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Abstract 

At waterlogged archaeological sites paleolimnological approaches can provide important 

supporting information about conditions and processes of past human life and human impact 

on environments around former settlements. In this study, subfossil Cladocera and 

Chironomidae assemblages were analysed from Neolithic lakeside sediments uncovered at 

Zürich-Parkhaus Opéra (OP), Switzerland. Our main objectives were to assess how periodic 

settlement phases altered lakeshore environments and aquatic invertebrate communities 

during the Neolithic. Aquatic invertebrates occurred in considerable numbers throughout the 

investigated sediment sections, supporting that Neolithic settlements at site OP were 

established above the lake surface and sedimentation occurred mostