.9)

To estimate the corresponding integral over the intervals [−π, π/2− δ] and
[π/2 + δ, π], notice that

max
t∈[−π,π]\[π/2−δ,π/2+δ]

∣∣∣∣∣
1 + ei(t−π/2)

2

∣∣∣∣∣

⌊ηn⌋

= O(qn) (3.10)

for some q < 1. From Lemma 2.8 we obtain

‖Pn‖[−1,1] ≤ Cn1+|α|/2‖Pn‖L2(µ[−1,1])
≤ Cn1+|α|/2,

and so
(∫ π/2−δ

−π
+

∫ π

π/2+δ

)
|Sn(e

it)|2wT(e
it)dt = O(n1+|α|/2qn) = o(n−α−1).
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Therefore, using this Sn as a test polynomial for λdeg(Sn)(µT, e
iπ/2) we con-

clude
λdeg(Sn)(µT, e

iπ/2) ≤ λn(µ[−1,1], 0) + o(n−α−1),

and so

lim sup
n→∞

(
2n+ ⌊ηn⌋

)α+1
λ2n+⌊ηn⌋(µT, e

iπ/2) ≤ lim sup
n→∞

(
2 + ⌊ηn⌋/n

)α+1
nα+1λn(µ[−1,1], 0)

= (2 + η)α+1Lα,

where we used Proposition 3.2 for the measure µ[−1,1].
Since η > 0 was arbitrary,

lim sup
n→∞

nα+1λn(µT, e
iπ/2) ≤ 2α+1Lα (3.11)

follows (see also (2.2)).
Now to prove the matching lower estimate, let S2n(e

it) be the extremal
polynomial for λ2n(µT, e

iπ/2). Define

P ∗
n(e

it) = S2n(e
it)

(
1 + ei(t−π/2)

2

)2⌊ηn⌋

e−(n+⌊ηn⌋)i(t−π/2)

and Pn(cos t) = P ∗
n(e

it) + P ∗
n(e

−it). Note that Pn(cos t) is a polynomial in
cos t of deg(Pn) ≤ n+ ⌊ηn⌋ and Pn(0) = 1. With it we have

λdeg(Pn)(µ[−1,1], 0) ≤
∫ 1

−1
|Pn(x)|2w[−1,1](x)dx =

1

2

∫ π

−π
|Pn(cos t)|2wT(e

it)dt.

(3.12)
First, we claim that for every fixed 0 < δ < 1

|Pn(cos t)|2 = |P ∗
n(e

it)|2 +O(qn), t ∈ [π/2− δ, π/2 + δ],

|Pn(cos t)|2 = |P ∗
n(e

−it)|2 +O(qn), t ∈ [−π/2− δ,−π/2 + δ],

|Pn(cos t)|2 = O(qn) otherwise,

(3.13)

hold for some q < 1. Indeed,

|Pn(cos t)|2 = |P ∗
n(e

it)+P ∗
n(e

−it)|2 ≤ |P ∗
n(e

it)|2+2|P ∗
n(e

it)||P ∗
n(e

−it)|+|P ∗
n(e

−it)|2.

If we apply Lemma 2.7 to two subarcs (say of length 5π/4) of T that contain
the upper, resp. the lower half of the unit circle, then we obtain that

‖P ∗
n‖T ≤ ‖S2n‖T ≤ Cn(1+|α|)/2‖S2n‖L2(µT) ≤ Cn(1+|α|)/2.

Therefore (use (3.10))

|P ∗
n(e

it)| ≤ Cqnn(1+|α|)/2, t ∈ [−π, π] \ [π/2− δ, π/2 + δ].
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These imply (3.13).

Now we have

∫ π

−π
|Pn(cos t)|2wT(e

it)dt =

(∫ π/2+δ

π/2−δ
+

∫ −π/2+δ

−π/2−δ

)
|Pn(cos t)|2wT(e

it)dt

+

(∫ −π/2−δ

−π
+

∫ π/2−δ

−π/2+δ
+

∫ π

π/2+δ

)
|Pn(cos t)|2wT(e

it)dt.

(3.13) tells us that the last three terms are O(qn). For the other two terms
we have, again by (3.13),

∫ π/2+δ

π/2−δ
|Pn(cos t)|2wT(e

it)dt =

∫ π/2+δ

π/2−δ
|P ∗

n(e
it)|2wT(e

it)dt+O(qn)

≤
∫ π/2+δ

π/2−δ
|S2n(e

it)|2wT(e
it)dt+O(qn)

≤ λ2n(µT, e
iπ/2) +O(qn)

and similarly,

∫ −π/2+δ

−π/2−δ
|Pn(cos t)|2wT(e

it)dt ≤ λ2n(µT, e
iπ/2) +O(qn).

Combining these estimates with (3.12), we can conclude

λdeg(Pn)(µ[−1,1], 0) ≤ λ2n(µT, e
iπ/2) +O(qn),

therefore

lim inf
n→∞

deg(Pn)
α+1λdeg(Pn)(µ[−1,1], 0) ≤ lim inf

n→∞
(n+ ⌊ηn⌋)α+1

(
λ2n(µT, e

iπ/2) +O(qn)
)

≤ lim inf
n→∞

(1 + ⌊ηn⌋/n)α+1 1

2α+1
(2n)α+1λ2n(µT, e

iπ/2).

From this, in view of Proposition 3.2 and (2.1), it follows that

(1 + η)−(α+1)2α+1Lα ≤ lim inf
n→∞

λn(µT, e
iπ/2),

and upon letting η → 0 we obtain

2α+1Lα ≤ lim inf
n→∞

λn(µT, e
iπ/2). (3.14)

This and (3.11) verify (3.8).

Finally, let
dµα(e

it) = |eit − i|αdt.
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Let us write |eit − i|α in the form

|eit − i|α = w(eit)wT(e
it).

Then w is continuous in a neighborhood of eiπ/2 and it has value 1 at eiπ/2.
Let τ > 0 be arbitrary, and choose 0 < δ < 1 in such a way that

1

1 + τ
≤ w(eit) ≤ (1 + τ), t ∈ [π/2− δ, π/2 + δ].

If we now carry out the preceding arguments with this δ and with this µα

replacing everywhere µT, then we get that in (3.11) the limsup is at most
(1 + τ)2α+1Lα, while in (3.14) the liminf is at least (1 + τ)−12α+1Lα. Since
τ > 0 can be arbitrarily chosen, this shows that

lim
n→∞

nα+1λn(µα, e
iπ/2) = 2α+1Lα. (3.15)

This result will serve as our model case in the proof of Theorem 1.1.

4 Lemniscates

In this section, we prove Theorem 1.1 for lemniscates.
Let σ = {z ∈ C : |TN (z)| = 1} be the level line of a polynomial TN , and

assume that σ has no self-intersections. Let deg(TN ) = N .
The normal derivative of the Green’s function with pole at infinity of

the outer domain to σ at a point z ∈ σ is (see [22, (2.2)]) |T ′
N (z)|/N , and

since this normal derivative is 2π-times the equilibrium density of σ (see
[14, II.(4.1)] or [17, Theorem IV.2.3] and [17, (I.4.8)]), it follows that the
equilibrium density on σ has the form

ωσ(z) =
|T ′

N (z)|
2πN

. (4.1)

If z ∈ σ, then there are n points z1, . . . , zn ∈ σ with the property TN (z) =
Tn(zk), and for them (see [22, (2.12)])

∫

σ

( N∑

i=1

f(zi)
)
|T ′

N (z)|dsσ(z) = N

∫

σ
f(z)|T ′

N (z)|dsσ(z). (4.2)

Furthermore, if g : T → C is arbitrary, then (see [22, (2.14)])

∫

σ
g(TN (z))|T ′

N (z)|dsσ(z) = N

∫ 2π

0
g(eit)dt. (4.3)

Let z0 ∈ σ be arbitrary, and define the measure

dµσ(z) = |z − z0|αdsσ(z), α > −1, (4.4)
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where sσ denotes the arc measure on σ. Without loss of generality we may
assume that TN (z0) = eiπ/2. Our plan is to compare the Christoffel functions
for the measure µσ with that for the measure µα which is supported on the
unit circle and is defined via

dµα(e
it) = |eit − eiπ/2|αdsT(eit), (4.5)

and for which the asymptotics of the Christoffel function was calculated in
(3.15).

We shall prove that

lim
n→∞

nα+1λn(µσ, z0) =
Lα

(πωσ(z0))α+1
(4.6)

where Lα is taken from (3.4).

4.1 The upper estimate

Let η > 0 be an arbitrary small number, and select a δ > 0 such that for
every z with |z − z0| < δ, we have

1

1 + η
|T ′

N (z0)| ≤ |T ′

N (z)| ≤ (1 + η)|T ′

N (z0)|

1

1 + η
|T ′

N (z0)||z − z0| ≤ |TN (z)− TN (z0)| ≤ (1 + η)|T ′

N (z0)||z − z0|
(4.7)

(note that T ′
N (z0) 6= 0 because σ has no self-intersections). Let Qn be the

extremal polynomial for λn(µα, e
iπ/2), where µα is from (4.5). Define Rn as

Rn(z) = Qn(TN (z))Sn,z0,L(z),

where Sn,z0,L is the fast decreasing polynomial given by Corollary 2.2 for
the lemniscate set L enclosed by σ (and for any fixed 0 < τ < 1 in Corollary
2.2). Note that Rn is a polynomial of degree nN + o(n) with Rn(z0) = 1.
Since Sn,z0,L is fast decreasing, we have

sup
z∈L\{t:|t−z0|<δ}

|Sn,z0,L(z)| = O(qn
τ0
)

for some q < 1 and τ0 > 0. The Nikolskii-type inequality in Lemma 2.7
when applied to two subarcs of T which contain the upper resp. lower part
of the unit circle, yields

‖Qn‖T ≤ Cn(1+|α|)/2‖Qn‖L2(µα) ≤ Cn(1+|α|)/2.

Therefore,

sup
z∈L\{t:|t−z0|<δ}

|Rn(z)| = O(qn
τ0/2

).
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It follows that
∫

|z−z0|≥δ
|Rn(z)|2|z − z0|αdsσ(z) = O(qn

τ0/2
). (4.8)

Using (4.7), we have

∫

|z−z0|<δ
|Rn(z)|2|z − z0|αdsσ(z)

≤
∫

|z−z0|<δ
|Qn(TN (z))|2|z − z0|αdsσ(z)

≤ (1 + η)|α|+1

|T ′

N (z0)|α+1

∫

|z−z0|<δ
|Qn(TN (z))|2|TN (z)− TN (z0)|α|T

′

N (z)|dsσ(z)

≤ (1 + η)|α|+1

|T ′

N (z0)|α+1

∫ 2π

0
|Qn(e

it)|2|eit − eiπ/2|αdt

= (1 + η)|α|+1λn(µα, e
iπ/2)

|T ′

N (z0)|α+1
.

This and (4.8) imply

λdeg(Rn)(µσ, z0) ≤ (1 + η)|α|+1 λn(µα, e
iπ/2)

|T ′

N (eiπ/2)|α+1
+O(qn

τ0/2
),

from which

lim sup
n→∞

deg(Rn)
α+1λdeg(Rn)(µσ, z0)

≤ lim sup
n→∞

(nN + o(n))α+1(1 + η)|α|+1λn(µα, e
iπ/2)

|T ′

N (z0)|α+1

= (1 + η)|α|+1 Nα+1

|T ′

N (z0)|α+1
2α+1Lα,

where we used (3.15). Since η > 0 is arbitrary, we obtain from (4.1) (use
also (2.2))

lim sup
n→∞

nα+1λn(µσ, z0) ≤
Nα+1

|T ′

N (z0)|α+1
2α+1Lα =

Lα

(πωσ(z0))α+1
. (4.9)

4.2 The lower estimate

Let Pn be the extremal polynomial for λn(µσ, z0), and let Sn,z0,L be the
fast decreasing polynomial given by Corollary 2.2 for the closed lemniscate
domain L enclosed by σ (with some fixed τ < 1). As before, we obtain from
Lemma 2.7

‖Pn‖σ = O(n(1+|α|)/2). (4.10)
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Define Rn(z) = Pn(z)Sn,z0,L(z). Rn is a polynomial of degree n+ o(n) and
Rn(z0) = 1. Similarly to the previous section, we have

sup
z∈L\{t:|t−z0|<δ}

|Rn(z)| = O(qn
τ0/2

) (4.11)

for some q < 1 and τ0 > 0. Since the expression
∑N

k=1Rn(zk), where
{z1, . . . , zN} = T−1

N (TN (z)), is symmetric in the variables zk, it is a sum of
their elementary symmetric polynomials. For more details on this idea, see
[23]. Therefore, there is a polynomial Qn of degree at most deg(Rn)/N =
(n+ o(n))/N such that

Qn(TN (z)) =
N∑

k=1

Rn(zk), z ∈ σ.

We claim that for every z ∈ σ, we have

|Qn(TN (z))|2 ≤
N∑

k=1

|Rn(zk)|2 +O(qn
τ0/2

). (4.12)

Indeed, since σ has no self intersection, |zk − zl| cannot be arbitrarily small
for distinct k and l. As a consequence, for every z at most one zj belongs
to the set {z : |z − z0| < δ} if δ is sufficiently small, and hence, in the sum

|Qn(TN (z))|2 ≤
N∑

k=1

N∑

l=1

|Rn(zk)||Rn(zl)|,

every term with k 6= l is O(qn
τ0/2) (use (4.10) and (4.11)).

Now let δ > 0 be so small that for every z with |z−z0| < δ the inequalities
in (4.7) hold. Then (4.2) and (4.12) give (note that TN (z) = TN (zk) for all
k)
∫

σ
|Qn(TN (z))|2|T ′

N (z)||TN (z)− TN (z0)|αdsσ(z)

≤ O(qn
τ0/2

) +

∫

σ

(
N∑

k=1

|Rn(zk)|2
)
|T ′

N (z)||TN (z)− TN (z0)|αdsσ(z)

= O(qn
τ0/2

) +

∫

σ

(
N∑

k=1

|Rn(zk)|2|TN (zk)− TN (z0)|α
)
|T ′

N (z)|dsσ(z)

= O(qn
τ0/2

) +N

∫

σ
|Rn(z)|2|TN (z)− TN (z0)|α|T

′

N (z)|dsσ(z)

≤ O(qn
τ0/2

) + (1 + η)|α|+1|T ′

N (z0)|α+1N

∫

|z−z0|<δ
|Pn(z)|2|z − z0|αdsσ

≤ O(qn
τ0/2

) + (1 + η)|α|+1|T ′

N (z0)|α+1Nλn(µσ, z0).
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Since Qn(TN (z0)) = 1 + o(1), we get from (4.3)

∫

σ
|Qn(TN (z))|2|T ′

N (z)||TN (z)− TN (z0)|αdsσ(z)

= N

∫ 2π

0
|Qn(e

it)|2|eit − eiπ/2|αdt

≥ (1 + o(1))Nλdeg(Qn)(µα, e
iπ/2).

Hence, the inequality

(1+ o(1))λdeg(Qn)(µα, e
iπ/2) ≤ O(qn

τ0/2
) + (1+ η)|α|+1|T ′

N (z0)|α+1λn(µσ, z0)

holds. Using that deg(Qn) ≤ (n+ o(n))/N , we can conclude

lim inf
n→∞

deg(Qn)
α+1λdeg(Qn)(µα, e

iπ/2)

≤ (1 + η)|α|+1|T ′

N (z0)|α+1 lim inf
n→∞

(n+ o(n)

N

)α+1
λn(µσ, z0)

≤ (1 + η)|α|+1 |T
′

N (z0)|α+1

Nα+1
lim inf
n→∞

nα+1λn(µσ, z0).

Since η > 0 is arbitrary, we obtain again from (3.15) and (4.1)

Lα

(πωσ(z0))α+1
≤ lim inf

n→∞
nα+1λn(µσ, z0),

which, along with (4.9), proves (4.6).

5 Smooth Jordan curves

In this section, we verify Theorem 1.1 for a finite union Γ of smooth Jordan
curves and for a measure

dµ(z) = w(z)|z − z0|αdsΓ(z), (5.1)

where sΓ is the arc measure on Γ. Recall that a Jordan curve is a homeo-
morhic image of a circle, while a Jordan arc is a homeomorhic image of a
segment. From the point of view of our technique there is a big difference
between arcs and curves, and in the present section we shall only work with
Jordan curves.

Let Γ be a finite system of C2 Jordan curves lying exterior to each other
and let µ be a measure on Γ given in (5.1), where w is a continuous and
strictly positive function. Our goal is to prove that

lim
n→∞

nα+1λn(µ, z0) =
w(z0)

(πωΓ(z0))α+1
Lα (5.2)
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Figure 3: The Γ and the leminscate σ as in the second half of Proposition
5.1

with Lα from (3.4). We shall deduce this from the result for lemniscates
proved in the preceding section.

We will approximate Γ with lemniscates using the following theorem,
which was proven in [11].

Proposition 5.1 Let Γ consist of finitely many Jordan curves lying exterior
to each other, let P ∈ Γ, and assume that in a neighborhood of P the curve
Γ is C2-smooth. Then, for every ε > 0, there is a lemniscate σ = σP
consisting of Jordan curves such that σ touches Γ at P , σ contains Γ in its
interior except for the point P , every component of σ contains in its interior
precisely one component of Γ, and

ωΓ(P ) ≤ ωσ(P ) + ε. (5.3)

Also, for every ε > 0, there exists another lemniscate σ = σP consisting
of Jordan curves such that σ touches Γ at P , σ lies strictly inside Γ except
for the point P , σ has exactly one component lying inside every component
of Γ, and

ωσ(P ) ≤ ωΓ(P ) + ε. (5.4)

Of course, the phrase “Γ lies inside σ” means that the components of Γ lie
inside (i.e. in the interior of) the corresponding components of σ. See Figure
3.

Note that in (5.3) the inequality ωσ(P ) ≤ ωΓ(P ) is automatic since Γ
lies inside σ. In a similar way, in (5.4) the inequality ωΓ(P ) ≤ ωσ(P ) holds.

Actually, in [11] the conditions (5.3) and (5.4) were formulated in terms
of the normal derivatives of the Green’s function of the outer domains to Γ
and σ, but, in view of the fact that this latter is just 2π-times the equilibrium
density (see [14, II.(4.1)] or [17, Theorem IV.2.3] and [17, (I.4.8)]), the two
formulations are equivalent.
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5.1 The lower estimate

Let Pn be the extremal polynomial for λn(µ, z0), and for some τ > 0 let
Sτn,z0,K be the fast decreasing polynomial given by Proposition 2.1 with
some γ > 1 to be chosen below, where K is the set enclosed by Γ. Let
σ = σz0 be a lemniscate inside Γ given by the second part of Proposition
5.1, and suppose that σ = {z : |TN (z)| = 1}, where TN is a polynomial of
degree N and TN (z0) = eiπ/2. Define Rn = PnSτn,z0,K . Note that Rn is a
polynomial of degree at most (1 + τ)n and Rn(z0) = 1. These will be the
test polynomials in estimating the Christoffel function for the measure

dµσ(z) := |z − z0|αdsσ(z)

on σ, but first we need two nontrivial facts for these polynomials.

Lemma 5.2 Let 1
2 < β < 1 be fixed. For z ∈ Γ such that |z−z0| ≤ 2n−β, let

z∗ ∈ σ be the point such that sσ([z0, z
∗]) = sΓ([z0, z]) holds (actually, there

are two such points, we choose as z∗ the one the lies closer to z). Then the
mapping q(z) = z∗ is one to one, |q(z)− z| ≤ C|z − z0|2, dsΓ(z) = dsσ(z

∗),
|q′(z0)| = 1, and with the notation In := {z∗ ∈ σ : |z∗− z0| ≤ n−β}, we have

∣∣∣∣∣

∫

z∗∈In

|Rn(z
∗)|2|z−z0|αdsσ(z∗)−

∫

z∗∈In

|Rn(z)|2|z−z0|αdsΓ(z)
∣∣∣∣∣ = o(n−(1+α)).

(5.5)

On the left-hand side z = q−1(z∗), so the integrand is a function of z∗.

Proof. First of all we mention that |q′(z0)| = 1, i.e. for every ε > 0, if
|z − z0| is small enough, then

1− ε ≤ |q(z)− z0|
|z − z0|

≤ 1 + ε,

which is clear since q(z) = z +O(|z − z0|2).
We proceed to prove (5.5).

∣∣∣∣∣

∫

z∗∈In

|Rn(z
∗)|2|z − z0|αdsσ(z∗)−

∫

z∗∈In

|Rn(z)|2|z − z0|αdsΓ(z)
∣∣∣∣∣

≤
∣∣∣∣∣

∫

z∗∈In

(
|Rn(z

∗)|2 − |Rn(z)|2
)
|z − z0|αdsΓ(z)

∣∣∣∣∣

≤
∫

z∗∈In

∣∣∣|Rn(z
∗)|2 − |Rn(z)|2

∣∣∣|z − z0|αdsΓ(z) := A.
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Using the Hölder and Minkowski inequalities we can continue as

A ≤
(∫

z∗∈In

|Rn(z
∗)−Rn(z)|2|z − z0|αdsΓ(z)

)1/2

× (5.6)

{(∫

z∗∈In

|Rn(z
∗)|2|z − z0|αdsΓ(z)

)1/2

+

(∫

z∗∈In

|Rn(z)|2|z − z0|αdsΓ(z)
)1/2}

.

We estimate these integrals term by term.
Pn is extremal for λn(µ, z0) = O(n−(α+1)) (see Lemma 2.9), therefore we

have (use also that |Rn(z)| ≤ |Pn(z)|)
(∫

z∗∈In

|Rn(z)|2|z − z0|αdsΓ(z)
)1/2

≤ Cn−α+1
2 . (5.7)

This takes care of the third term in (5.6).
The estimates for the other two terms differ in the cases α ≥ 0 and

α < 0.
Assume first that α ≥ 0. From Lemma 2.7, we get for any closed subarc

J1 ⊂ J
‖Rn‖J1 ≤ Cn(α+1)/2‖Rn‖L2(µ) ≤ C,

where we used Lemma 2.9 and |Rn(z)| ≤ |Pn(z)|. Choose this J1 so that it
contains z0 in its interior. Next, note that if z∗ ∈ In, then |z∗− z| ≤ Cn−2β ,
so dist(z∗, z) ≤ C/n. Therefore, an application of Lemma 2.4 yields for such
z

|Rn(q(z))−Rn(z)|
|q(z)− z| ≤ Cn‖Rn‖J1 ,

and so
|Rn(q(z))−Rn(z)| ≤ Cn|q(z)− z| ≤ Cn1−2β . (5.8)

Since sσ(In) ≤ Cn−β is also true, we have (recall that z∗ = q(z))

(∫

z∗∈In

|Rn(z
∗)−Rn(z)|2|z − z0|αdsΓ(z)

)1/2

≤ C
(
n−βn2−4βn−αβ

)1/2

= Cn1− 5+α
2

β .

This is the required estimate for the first term in (5.6).
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Finally, for the middle term in (5.6), we have

(∫

z∗∈In

|Rn(z
∗)|2|z − z0|αdsΓ(z)

)1/2

=

(∫

z∗∈In

∣∣∣|Rn(z
∗)|2 − |Rn(z)|2 + |Rn(z)|2

∣∣∣|z − z0|αdsΓ(z)
)1/2

≤
(∫

z∗∈In

∣∣∣|Rn(z
∗)|2 − |Rn(z)|2

∣∣∣|z − z0|αdsΓ(z)
)1/2

+

(∫

z∗∈In

|Rn(z)|2|z − z0|αdsΓ(z)
)1/2

≤ A1/2 + Cn−α+1
2 ,

where A is the left-hand side in (5.6), and where we also used (5.7).
Combining these we get

A ≤ Cn1− 5+α
2

β
(
A1/2 + Cn−α+1

2

)
≤ CA1/2n1− 5+α

2
β + Cn

1
2
−α

2
− 5+α

2
β

≤ Cmax{A1/2n1− 5+α
2

β , n
1
2
−α

2
− 5+α

2
β}.

Therefore A ≤ Cn2−(5+α)β or A ≤ Cn
1
2
−α

2
− 5+α

2
β . If β < 1 is sufficiently

close to 1, then both imply A = o(n−(α+1)).
Now assume that α < 0. From Lemma 2.7, we get for any closed subarc

J1 ⊂ J
‖Rn‖J1 ≤ ‖Pn‖J1 ≤ Cn1/2‖Pn‖L2(µ) ≤ Cn−α/2,

and we may assume that here J1 is such that it contains a neighborhood of
z0. Therefore, in this case (5.8) takes the form

|Rn(z
∗)−Rn(z)| ≤ Cn1−α/2−2β .

Since ∫

z∗∈In

|z − z0|αdsΓ(z) ≤ Cn−αβ−β,

we obtain
(∫

z∗∈In

|Rn(z
∗)−Rn(z)|2|z − z0|αdsΓ(z)

)1/2

≤ Cn1−α
2
−2β−

(α+1)
2

β ,

which is the required estimate for the first term in (5.6). Finally, for the
middle term in (5.6) we get, similarly as before,

(∫

z∗∈In

|Rn(z
∗)|2|z − z0|αdsΓ(z)

)1/2

≤ A1/2 + Cn−α+1
2 .
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As previously, we can conclude from these

A ≤ Cn1−α
2
−2β−α+1

2
β(A1/2 + n−α+1

2 ),

which implies

A ≤ Cmax{n2−α−4β−(α+1)β , n
1
2
−α−2β−α+1

2
β}.

If β is sufficiently close to 1, then this yields again A = o(n−(α+1)), as
needed.

In what follows we keep the notations from the preceding proof. In the
following lemma let ∆δ(z0) = {z : |z − z0| ≤ δ} be the disk about z0 of
radius δ.

Note that up to this point the γ > 1 in Proposition 2.1 was arbitrary.
Now we specify how close it should be to 1.

Lemma 5.3 If 0 < β < 1 is fixed and γ > 1 is chosen so that βγ < 1, then

‖Rn‖K\∆
n−β/2

(z0) = o(n−1−α). (5.9)

Recall that here K is the set enclosed by Γ.

Proof. Let us fix a δ > 0 such that the intersection Γ ∩ ∆δ(z0) lies in
the interior of the arc J from Theorem 1.1. By µ ∈ Reg and the trivial
estimate ‖Pn‖L2(µ) = O(1) we get that no matter how small ε > 0 is given,
for sufficiently large n we have ‖Pn‖Γ ≤ (1 + ε)n. On the other hand, in
view of Proposition 2.1, we have for z 6∈ ∆δ(z0), z ∈ K,

|Sτn,z0,K(z)| ≤ Cγe
−cγτnδ2 ,

so
‖Rn‖K\∆δ

(z0) = o(n−1−α) (5.10)

certain holds.
Consider now K ∩∆δ(z0). Its boundary consists of the arc Γ ∩∆δ(z0),

which is part of J , and of an arc on the boundary of ∆δ(z0), where we
already know the bound (5.10). On the other hand, on Γ∩∆δ(z0) we have,
by Lemma 2.7,

|Pn(z)| ≤ Cn(1+|α|)/2‖Pn‖L2(µ) ≤ Cn(1+|α|)/2.

Therefore, by the maximum principle, we obtain the same bound (for large
n) on the whole set K ∩∆δ(z0). As a consequence, for z ∈ K \∆n−β/2

|Rn(z)| ≤ Cn(1+|α|)/2e−cγτn(n−β/2)γ = o(n−1−α)
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if we choose γ > 1 in Proposition 2.1 so that βγ < 1. These prove (5.9).

After these preliminaries we return to the proof of Theorem 1.1, more
precisely to the lower estimate of λn(µ, z0).

Let η > 0 be arbitrary, and let n be so large that

1

1 + η
w(z0) ≤ w(z) ≤ (1+η)w(z0),

1

1 + η
|z−z0| ≤ |q(z)−z0| ≤ (1+η)|z−z0|

hold for all z∗ ∈ In, where In is the set from Lemma 5.2. Then we obtain
from Lemma 5.2 (recall that z∗ = q(z))
∫

z∗∈In

|Rn(z
∗)|2|z∗ − z0|αdsσ(z∗)

≤ (1 + η)|α|
∫

z∗∈In

|Rn(z
∗)|2|z − z0|αdsΓ(z)

≤ (1 + η)|α|
∫

z∗∈In

|Rn(z)|2|z − z0|αdsΓ(z) + o(n−(α+1))

≤ (1 + η)|α|+1

w(z0)

∫

z∗∈In

|Rn(z)|2w(z)|z − z0|αdsΓ(z) + o(n−(α+1))

≤ (1 + η)|α|+1

w(z0)
λn(µ, z0) + o(n−(α+1)).

On the other hand, if we notice that if, for some z ∈ σ, we have z∗ 6∈ In
then necessarily |z − z0| ≥ n−β/2, we obtain from Lemma 5.3

∫

z∗∈σ\In

|Rn(z
∗)|2|z∗ − z0|αdsσ(z∗) = o(n−(1+α)).

Combining these, it follows that

λdeg(Rn)(µσ, z0) ≤
∫

z∈σ
|Rn(z

∗)|2|z∗ − z0|αdsσ(z∗)

≤ (1 + η)|α|+1

w(z0)
λn(µ, z0) + o(n−(α+1)).

Since deg(Rn) ≤ (1 + τ)n, we can conclude from (4.6) (see also (2.1))

Lα

(πωσ(z0))α+1
= lim inf

n→∞
deg(Rn)

α+1λdeg(Rn)(µσ, z0)

≤ lim inf
n→∞

(1 + τ)α+1 (1 + η)|α|+1

w(z0)
nα+1λn(µ, z0).

But here τ, η > 0 are arbitrary, so we get

lim inf
n→∞

nα+1λn(µ, z0) ≥
w(z0)

(πωσ(z0))α+1
Lα.
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As ωσ(z0) ≤ ωΓ(z0) + ε (see (5.4)), for ε → 0 we finally arrive at the lower
estimate

lim inf
n→∞

nα+1λn(µ, z0) ≥
w(z0)

(πωΓ(z0))α+1
Lα. (5.11)

5.2 The upper estimate

Let now σ be the lemniscate given by the first part of Proposition 5.1, and
let Pn be the polynomial extremal for λn(µσ, z0). Define, with some τ > 0,

Rn(z) = Pn(z)Sτn,z0,L(z),

where Sτn,z0,L is the fast decreasing polynomial given by Proposition 2.1
for the lemniscate set L enclosed by σ (with some γ > 1). Let η > 0 be
arbitrary, 1

2 < β < 1 as before, and suppose that n is so large such that

1

1 + η
w(z0) ≤ w(z) ≤ (1 + η)w(z0)

1

η + 1
≤ |q′(z)| ≤ (1 + η)

1

1 + η
|z − z0| ≤ |q(z)− z0| ≤ (1 + η)|z − z0|

are true for all |z − z0| ≤ n−β. Using Lemma 5.2 (more precisely its version
when σ encloses Γ) we have (recall again that z∗ = q(z))

∫

z∗∈In

|Rn(z)|2w(z)|z − z0|αdsΓ(z)

≤ (1 + η)w(z0)

∫

z∗∈In

|Rn(z)|2|z − z0|αdsΓ(z)

≤ (1 + η)w(z0)

∫

z∗∈In

|Rn(z
∗)|2|z − z0|αdsσ(z∗) + o(n−(α+1))

≤ (1 + η)|α|+1w(z0)

∫

z∗∈In

|Rn(z
∗)|2|z∗ − z0|αdsσ(z∗) + o(n−(α+1))

≤ (1 + η)|α|+1w(z0)λn(µσ, z0) + o(n−(α+1)).

On the other hand, Lemma 5.3 (but now applied for the system of curves
σ rather than for Γ) implies, as before,

∫

Γ\∆
n−β/2

(z0)
|Rn(z)|2|z − z0|αdµ(z) = o(n−(1+α)).

Therefore,

λdeg(Rn)(µ, z0) ≤ (1 + η)|α|+1w(z0)λn(µσ, z0) + o(n−(α+1)),
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which, similarly to the lower estimate, upon using (4.6) and letting τ, η tend
to zero, implies (see also (2.2))

lim sup
n→∞

nα+1λn(µ, z0) ≤
w(z0)

(πωσ(z0))α+1
Lα.

Here, in view of (5.3), ωΓ(z0) ≤ ωσ(z0) + ε, hence for ε → 0 we conclude

lim sup
n→∞

nα+1λn(µ, z0) ≤
w(z0)

(πωΓ(z0))α+1
Lα.

This and (5.11) prove (5.2).

6 Piecewise smooth Jordan curves

The proof in the preceding section can be carried out without any diffi-
culty if Γ consists of piecewise C2-smooth Jordan curves, provided that in
a neighborhood of z0 the Γ is C2-smooth. Indeed, in that case we can still
talk about ωΓ which is continuous where Γ is C2-smooth (see [24, Propo-
sition 2.2]), and in the above proof the C2-smoothness was used only in a
neighborhood of z0. Therefore, we have

Proposition 6.1 Let Γ consist of finitely many disjoint, piecewise C2-smooth
Jordan curves. Let z0 ∈ Γ, and in a neighborhood of z0 ∈ Γ let Γ be C2-
smooth. Then, for the measure µ given in (5.1), we have (5.2).

7 Arc components

In this section, we prove Theorem 1.1 when Γ is a union of C2-smooth
Jordan curves and arcs, and µ is the measure (5.1) considered before. To be
more specific, our aim is to verify

Proposition 7.1 Let Γ consist of finitely many disjoint C2-smooth Jordan
curves or arcs lying exterior to each other, and let z0 ∈ Γ. Assume that in
a neighborhood of the point z0 ∈ Γ the piece of Γ lying in that neighborhood
is C2-smooth, and z0 is not an endpoint of an arc component of Γ. Then,
for the measure (5.1) where w is continuous and positive and α > −1, we
have (1.4).

We shall need some facts about Bessel functions, and a discretization
of the equilibrium measure νΓ that uses the zeros of an appropriate Bessel
function.
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7.1 Bessel functions and some local asymptotics

We shall need the Bessel function of the first kind of order β > 0:

Jβ(z) =
∞∑

n=0

(−1)n(z/2)2n+β

n!Γ(n+ β + 1)
,

as well as the functions (c.f. [10])

Jβ(u, v) =
Jβ(

√
u)
√
vJ ′

β(
√
v)− Jβ(

√
v)
√
uJ ′

β(
√
u)

2(u− v)
,

J
∗
β(z) =

Jβ(z)

zβ
, J

∗
β(u, v) =

Jβ(u, v)

uβ/2vβ/2
.

These latter ones are analytic, and we have

J
∗
β(u, 0) =

1

22β+1u

∞∑

n=1

(−1)n(
√
u/2)2n

n!Γ(n+ β + 1)

(
β

Γ(β + 1)
− 2n+ β

Γ(β + 1)

)
=

J∗β+1(
√
u)

2β+1Γ(β + 1)
.

Let dν0(x) be the measure xβdx with support [0, 2], and K
(0)
n (x, t) its

n-th reproducing kernel. It is known (see [9, (1.2)] or [20, (4.5.8), p. 72])
that

K
(0)
n

(
x2

2n2 , 0
)

K
(0)
n (0, 0)

= (1 + o(1))
J∗β(x

2, 0)

J∗β(0, 0)
,

which holds uniformly for |x| ≤ A with any fixed A. We have already men-

tioned (see e.g. [20, Theorem 3.1.3]) that the polynomialK
(0)
n (t, 0)/K

(0)
n (0, 0)

is the extremal polynomial of degree n for λn(ν0, 0), so the preceding rela-
tion gives an asymptotic formula for this extremal polynomial on intervals

[0, A/n2]. If now dν1(x) = (2x)βdx but with support [0, 1], and K
(1)
n is

the associated reproducing kernel, then K
(1)
n (t, 0)/K

(1)
n (0, 0) is the extremal

polynomial of degree n for λn(ν1, 0), and it is clear that this is just a scaled
version of the extremal polynomial for ν0:

K
(1)
n (t, 0)

K
(1)
n (0, 0)

=
K

(0)
n (2t, 0)

K
(0)
n (0, 0)

.

Therefore,

K
(1)
n

(
x2

4n2 , 0
)

K
(1)
n (0, 0)

= (1 + o(1))
J∗β(x

2, 0)

J∗β(0, 0)
.

Then the same is true for the measure 2−βdν1(x) = xβdx with support [0, 1]
(multiplying the measure by a constant does not change the extremal poly-
nomial for the Christoffel functions). Next, consider the measure dν2(x) =
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|x|αdx with support [−1, 1]. For this the extremal polynomial for λ2n(ν2, 0)
is obtained from the extremal polynomial for λn(ν1, 0) with β = (α−1)/2 by
the substitution t → t2 (see Section 3.1, in particular see the last paragraph
in that section), i.e.

K
(2)
2n (t, 0)

K
(2)
2n (0, 0)

=
K

(1)
n

(
t2, 0

)

K
(1)
n (0, 0)

.

Hence, for even integers n

K
(2)
n (t, 0)

K
(2)
n (0, 0)

= (1 + o(1))Jα+1
2
(nt), |t| ≤ A

n
,

where

Jα+1
2
(z) :=

J∗α−1
2

(z2, 0)

J∗α−1
2

(0, 0)
=

J∗α+1
2

(z)

J∗α+1
2

(0)
. (7.1)

Fix a positive number A. According to what we have just seen, for every
even n

∫ A/n

−A/n
Jα+1

2
(nt)2|t|αdt ≤ (1 + o(1))

∫ A/n

−A/n

(
K

(2)
n (t, 0)

K
(2)
n (0, 0)

)2

|t|αdt

≤ (1 + o(1))λn(ν2, 0),

and so for any (even) n

∫ A

−A
Jα+1

2
(x)2|x|αdx = nα+1

∫ A/n

−A/n
Jα+1

2
(nt)2|t|αdt ≤ (1+o(1))nα+1λn (ν2, 0) .

Now if we let here n → ∞ and use the limit (3.3) for the right-hand side,
then we obtain ∫ A

−A
Jα+1

2
(x)2|x|αdx ≤ Lα,

where Lα is from (3.4). Finally, since here A is arbitrary, we can conclude

∫ ∞

−∞
Jα+1

2
(x)2|x|αdx ≤ Lα. (7.2)

7.2 The upper estimate in Theorem 1.1 for one arc

The aim of this section is to construct polynomials that verify the upper
estimate for the Christoffel functions in Theorem 1.1 (which is the same as
in Proposition 7.1) when Γ consists of a single C2-smooth arc, and z0 ∈ Γ is
not an endpoint of that arc. In the next subsection we shall indicate what
to do when Γ has other components, as well.
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Let νΓ be the equilibrium measure of Γ and sΓ the arc measure on Γ.
Since Γ is assumed to be C2-smooth, we have dνΓ(t) = ωΓ(t)dsΓ(t) with an
ωΓ that is continuous and positive away from the endpoints of Γ (see [24,
Proposition 2.2]).

We may assume z0 = 0 and that the real line is the tangent line to Γ
at the origin. By assumption, the measure µ we are dealing with, is, in a
neighborhood of the origin, of the form dµ(z) = w(z)|z|αdsΓ(z) with some
positive and continuous function w(z).

Since Γ is assumed to be C2-smooth, in a neighborhood of the origin
we have the parametrization γ(t) = γ1(t) + iγ2(t), γ1(t) ≡ t, where γ2 is a
twice continuously differentiable function such that γ2(0) = γ′2(0) = 0. In
particular, as t → 0 we have γ2(t) = O(t2), γ′2(t) = O(|t|). We shall also take
an orientation of Γ, and we shall denote z ≺ w if z ∈ Γ precedes w ∈ Γ in
that orientation. We may assume that this orientation is such that around
the origin we have z ≺ w ⇔ ℜz < ℜw.

It is known that, when dealing with |z|α weights on the real line, Bessel
functions of the first kind enter the picture, see [7], [9], [10]. For a given
large n we shall construct the necessary polynomials from two sources: from
points on Γ that follow the pattern of the zeros of the Bessel function Jα+1

2
,

and from points that are obtained from discretizing the equilibrium measure
νΓ. The first type will be used close to the origin (of distance ≤ 1/nτ with
some appropriate τ), while the latter type will be on the rest of Γ. So first
we shall discuss two different divisions of Γ.

7.2.1 Division based on the zeros of Bessel functions

Let β = α+1
2 — it is a positive number because α > −1. It is known that

Jβ , and hence also Jβ from (7.1), has infinitely many positive zeros which
are all simple and tend to infinity, let them be jβ,1 < jβ,2 < . . .. We have
the asymptotic formula (see [28, 15.53])

jβ,k = (k +
β

2
− 1

4
)π + o(1), k → ∞. (7.3)

The negative zeros of Jβ are −jβ,k, and we have the product formula (see
[28, 15.41,(3)])

Jβ(z) =
(z/2)β

Γ(β + 1)

∞∏

k=1

(
1− z2

j2β,k

)
.

Therefore,

Jβ(z) =

∞∏

k=1

(
1− z2

j2β,k

)
. (7.4)

Let a0 = 0, and for k > 0 let ak ∈ Γ be the unique point on Γ such that
0 ≺ ak, and

νΓ(0ak) =
jβ,k
πn

, (7.5)
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where 0ak denotes the arc of Γ that lies in between 0 and ak. For negative
k let similarly ak be the unique number for which ak ≺ 0 and

νΓ(ak0) =
jβ,|k|

πn
. (7.6)

The reader should be aware that these ak and the whole division depends
on n, so a more precise notation would be ak,n for ak, but we shall suppress
the additional parameter n.

This definition makes sense only for finitely many k, say for −k0 < k <
k1, and in view of (7.3) we have k0 + k1 = n + O(1), i.e. there are about
n such ak on Γ. The arcs akak+1 are subarcs of Γ that follow each other
according to ≺, for them

νΓ(ak−1ak) =
jβ,k − jβ,k−1

πn
, k > 0,

νΓ(ak−1ak) =
jβ,k+1 − jβ,k

πn
, k < 0,

and their union is almost the entire Γ: there can be two additional arcs
around the two endpoints with equilibrium measure < (jβ,k0 − jβ,k0−1)/πn
resp. < (jβ,k1 − jβ,k1−1)/πn.

7.2.2 Division based solely on the equilibrium measure

In this subdivision of Γ we follow the procedure in [24, Section 2]. Let
b0b1 ⊂ Γ be the unique arc (at least for large n it is unique) with the
property that 0 ∈ b0b1, νΓ(b0b1) = 1/n, and if ξ0 is the center of mass of
νΓ on b0b1, then ℜξ0 = 0. For k > 1 let bk ∈ Γ be the point on Γ (if
there is one) with the property that 0 ≺ bk and νΓ(b1bk) = (k − 1)/n, and
similarly, for negative k let bk ≺ 0 be the point on Γ with the property
νΓ(bkb0) = |k|/n. This definition makes sense only for finitely many k, say
for −l0 < k < l1. Thus, the arcs bkbk+1, −l0 < k < l1−1, continuously fill Γ0

(in the orientation of Γ0) and they all have equal, 1/n weight with respect
to the equilibrium measure νΓ. It may happen that, with this selection,
around the endpoints of Γ there still remain two “little” arcs, say b−l0b−l0+1

and bl1−1bl1 of νΓ-measure < 1/n. We include also these two small arcs
into our subdivision of Γ, so in this case we divide Γ into n+ 1 arcs bkbk+1,
k = −l0, . . . , l1 − 1.

Let ξk be the center of mass of the measure νΓ on the arc bkbk+1:

ξk =
1

νΓ(bkbk+1)

∫

bkbk+1

u dνΓ(u). (7.7)

Since the length of bkbk+1 is at most C/n (note that ωΓ has a positive lower
bound), and Γ is C2-smooth, it follows that ξk lies close to the arc bkbk+1:

dist(ξk, bkbk+1) ≤
C

n2
(7.8)

34



For the polynomials

Bn(z) =
∏

k 6=0

(z − ξk) (7.9)

it was proven in [24, Propositions 2.4, 2.5] (see also [24, Section 2.2]) that
Bn(z)/Bn(0) are uniformly bounded on Γ:

∣∣∣∣
Bn(z)

Bn(0)

∣∣∣∣ ≤ C0, z ∈ Γ. (7.10)

7.2.3 Construction of the polynomials Cn
Choose a 0 < τ < 1 close to 1 (we shall see later how close it has to be to
1), and for an n define N = Nn = [n3(1−τ)]. We set

Cn(z) =:

Nn∏

k=−Nn, k 6=0

(
1− z

ak

) ∏

|k|>Nn

(
1− z

ξk

)
. (7.11)

Note that the precise range of k in the second factor is −l0 ≤ k < −Nn as
well as Nn < k ≤ l1− 1. Since the number of all ξk is n+1, this polynomial
has degree n, and it takes the value 1 at the origin. This will be the main
factor in the test polynomial that will give the appropriate upper bound
for λn(µ, 0), the other factor will be the fast decreasing polynomial from
Corollary 2.2.

We estimate on Γ the two factors

An(z) :=

Nn∏

k=−Nn, k 6=0

(
1− z

ak

)

and

Bn(z) :=
∏

|k|>Nn

(
1− z

ξk

)

separately. The estimates will be distinctly different for |z| ≤ n−τ and for
|z| > n−τ .

7.2.4 Bounds for An(z) for |z| ≤ n−τ

In what follows, we shall use N instead of Nn (= [n3(1−τ)]).
Consider first

A∗
n(x) :=

N∏

k=1

(
1− (nπωΓ(0)x)

2

j2β,k

)
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(recall that jβ,k are the zeros of the Bessel function Jβ with β = (α+1)/2).
In view of (7.4) we can write for real |x| ≤ n−τ

Jβ(nπωΓ(0)x)

A∗
n(x)

=
∏

k>N

(
1− (nπωΓ(0)x)

2

j2β,k

)
.

Taking into account (7.3), here

nπωΓ(0)x

jβ,k
= O

(
nn−τ

k

)
,

hence the product on the right is

exp

{
O

(
∑

k>N

(
nn−τ

k

)2
)}

= exp

(
O

(
n2(1−τ)

N

))

= exp

(
O

(
1

n(1−τ)

))
= 1 + o(1).

Thus, our first estimate is

A∗
n(x) = (1 + o(1))Jβ(nπωΓ(0)x), |x| ≤ n−τ . (7.12)

Next, we go to a z ∈ Γ with |z| ≤ n−τ . Let x be the real part of z.
Then, for |z| ≤ n−τ , we have (recall that Γ is C2-smooth and the real line
is tangent to Γ)

z = x+O(x2) = x+O(n−2τ ).

We shall need that the ak’s with |k| ≤ N are close to jβ,k/nπωΓ(0). To
prove that, consider the parametrization γ(t) = t+ iγ2(t) of Γ discussed in
the beginning of this section. Then ak = γ(ℜak) = ℜak + O((ℜak)2). By
the definition of the points ak we have for 1 ≤ k ≤ N

jβ,k
πn

= νΓ(0ak) =

∫ ℜak

0
ωΓ(γ(t))|γ′(t)|dt. (7.13)

Now we use that around the origin ωΓ is C1-smooth (see [24, Proposition
2.2]), hence on the right

ωΓ(γ(t)) = ωΓ(0) +O(|γ(t)|) = ωΓ(0) +O(|t|),

while

|γ′(t)| =
√
1 + γ′2(t)

2 =
√
1 +O(t2) = 1 +O(t2),

hence

jβ,k
πn

=

∫ ℜak

0
(ωΓ(0) +O(|t|)) dt = ωΓ(0)ℜak +O((ℜak))2,
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which implies

ℜak =
jβ,k

πnωΓ(0)
+O

(
(jβ,k/n)

2
)
. (7.14)

Therefore, since here jβ,k ≤ Ck (see (7.3)),

ak −
jβ,k

nπωΓ(0)
= (ak −ℜak) + ℜak −

jβ,k
nπωΓ(0)

= O
(
(k/n)2

)
. (7.15)

Let
ρ = (α+ 9)(1− τ), (7.16)

and suppose that
∣∣∣∣x− jβ,k

nπωΓ(0)

∣∣∣∣ ≥
1

n1+ρ
, for all −N ≤ k ≤ N. (7.17)

Then in the product

An(z)

A∗
n(x)

=
N∏

k=−N, k 6=0

1− z/ak
1− nπωΓ(0)x/jβ,k

=
N∏

k=−N, k 6=0

jβ,k − zjβ,k/ak
jβ,k − nπωΓ(0)x

all denominators are ≥ c/nρ. As for the numerators, we have (recall (7.15)
and |ak| ≥ ck/n)

|jβ,k/ak − nπωΓ(0)| = O(k),

and hence, because of z = x+O(x2),

|zjβ,k/ak − nπωΓ(0)x| = O(|z|k + nx2) = O(Nn−τ + nn−2τ )

= O(n3−4τ + n1−2τ ) = O(n3−4τ ).

Therefore, for the individual factors in An(z)/A∗
n(z) we have

jβ,k − zjβ,k/ak
jβ,k − nπωΓ(0)x

= 1 +O(n3−4τnρ),

from which we can conclude

An(z)

A∗
n(x)

=
(
1 +O(n3−4τnρ)

)2N
= exp

(
O(n3−4τnρN)

)

= exp
(
O(n6−7τ+ρ

)
) = exp

(
O(n(15+α)(1−τ)−τ )

)
= 1 + o(1)

provided
(15 + α)(1− τ) < τ. (7.18)

Let Γn be the set of those z ∈ Γ for which |z| ≤ n−τ and (7.17) is true
with x = ℜz:

Γn = {z ∈ Γ : |z| ≤ n−τ , (7.17) is true with x = ℜz}. (7.19)
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So far we have proved (see (7.12) and the preceding estimates)

An(z) = (1 + o(1))Jβ(nπωΓ(0)x), z ∈ Γn. (7.20)

Γn is a subset of the arc Γ ∩∆n−τ (0) of sΓ-measure at most O(Nn−1−ρ) =
O(n2−3τ−ρ), so its relative measure compared to the sΓ-measure of Γ ∩
∆n−τ (0) is at most

O(n2−3τ−ρ+τ ) = O(n2−2τ−ρ) = o(N−2)

because
2− 2τ − ρ = −(α+ 7)(1− τ) < −6(1− τ).

Since An has degree 2N , from the Remez-type inequality in Lemma 2.6 we
can conclude that

sup{|An(z)| : z ∈ Γ ∩∆n−τ (0)} ≤ (1 + o(1)) sup{|An(z)| : z ∈ Γn}.

But Jβ(t) is bounded on the whole real line (see [28, Section 7.21]), therefore
we get from here and from (7.20) that there is a constant C1 such that

|An(z)| ≤ C1 (7.21)

for all z ∈ Γ, |z| ≤ n−τ .

7.2.5 Bounds for Bn(z) for |z| ≤ n−τ

Consider now, for z ∈ Γ, |z| ≤ n−τ , the expression

Bn(z) =
∏

|k|>N

ξk − z

ξk
.

Recall that the smallest and largest indices here (they are k−l0 and kl1)
refer to a ξk that were selected for the two additional intervals around the
endpoints of Γ, hence for them we have

ξk − z

ξk
= 1 +O(|z|) = 1 + o(1), k = −l0, l1 − 1.

The rest of the indices refer to points ξk which were the center of mass on the
arcs bkbk+1 which have νΓ-measure equal to 1/n. We are going to compare
log |z− ξk| with the average of log |z− t| over the arc bkbk+1 with respect to
νΓ:

log |z − ξk| − n

∫

bkbk+1

log |z − t|dνΓ(t) = −n

∫

bkbk+1

log

∣∣∣∣
z − t

z − ξk

∣∣∣∣ dνΓ(t).

Here
z − t

z − ξk
= 1 +

ξk − t

z − ξk
,
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and for t ∈ bkbk+1, in the numerator |ξk − t| ≤ C/n. Since |z| is small (at
most n−τ ) and compared to that |ξk| is large (≥ N/n = n2(1−τ)−τ ), the
second term on the right is small in absolute value, hence

log

∣∣∣∣
z − t

z − ξk

∣∣∣∣ = ℜ log

(
1 +

ξk − t

z − ξk

)
= ℜ ξk − t

z − ξk
+O

(∣∣∣∣
ξk − t

z − ξk

∣∣∣∣
2
)
.

Therefore,

∣∣∣∣∣n
∫

bkbk+1

log

∣∣∣∣
z − t

z − ξk

∣∣∣∣ dνΓ(t)
∣∣∣∣∣ = n

∫

bkbk+1

O

(∣∣∣∣
ξk − t

z − ξk

∣∣∣∣
2
)
dνΓ(t)

= O

(
(1/n)2

(k/n)2

)
= O

(
1

k2

)
,

because the integral

∫

bkbk+1

ℜ ξk − t

z − ξk
dνΓ(t) = ℜ 1

z − ξk

∫

bkbk+1

(ξk − t)dνΓ(t)

vanishes by the choice of ξk.
Hence, if

Hn =
⋃

−l0<k<−N, N<k<l1−2

bkbk+1,

then

log
∏

|k|>N

|ξk − z| − n

∫

Hn

log |z − t|dνΓ(t) = o(1) +O


 ∑

|k|>N

k−2




= o(1) +O(N−1) = o(1).

If we set here z = 0, then we get

log
∏

|k|>N

|ξk| − n

∫

Hn

log |t|dνΓ(t) = o(1).

Therefore,

log |Bn(z)| − n

∫

Hn

log
|z − t|
|t| dνΓ(t) = o(1). (7.22)

As the whole integral

∫

Γ
log

|z − t|
|t| dνΓ(t)

is the value of the logarithmic potential of the equilibrium measures νΓ
in two points of Γ, and since this logarithmic potential is constant on Γ by
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Frostman’s theorem ([16, Theorem 3.3.4]), we obtain that this whole integral
is 0, and so (7.22) is equivalent to

log |Bn(z)|+ n

∫

Γ\Hn

log
|z − t|
|t| dνΓ(t) = o(1). (7.23)

The set Γ \Hn consists of the two small additional arcs b−l0b−l0+1, bl1−1bl1
and of the ”big” arc b−NbN+1. The integral, more precisely, n-times the
integral, on the left over the two small arcs is o(1) (recall that |z| is small,
while on those arcs |t| stays away from 0), and now we estimate the integral
over the ”big” arc, i.e. we consider

n

∫

b−N bN+1

log
|z − t|
|t| dνΓ(t) = n

∫ ℜbN+1

ℜb−N

log
|z − γ(t)|
|γ(t)| ωΓ(t)|γ′(t)|dt. (7.24)

By the definition of the points bk we have b1 = (1/2 + o(1))/n,

N

n
= νΓ(b1bN+1) =

∫ ℜbN+1

ℜb1

ωΓ(γ(t))|γ′(t)|dt

and the same reasoning as in between (7.13) and (7.14) yields from this that

ℜbN+1 =
N + 1

2

nωΓ(0)
+O

(
(N/n)2

)
.

We get similarly

ℜb−N =
−N + 1

2

nωΓ(0)
+O

(
(N/n)2

)
.

If z = γ(ζ) = ζ + iγ2(ζ), then in the integrand in (7.24) we have

ωΓ(γ(t)) = ωΓ(0) +O(|t|), |γ′(t)| = 1 +O(t2),

log |γ(t)| = log(|t|+O(t2)) = log |t|+O(|t|),
and (with γ(t) = t+ iγ2(t))

log |γ(ζ)− γ(t)| = log
√
(ζ − t)2 + (γ2(ζ)− γ2(t))2,

where

γ2(ζ)− γ2(t) = γ′2(ζ)(ζ − t) +O((ζ − t)2) = O(|ζ||ζ − t|) +O((ζ − t)2).

Therefore, since |ζ| ≤ n−τ and |ζ − t| ≤ CN/n, we have

log |γ(ζ)− γ(t)| = log |ζ − t|+O(n−2τ ) +O
(
(N/n)2

)
.

By substituting all these into (7.24) we obtain that with

M1 = (−N + 1/2)/nωΓ(0), M2 = (N + 1/2)/nωΓ(0),
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the expression in (7.24) is equal to

n

∫ M2+O((N/n)2))

M1+O((N/n)2)
log

∣∣∣∣
ζ − t

t

∣∣∣∣ωΓ(0)dt = n

∫ M2

M1

log

∣∣∣∣
ζ − t

t

∣∣∣∣ωΓ(0)dt+O((N/n)2)

plus an error term which is at most

nO
(
(N/n)2

)
+ nO (N/n)O(n−2τ ) + nO

(
(N/n)3

)

= O(n6(1−τ)−1) +O(n3(1−τ)−2τ ) +O(n9(1−τ)−2) = o(1)

if (7.18) is satisfied.
From what we have done so far, it follows, say, for 0 ≤ ζ = ℜz ≤ n−τ ,

that with M = N/nωΓ(0)

log |Bn(z)| = o(1)− nωΓ(0)

∫ M

−M
(log |ζ − t| − log |t|)dt.

But
∫ M

−M
(log |ζ − t| − log |t|)dt =

∫ M

M−ζ
log

u+ ζ

u
du =

∫ M

M−ζ
O

(
ζ

u

)
du

= O(ζ2/M) = O(ζ2n/N),

hence

log |Bn(z)| = O(nζ2(n/N)) + o(1) = O(n2−2τ−3(1−τ)) + o(1)

= O(n−(1−τ)) + o(1) = o(1)

for all z ∈ Γ, |z| ≤ n−τ , provided τ satisfies (7.18). Thus, in this case (i.e.
when |z| ≤ n−τ )

|Bn(z)| = 1 + o(1). (7.25)

All the reasonings so far used the assumption (7.18), which can be sat-
isfied by choosing τ < 1 sufficiently close to 1.

7.2.6 The square integral of Cn for |z| ≤ n−τ

Using (7.20), (7.21) and (7.25) we can now estimate the square integral of
|Cn(z)| against the measure µ over the arc Γ ∩∆n−τ (0). Indeed, let ℜΓn be
the projection of Γn (see (7.19)) onto the real line. Then ℜΓn is an interval
[−αn, βn] minus all the intervals

Ik =

(
jβ,k

nπωΓ(0)
− 1

n1+ρ
,

jβ,k
nπωΓ(0)

+
1

n1+ρ

)
.

Here αn, βn ∼ n−τ , and the |k| in these latter intervals is at most 2n1−τ (see
(7.3)). Therefore (use also that

dµ(z) = w(z)|z|αdsΓ(z) = (1 + o(1))w(0)|x|αdx
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and that |γ′(t)| = 1 + o(1) for t = O(n−τ )),
∫

Γ∩∆n−τ (0)
|Cn(z)|2dµ(z) = (1 + o(1))

∫

ℜΓn

Jβ(nπωΓ(0)x)
2w(0)|x|αdx

+ C

∫

∪kIk

|x|αdx.

In view of (7.2) the first integral is at most

(1 + o(1))w(0)

(nπωΓ(0))α+1
Lα

with the Lα defined in (3.4). The second integral is at most

C
2n1−τ∑

k=1

1

n1+ρ

(
k

n

)α

= O(n(1−τ)(α+1)−α−1−ρ) = o(n−α−1)

because of (7.16).
Combining these we can see that

lim sup
n→∞

nα+1

∫

Γ∩∆n−τ (0)
|Cn(z)|2dµ(z) ≤

w(0)Lα

(πωΓ(0))α+1
. (7.26)

7.2.7 The estimate of Cn(z) for |z| > n−τ

Now let z ∈ Γ, |z| > n−τ , say 0 ≺ z. In view of (7.3) and of the definition
of the points ak and bk,

νΓ(0ak) =
k

n
+O(n−1), νΓ(0bk) =

k

n
+O(n−1), k > 0.

A similar relation holds for negative k. These imply

ak − bk = O(n−1), (7.27)

and so there is an integer T0 (independent of n) such that

bk−T0 ≺ ak ≺ bk+T0 for k > T0

and similarly
b−k−T0 ≺ a−k ≺ b−k+T0 for k > T0.

Since Γ is C2-smooth, this implies the existence of a δ > 0 and a T (actually,
T = T0+1 will suffice) such that if |z| ≤ δ (and z satisfying also the previous
condition that z ∈ Γ, 0 ≺ z)

(i) then z � ak, T < k ≤ N imply

|z − ak| < |z − ξk+T |, |ak| > |ξk−T |
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(ii) then ak ≺ z, T < k ≤ N imply

|z − ak| < |z − ξk−T |, |ak| > |ξk−T |,

(iii) then ak ≺ z, −N ≤ k < −T imply

|z − ak| < |z − ξk−T |, |ak| > |ξk+T |.

For this particular z ∈ Γ, 0 ≺ z, δ > |z| > n−τ we shall compare the value
|Cn(z)| with the value of a modified polynomial |C̃n(z)|, which we obtain as
follows. Remove all factors |1− z/ak| from |Cn(z)| with |k| ≤ T , then

(i’) for z � ak, T < k ≤ N replace the factor |1 − z/ak| = |ak − z|/|ak| in
|Cn(z)| by |z − ξk+T |/|ξk−T |

(ii’) for ak ≺ z, T < k ≤ N replace the factor |ak − z|/|ak| in |Cn(z)| by
|z − ξk−T |/|ξk−T |,

(iii’) for ak ≺ z, −N ≤ k < −T replace the factor |ak − z|/|ak| in |Cn(z)|
by |z − ξk−T |/|ξk+T |.

Removing a factor |1 − z/ak| from |Cn(z)| decreases the absolute value
of the polynomial by at most a factor 1/C2n with some C2 because each
ak, k 6= 0 is ≥ c/n in absolute value. On the other hand, the replacements
in (i’)–(iii’) increase the absolute value of the polynomial at z because of
(i)–(iii). Hence,

|Cn(z)| ≤ C3n
2T |C̃n(z)|.

But |C̃n(z)| has the form

|C̃n(z)| =
∏∗ |z − ξk|∏∗∗ |ξk|

,

where all |z−ξk|, −l0 ≤ k < l1, appear in
∏∗ except at most 5T of them (at

most 2T around z, at most 2T around 0, and at most T around aN ), and
where some |z − ξk| may appear twice, but at most T of them (all around
aN ). Therefore, if z also satisfy |z− ξk| ≥ n−4 for all −l0 ≤ k ≤ l1 − 1, then

∏
∗|z − ξk| ≤




l1−1∏

k=−l0,k 6=0

|z − ξk|


 (diamΓ)T (n4)5T .

A similar reasoning gives that in
∏∗∗ all |ξk| appear except perhaps 2T

of them, and none of the ξk is repeated twice, therefore,

∏
∗∗|ξk| ≥




l1−1∏

k=−l0,k 6=0

|ξk|


 1

(diam(Γ))2T
.
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Therefore,

|Cn(z)| ≤ C3n
2T |C̃n(z)| ≤ C4n

22T
l1−1∏

k=−l0,k 6=0

|z − ξk|
|ξk|

.

But the product on the right is |Bn(z)/Bn(0)| with Bn from (7.9), for which
the bound (7.10) is true. Hence, we can conclude

|Cn(z)| ≤ C5n
22T , (7.28)

under the condition that |z − ξk| ≥ n−4 is true for all k.
This reasoning was made for |z| ≤ δ and 0 ≺ z. The case |z| ≤ δ, z ≺ 0

is completely similar. On the other hand, if z ∈ Γ, |z| > δ, then we use for
all −N ≤ k ≤ N , k 6= 0

|z − ak| = |z − ξk +O(n−1)| = |z − ξk|(1 +O(n−1))|

because all ak, ξk with |k| ≤ N lie of distance ≤ CN/n = O(n3(1−τ)−1) =
o(1) from the origin. Thus, if we replace every |z − ak| in Cn(z), |k| ≤ N ,
k 6= 0 by |z − ξk|, then under this replacement, the value of the polynomial
can decrease by at most a factor (1 + O(n−1))n = O(1). We also want to
replace each |ak| by |ξk|:

N∏

k=1

|ak| ≥
T∏

k=1

|ak|
N∏

k=T+1

|ξk−T | ≥ cn−T
N∏

k=1

|ξk|

because |ak| ≥ |ξk−T | for k > T and |ak| ≥ c/n for all k 6= 0. A similar
estimate holds for negative values, by which we get

|Cn(z)| ≤ Cn2T
∏

k 6=0

|z − ξk|
|ξk|

≤ CC0n
2T ,

since the last product is just |Bn(z)/Bn(0)| for which we can use (7.10).
Therefore, for such values (i.e. for |z| > δ) we can again claim the bound

(7.28).
All in all, we have proven (7.28) on Γ with the exception of those z ∈ Γ

for which there is a ξk such that |z − ξk| < n−4. This exceptional set has
arc measure at most Cn ·n−4 = Cn−3, so an application of Lemma 2.6 gives
that the bound

|Cn(z)| ≤ C5n
22T , (7.29)

holds throughout the whole Γ.
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7.2.8 Completion of the upper estimate for a single arc

Let
Pn(z) = Cn(z)Sn,0,Γ(z),

where Cn(z) is as in (7.11) and Sn,0,Γ(z) is the fast decreasing polynomial
from Corollary 2.2 for K = Γ and for the point 0. This Pn has degree
(1 + o(1))n, its value is 1 at the origin, and |Pn(z)| ≤ |Cn(z)| on Γ. On
Γ ∩∆n−τ (0) we just use |Pn(z)| ≤ |Cn(z)|, while for |z| > n−τ we get from
(7.29) and (2.4) that

|Pn(z)| ≤ 2C5n
22TCτe

−cτnτ0
= o(n−α−1).

As a consequence,

lim sup
n→∞

nα+1

∫

Γ
|Pn(z)|2dµ(z) ≤ lim sup

n→∞
nα+1

∫

Γ∩∆n−τ (0)
|Cn(z)|2dµ(z).

Since the integral on the left is an upper bound for λdeg(Pn)(µ, 0), we obtain
from (7.26) (use also (2.2))

lim sup
n→∞

nα+1λn(µ, 0) ≤
w(0)Lα

(πωΓ(0))α+1
. (7.30)

This proves one half of Proposition 7.1 for a single arc.

7.3 The upper estimate for several components

In this section, we sketch what to do with the preceding reasoning when
Γ may have several components which can be C2 Jordan curves or arcs.
Let Γ0, . . . ,Γk0 be the different components of Γ, and assume that z0 = 0
belongs to Γ0. Assume, that this Γ0 is a Jordan arc, actually this is the
only case we shall use below i.e. when z0 belongs to an arc component of Γ,
and the other components are Jordan curves. On this Γ0 we introduce the
points ak as before, there is no need for them on the other components of Γ
(they played a role above only in a small neighborhood of 0).

On the other hand, on the whole Γ we introduce the analogue of the
points ξk by repeating the process in [24, Section 2]. The outline is as
follows. Let θj = νΓ(Γj), consider the integers nj = [θjn], and divide each

Γj , j > 0, into nj arcs I
j
k each having equal weight θj/nj with respect to νΓ,

i.e. νΓ(I
j
k) = θj/nj . On Γ0 introduce the points bk as before, and the arcs

I0k = bkbk+1. Let ξjk be the center of mass of the arc Ijk with respect to νΓ,
and consider the polynomial

Rn(z) =
∏

j,k

(z − ξjk) (7.31)
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of degree at most n+O(1). Now the polynomial

Bn(z) = Rn(z)/(z − ξ00) (7.32)

will have similar properties as the Bn before, namely (7.10) is true, see [24,
Section 2], in particular see [24, Propositions 2.4 and 2.5].

The rest of the argument in the preceding subsections does not change:
the components of Γl, l ≥ 1 are far from z0 = 0, the corresponding estimates
in the above proof on them is the same as the estimate in the preceding
subsections for |z| > δ.

7.4 The lower estimate in Theorem 1.1 on Jordan arcs

In this section, the assumption is the same as before, namely that Γ consists
of finitely many C2-smooth Jordan arcs and curves, z0 belongs to an arc
component of Γ and µ is given by (5.1). Our aim is to prove the necessary
lower bound for λn(µ, z0).

In this proof we shall closely follow the proof of [24, Theorem 3.1].
Let Ω be the unbounded component of C \ Γ, and denote by gΩ the

Green’s function of Ω with respect to the pole at infinity (see e.g. [16, Sec.
4.4]).

Assume to the contrary, that there are infinitely many n and for each n
a polynomial Qn of degree at most n such that Qn(z0) = 1 and

n1+α

∫
|Qn|2dµ < (1− δ)

w(z0)Lα

(πωΓ(z0))α+1
(7.33)

with some δ > 0, where Lα was defined in (3.4). The strategy will be to show
that this implies the following: there exists another system Γ∗ of piecewise
C2-smooth Jordan curves and an extension of w to Γ∗ such that Γ ⊆ Γ∗, in
a neighborhood ∆0 of z0 we have Γ ∩∆0 = Γ∗ ∩∆0, and for the measure

dµ∗(z) = w(z)|z − z0|αdsΓ∗(z) (7.34)

with support Γ∗

lim inf
n→∞

n1+αλn(µ
∗, z0) <

w(z0)Lα

(πωΓ∗(z0))α+1
. (7.35)

Since this contradicts Proposition 6.1, (7.33) cannot be true.
Let Γ0, . . . ,Γk0 be the connected components of Γ, Γ0 being the one that

contains z0. We shall only consider the case when Γ0 is a Jordan arc, when
Γ0 is a Jordan curve, the argument is similar, see [24, Section 3].

Let n± be the two normals to Γ0 at z0, and let A± = ∂gΩ(z0)/∂n± be
the corresponding normal derivatives of the Green’s function of Ω with pole
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at infinity. Assume, for example, that A+ ≥ A−. Note that A− > 0, see [24,
Section 3].

Let ε > 0 be an arbitrarily small number. For each Γj that is a Jordan
arc, connect the two endpoints of Γj by another C2-smooth Jordan arc Γ′

j

that lies close to Γj so that we obtain a system Γ′ of k0 + 1 Jordan curves
with boundary (∪jΓj)

⋃
(∪jΓ

′
j). Assume also that Γ′

0 is selected so that n+

is the outer normal to Γ′ at z0. This can be done in such a way that (with
Ω′ being the unbounded component of C \ Γ′)

∂gΩ′(z0)

∂n+
>

1

1 + ε

∂gΩ(z0)

∂n+
, (7.36)

see [24, Section 3].
Select a small disk ∆0 about z0 for which Γ′ ∩ ∆0 = Γ ∩ ∆0, and, as

in [24, Section 3], choose a lemniscate σ = {z : |TN (z)| = 1} (with some
polynomial TN of degree equal to some integer N) such that Γ′ lies in the
interior of σ (i.e. in the union of the bounded components of C \ σ) except
for the point z0, where σ and Γ′ touch each other, and (with Ωσ being the
unbounded component of C \ σ)

∂gΩσ(z0)

∂n+
>

1

1 + ε

∂gΩ(z0)

∂n+
. (7.37)

For the Green’s function associated with the outer domain Ωσ of σ we have
(see [24, (3.6)])

∂gΩσ(z0)

∂n+
=

|T ′
N (z0)|
N

. (7.38)

For a small a let σa be the lemniscate σa := {z : |TN (z)| = e−a}.
According to [24, Section 3], if ∆ ⊂ ∆0 is a fixed small neighborhood of z0,
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then for sufficiently small a this σa contains Γ′ \∆ in its interior, while in
∆ the two curves Γ0 and σa intersect in two points U, V , see Figure 4. The
points U and V are connected by the arc UV Γ0 on Γ0 and also by the arc
UV σa on σa (there are actually two such arcs on σa, we take the one lying
in ∆). For each Γj which is a Jordan arc connect the two endpoints of Γj

by a new C2 Jordan arc Γ∗
j going inside Γ′ so that on Γ∗

j we have

gΩ(z) ≤ a2, z ∈ Γ∗
j . (7.39)

In addition, Γ∗
0 can be selected so that in ∆ it intersects σa in two points

U∗, V ∗. Then U∗V ∗
σa is a subarc of UV σa . Let now Γ∗ be the union of Γ,

of the Γ∗
j ’s with j > 0, of Γ∗

0 \ U∗V ∗
Γ∗
0
and of U∗V ∗

σa . This Γ
∗ is the union

of k0 + 1 piecewise smooth Jordan curves.
Now let

m =
[
(1 + ε)7A−n/NA+

]
(7.40)

and consider the polynomial

Pn+mN (z) = Qn(z)TN (z)m (7.41)

on Γ∗ with the Qn from (7.33), and let the measure µ∗ be the measure in
(7.34) on Γ∗. For the polynomials Pn+Nm it was shown in [24, (3.18)-(3.20)]
that on Γ∗ \

(
UV Γ0 ∪ U∗V ∗

σa

)
,

|Pn+mN (z)| ≤ C1n
1/2ena

2−ma, (7.42)

on UV Γ0

|Pn+mN (z)| ≤ |Qn(z)|, (7.43)

and on U∗V ∗
σa

|Pn+mN (z)| ≤ C1n
1/2 exp

(
n(1 + ε)4aA−/|T ′

N (z0)| −ma
)
, (7.44)

where C1 is a fixed constant. Here, by the choice of m in (7.40), and by
(7.37) and (7.38), the last exponent is at most

n

(
(1 + ε)5aA−

A+N
− (1 + ε)6aA−

NA+

)
= −εn

(1 + ε)5aA−

NA+
.

Fix a so small that we have a2 − aA−/NA+ < 0. Then the inequality
|TN (z)| ≤ 1 for z ∈ Γ∗ and the estimates (7.42)–(7.44) yield

λn+mN (µ∗, z0) ≤
∫

|Pn+mN |2dµ∗ ≤
∫

|Qn|2dµ+O(n−α−2).

Hence, by (7.33), for infinitely many n

(n+mN)α+1λn+mN (µ∗, z0) ≤
(
n+mN

n

)α+1

(1− δ)
w(z0)Lα

(πωΓ(z0))α+1
+ o(1).

(7.45)
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Since (see [24, (3.22)–(3.23)])

ωΓ(z0) =
1

2π

(
∂gΩ
∂n+

+
∂gΩ
∂n−

)
=

1

2π
(A+ +A−) (7.46)

and

ωΓ∗(z0) =
1

2π

∂gΩ∗(z0)

∂n+
≤ 1

2π

∂gΩ(z0)

∂n+
=

1

2π
A+, (7.47)

we have

(
n+mN

n

)α+1

(1− δ)
w(z0)Lα

(πωΓ(z0))α+1
≤
(
1 + (1 + ε)7

A−

A+

)α+1

×

(1− δ)
w(z0)Lα

(πωΓ∗(z0))α+1

(
A+

A+ +A−

)α+1

≤
(
1− δ

2

)
w(z0)Lα

(πωΓ∗(z0))α+1

if ε is sufficiently small. Therefore, (7.45) implies

lim inf
n→∞

(n+mN)α+1λn+mN (µ∗, z0) ≤
(
1− δ

2

)
w(z0)Lα

(πωΓ∗(z0))α+1
,

which is impossible according to Proposition 6.1. This contradiction shows
that (7.33) is impossible, and so

lim inf
n→∞

nλn(µ, z0) ≥
w(z0)Lα

(πωΓ(z0))α+1
. (7.48)

follows.

(7.30) and (7.48) prove Proposition 7.1.

8 Proof of Theorem 1.1

Let Γ be as in the theorem, and let Γ = ∪k0
k=0Γ

k be the connected components
of Γ. Let Ω be the unbounded connected component of C\Γ. We may assume
that z0 ∈ Γ0. By assumption, z0 lies on a C2-smooth arc J of ∂Ω, and there
is an open set O such that J = Γ ∩O. Let ∆δ(z0) be a small disk about z0
that lies in O together with its closure. Now there are two possibilities for
J :

Type I only one side of J belongs to Ω,

Type II both sides of J belong to Ω.
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Type I occurs when Γ0 \∆δ(z0) is connected, and Type II occurs when this
is not the case.

Let gΩ(z) be the Green’s function for the domain Ω with pole at infinity,
which we assume to be defined to be 0 outside Ω. The proof of Theorem 1.1
is based on the following propositions.

Proposition 8.1 If J is of Type I, then there is a sequence {Γm} of sets
consisting of disjoint C2-smooth Jordan curves Γk

m, k = 0, 1, . . . , k0, such
that with some positive sequence {εm} tending to 0 we have

(i) z0 ∈ Γ0
m and Γ ∩∆δ(z0) = Γm ∩∆δ(z0),

(ii)
1

1 + εm
ωΓ(z0) ≤ ωΓm(z0) ≤ (1 + εm)ωΓ(z0),

(iii)
max
x∈Γm

gΩ(z) ≤ εm, max
x∈Γ

gΩm(z) ≤ εm.

(iv) The Hausdorff distance of the outer boundaries of Γ and Γm tends to
0 as m → ∞.

Property (i) means that in the δ-neighborhood of z0 the sets Γm and Γ
coincide.

Proposition 8.2 If J is of Type II, then there is a sequence {Γm} of sets
consisting of Γ0

m := J ∩ ∆δ(z0) and of disjoint C2 Jordan curves Γk
m, k =

1, . . . , k0 + 2, lying in the component of Γ0
m such that (i)–(iv) above hold.

Pending the proofs of these propositions we now complete the proof of
Theorem 1.1. It follows from (i) and (iv) that there is a compact set K
that contains Γ and all Γm such that z0 lies on the outer boundary of K,
and in a neighborhood of z0 the outer boundary of K and Γ are the same.
In particular, there is a circle in the unbounded component of C \ K that
contains z0 on its boundary, so we can apply Proposition 2.1 to K and z0.

Fix an m and consider the set Γm either from Proposition 8.1 if J is of
Type I or from Proposition 8.2 if J is of Type II. We define the measure

µm(z) = w(z)|z − z0|αdsΓm(z),

where w is a continuous and positive extension of the original w (that existed
on J) from J ∩∆δ(z0) to Γm. It follows from the Erdős-Turán criterion [19,
Theorem 4.1.1] that this µm is in the Reg class.

For positive integer n let Pn be the extremal polynomial of degree n for
λn(µ, z). Consider the polynomial S4nεm/c2δ2,z0,K(z) from Proposition 2.1
with γ = 2 (here c2 is the constant from Proposition 2.1), and form the
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product Qn(z) = Pn(z)S4nεm/c2δ2,z0,K(z). This is a polynomial of degree at

most n(1 + 4εm/c2δ
2) which takes the value 1 at z0. On Γm ∩ ∆δ(z0) =

Γ ∩∆δ(z0) we have

∫

Γm∩∆δ(z0)
|Qn(z)|2 ≤

∫

Γ∩∆δ(z0)
|Pn(z)|2 ≤ λn(µ, z0). (8.1)

Since the L2(µ)-norms of {Pn} are bounded, it follows from µ ∈ Reg
that there is an nm such that if n ≥ nm, then we have

‖Pn‖Γ ≤ eεmn.

Then, by the Bernstein-Walsh lemma (Lemma 2.10) and by property (iii),
we have for all z ∈ Γm

|Pn(z)| ≤ ‖Pn‖ΓengΩ(z) ≤ e2nεm .

Therefore, (2.3) and Γm ⊆ K imply that for z ∈ Γm \∆δ(z0)

|Qn(z)| ≤ exp(2nεm − [4nεm/c2δ
2]c2δ

2) < e−nεm

if n is sufficiently large. As a consequence, the integral ofQn over Γm\∆δ(z0)
is exponentially small in n, which, combined with (8.1), yields that

λn(1+4εm/c2δ2)(µm, z0) ≤ λn(µ, z0) + o(n−(1+α)).

Multiply here both sides by n(1 + 4εm/c2δ
2)1+α and let n tend to infinity.

If we apply that Theorem 1.1 has already been proven for Γm and for the
measure µm (see Proposition 7.1), we can conclude (use also (2.1))

lim inf
n→∞

nα+1λn(µ, z0) ≥
1

1 + 4εm/c2δ2
w(z0)

(πωΓm(z0))
α+1

Lα

(with the Lα from (3.4)), and an application of property (ii) yields then

lim inf
n→∞

nα+1λn(µ, z0) ≥
1

(1 + εm)|α|+1(1 + 4εm/c2δ2)

w(z0)

(πωΓ(z0))α+1
Lα.

If we reverse the roles of Γ and Γm in this argument, then we can similarly
conclude

lim sup
n→∞

nα+1λn(µ, z0) ≤ (1 + εm)|α|+1(1 + 4εm/c2δ
2)

w(z0)

(πωΓ(z0))2
Lα.

Finally, in these last two relations we can let m → ∞, and as εm → 0, the
limit in Theorem 1.1 follows.

Thus, it is left to prove Propositions 8.1 and 8.2.
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8.1 Proof of Proposition 8.1

Both in this proof and in the next one we shall use that if Ω1 ⊂ Ω2 (say
both with a smooth boundary), and z ∈ Ω1, then gΩ1(z) ≤ gΩ2(z). As a
consequence, if z is a common point on their boundaries, then the normal
derivative of gΩ1 (the normal pointing inside Ω1) is not larger than the
same normal derivative of gΩ2 (because both Green’s functions vanish on the
common boundary). Since, modulo a factor 1/2π, the normal derivatives
yield the equilibrium densities (see formulae (8.2) and (8.4) below), it also
follows that if Γ1 ⊂ Γ2, then on (an arc of) Γ1 the equilibrium density ωΓ2

is at most as least as large as the equilibrium density ωΓ1 (see also [17,
Theorem IV.1.6(e)], according to which the equilibrium measure for Γ1 is
the balayage onto Γ1 of the equilibrium measure of Γ2).

Choose, for each m and 1 ≤ k ≤ k0, C
2-smooth Jordan curves Γk

m so
that they lie in Ω and are of distance < 1/m from Γk. For k = 0 the choice is
somewhat different: let Γ0

m be a C2 Jordan curve that lies in Ω, its distance
from Γ0 is smaller than 1/m, J ∩ ∆δ(z0) ⊂ Γ0

m, and Γ0
m \ J lies in Ω, see

Figure 5. We can select these so that the outer domains Ωm of Γm are
increasing with m. From this construction it is clear that (i) and (iv) are
true. Now C\Ωm (the so called polynomial convex hull of Γm) is a shrinking
sequence of compact sets, the intersection of which is C \ Ω. Therefore, if
cap denotes the logarithmic capacity, then we have (see [16, Theorem 5.1.3])
cap(C \Ωm) → cap(C \Ω). Since {gΩ(z)− gΩm(z)} is a decreasing sequence
of positive harmonic functions (more precisely, this sequence starting from
the term gΩ(z)−gΩl

(z) is harmonic in Ωl) for which (see [16, Theorem 5.2.1])

gΩ(∞)− gΩm(∞) = log
1

cap(C \ Ω)
− 1

cap(C \ Ωm)
→ 0,

we obtain from Harnack’s theorem ([16, Theorem 1.3.9]) that gΩ(z)−gΩm(z) →
0 locally uniformly on compact subsets of Ω. This, and the fact that this
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sequence is defined in Ω ∩∆δ(z0) and has boundary values identically 0 on
∂Ω ∩ ∆δ(z0), then implies (see e.g. [11, Lemma 7.1]) the following: if n
denotes the normal to z0 in the direction of Ω then, as m → ∞,

∂gΩm(z0)

∂n
→ ∂gΩ(z0)

∂n
.

But in the Type I situation we have (see [14, II.(4.1)] combined with [16,
Theorem 4.3.14] or [17, Theorem IV.2.3] and [17, (I.4.8)])

ωΓ(z0) =
1

2π

∂gΩ(z0)

∂n
, (8.2)

and a similar formula is true for ωΓm , hence

ωΓm(z0) → ωΓ(z0), m → ∞.

This takes care of (ii).
Finally, we use the following statement from [22, Theorem 7.1]:

Lemma 8.3 Let S be a continuum. Then the Green’s function g
C\S(z,∞)

is uniformly Hölder 1/2 continuous on S, i.e. if z0 ∈ Ω, then

g
C\S(z0,∞) ≤ Cdist(z0, S)

1/2. (8.3)

Furthermore, here C can be chosen to depend only on the diameter of S.

If we apply this with S = Γk, k = 0, . . . , k0 and use that gΩm(z) ≤ gΩk
m
(z)

for each k (where, of course, Ωk
m is the unbounded component of C \ Γk

m),
then we can conclude the first inequality in (iii). In this case (i.e. when J is
of Type I), the second inequality in (iii) is trivial, since, by the construction,
gΩm is identically 0 on Γ.

8.2 Proof of Proposition 8.2

For an m let J1,m resp. J2,m be the two open subarcs of J of diameter 1/m

that lie outside ∆δ(z0), but which have one endpoint in ∆δ(z0) (see Figure
6) (for large m these exist).

Remove now J1,m and J2,m from Γ. Since we are in the Type II situation,
after this removal the unbounded component of the complement of Γ0 \
(J1,m ∪ J2,m) is Ω ∪ J1,m ∪ J2,m, and Γ0 \ (J1,m ∪ J2,m) splits into three

connected components, one of them being J ∩∆δ(z0). Let Γ0,1,Γ0,2 be the
other two components of Γ0\(J1,m ∪ J2,m). As m → ∞ we have cap(C\(Ω∪
J1,m ∪ J2,m)) → cap(C \Ω), and since now the domains Ω∪ J1,m ∪ J2,m are
shrinking, we can conclude from Harnack’s theorem as before that gΩ(z)−
gΩm(z) → 0 locally uniformly on compact subsets of Ω. This implies again
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that if n± are the two normals to Γ at z0 (note that now both point inside
Ω), then

∂gΩ∪J1,m∪J2,m(z0)

∂n± → ∂gΩ(z0)

∂n

as m → ∞. Since now (see [14, II.(4.1)] or [17, Theorem IV.2.3] and [17,
(I.4.8)])

ωΓ(z0) =
1

2π

(
∂gΩ(z0)

∂n+
+

∂gΩ(z0)

∂n−

)
, (8.4)

we can conclude again that

0 ≤ ωΓ\(J1,m∪J2,m)(z0)− ωΓ(z0) < εm (8.5)

with some εm > 0 that tends to 0 as m → ∞. By selecting a somewhat
larger εm we may also assume

gΩ∪J1,m∪J2,m(z) < εm, z ∈ J1,m ∪ J2,m (8.6)

(apply Lemma 8.3 to S = Γ ∩ ∆δ(z0) and use that gΩ∪J1,m∪J2,m(z) ≤
g
C\(Γ∩∆δ(z0))

(z)).

For the continua Γ0,1,Γ0,2,Γ1,Γ2, . . . ,Γk0 and for a small 0 < θ <
1/m select C2-smooth Jordan curves γ0,1, γ0,2, γ1, γ2, . . . , γk0 that lie in Ω∪
J1,m ∪ J2,m and are of distance < θ from the corresponding continuum. Let

Γm,θ be the union of J ∩ ∆δ(z0) and of these last chosen Jordan curves.
Then Γm,θ consists (for small θ) of k0 + 2 Jordan curves and one Jordan

arc (namely J ∩∆δ(z0)), all of them C2-smooth. According to the proof of
Proposition 8.1 we have

ωΓm,θ
(z0) → ωΓ\(J1,m∪J2,m)(z0)

as θ → 0, therefore, for sufficiently small θ, we have (see (8.5))

−εm < ωΓm,θ
(z0)− ωΓ(z0) < εm.

Thus, if θ is sufficiently small, we have properties (i), (ii) and (iv) in
the proposition for Γm = Γm,θ. The first inequality in (iii) follows exactly
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as at the end of the proof of Proposition 8.1. Finally, the second inequality
in (iii) follows from (8.6) because

gΩm,θ
(z) ≤ gΩ∪J1,m∪J2,m(z),

(where Ωm,θ is the unbounded component of C \ Γm,θ) and gΩm,θ
(z) = 0 if

z ∈ Γ unless z ∈ J1,m ∪ J2,m.
These show that for sufficiently small θ we can select Γm in Proposition

8.2 as Γm,θ.

9 Proof of Theorem 1.2

Let Γ be as in Theorem 1.2, and let Γ = ∪k0
k=0Γk be the connected compo-

nents of Γ, Γ0 being the one that contains z0. We may assume that z0 = 0.
Set

Γ̃ = {z : z2 ∈ Γ}, Γ̃k = {z : z2 ∈ Γk}.
Every Γ̃k is the union of two disjoint continua: Γ̃k = Γ+

k ∪ Γ̃−
k , where Γ̃−

k =

−Γ̃+
k . Set Γ̃± = ∪kΓ̃

±
k . All the Γ̃±

k are disjoint, except when k = 0: then 0

is a common point of Γ±
0 , but except for that point, Γ̃+

0 and Γ̃−
0 are again

disjoint. In general, we shall use the notation H̃ for the set of points z for
which z2 belongs to H, and if H is a continuum, then represent H̃ as the
union of two continua H̃+ ∪ H̃−, where H̃− = −H̃+, and H̃− and H̃+ are
disjoint except perhaps for the point 0 if 0 belongs to H.

Now Γ̃+
0 ∪ Γ̃−

0 is connected, and if J is the C2-smooth arc of Γ with
one endpoint at z0 = 0, then a direct calculation shows that J̃ is a C2-
smooth arc that lies on the outer boundary of Γ̃, and J̃ contains 0 in its
(one-dimensional) interior. Thus, Γ̃ and z0 = 0 satisfy the assumptions in
Theorem 1.1.

For a measure µ defined on Γ let µ̃ be the measure dµ̃(z) = 1
2dµ(z

2), i.e.

if, say, E ⊂ Γ̃+ is a Borel set and E2 = {z2 : z ∈ E}, then

µ̃(E) =
1

2
µ(E2),

and a similar formula holds for E ⊂ Γ−. So µ̃ is an even measure, which
has the same total mass as µ has.

Let νΓ be the equilibrium measure of Γ. We claim that νΓ̃ = ν̃Γ. Indeed,

for any z ∈ Γ̃ we have
∫

log |z − t|dν̃Γ(t) =

∫

Γ̃+

(log |z − t|+ log |z + t|)dν̃Γ(t)

=
1

2

∫

Γ
log |z2 − t2|dνΓ(t2)

=
1

2

∫
log |z2 − u|dνΓ(u) = const
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because the equilibrium potential of νΓ is constant on Γ by Frostman’s the-
orem (see [16, Theorem 3.3.4]), and z2 ∈ Γ. Since the equilibrium measure
νΓ̃ is characterized (among all probability measures on Γ̃) by the fact that
its logarithmic potential is constant on the given set, we can conclude that
ν̃Γ is, indeed, the equilibrium measure of Γ̃ (here we use that all the sets
which we are considering are the unions of finitely many continua, hence the
equilibrium potentials for them are continuous everywhere).

Let γ(t) be a parametrization of J̃+ with γ(0) = 0. Then γ(t)2 is a
parametrization of J , and the two corresponding arc measures are |γ′(t)|dt
and |(γ(t)2)′|dt = 2|γ(t)||γ′(t)|dt, resp. Therefore, since the νΓ̃-measure of
an arc {γ(t) : t1 ≤ t ≤ t2} is the same as half of the νΓ-measure of the arc
{γ(t)2 : t1 ≤ t ≤ t2}, we have

∫ t2

t1

ωΓ̃(γ(t))|γ′(t)|dt =
1

2

∫ t2

t1

ωΓ(γ(t)
2)2|γ(t)||γ′(t)|dt,

from which
ωΓ̃(γ(t)) = ωΓ(γ(t)

2)|γ(t)|, t ∈ J̃+,

follows (recall, that on both sides the ω is the equilibrium density with
respect to the corresponding arc measure). A similar formula holds on
J̃−. But ωΓ̃(z) is continuous and positive at 0 (see e.g. [24, Proposition
2.2]), therefore the preceding formula shows that ωΓ(z) behaves around 0 as
ωΓ̃(0)/

√
|z|, and we have (see (1.5) for the definition of M(Γ, 0))

M(Γ, 0) = lim
z→0

√
|z|ωΓ(z) = ωΓ̃(0). (9.1)

Now the same argument that was used in the proof of Proposition 3.2
(see in particular (3.6)) shows that

λ2n(µ̃, 0) = λn(µ, 0). (9.2)

µ was assumed to be of the form w(z)|z|αdsJ(z) on J , hence, as before,

∫ t2

t1

dµ̃(t) =
1

2

∫ t2

t1

w(γ(t)2)|γ(t)2|α2|γ(t)||γ′(t)|dt,

and since here |γ′(t)|dt is the arc measure on J̃+, we can conclude that on
J̃+ the measure µ̃ has the form dµ̃(z) = w(z2)|z|2α+1dsJ̃(z), and the same

representation holds on J̃−. Therefore, Theorem 1.1 can be applied to the
set Γ̃, to the measure µ̃ and to the point z0 = 0, the only change is that now
α has to be replaced by 2α + 1 when dealing with the measure µ̃. Now we
obtain from (9.2)

lim
n→∞

(2n)2α+2λ2n(µ̃, 0) = lim
n→∞

(2n)2α+2λn(µ, 0),
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and since, according to Theorem 1.1, the limit on the left is

22α+2Γ
(2α+ 2

2

)
Γ
(2α+ 4

2

) w(0)

(πωΓ̃(0))
2α+2

,

we obtain

lim
n→∞

n2α+2λn(µ, 0) = Γ
(
α+ 1

)
Γ
(
α+ 2

) w(0)

(πωΓ̃(0))
2α+2

,

which, in view of (9.1), is the same as (1.6) in Theorem 1.2.
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[5] U. Grenander and G. Szegő, Toeplitz Forms and Their Applications,
University of California Press, Berkeley and Los Angeles, 1958.

[6] B. Gustafsson, M. Putinar, E. Saff, and N. Stylianopoulos, Bergman
polynomials on an archipelago: Estimates, zeros and shape reconstruc-
tion, Advances in Math., 222(2009), 1405–1460.

[7] A.B. Kuijlaars and M. Vanlessen, Universality for Eigenvalue Correla-
tions from the Modified Jacobi Unitary Ensemble, Int. Math. Res. Not.
IMRN, 30(2002), 1575–1600.

[8] D. S. Lubinsky, A new approach to universality involving orthogonal
polynomials, Annals of Math. 170(2009), 915–939.

[9] D. S. Lubinsky, A new approach to universality limits at the edge of the
spectrum, Integrable systems and random matrices, 281-290, Contemp.
Math., 458, Amer. Math. Soc., Providence, RI, 2008.

[10] D. S. Lubinsky, Universality limits at the hard edge of the spectrum
for measures with compact support, Int. Math. Res. Not. IMRN, 2008,
Art. ID rnn 099, 39 pp.

57



[11] B. Nagy and V. Totik, Sharpening of Hilbert’s lemniscate theorem, J.
D’Analyse Math., 96(2005), 191–223.

[12] P. Nevai, Orthogonal Polynomials, Memoirs of the AMS, no. 213,
(1979).
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Stuttgart, 1982.

[22] V. Totik, Christoffel functions on curves and domains, Transactions of
the American Mathematical Society, Vol. 362, Number 4, April 2010,
2053–2087.

[23] V. Totik, The polynomial inverse image method, Approximation The-
ory XIII: San Antonio 2010, Springer Proceedings in Mathematics, M.
Neamtu and L. Schumaker, 345–367.

[24] V. Totik, Asymptotics of Christoffel functions on arcs and curves, Ad-
vances in Mathematics, 252(2014), 114–149.

58
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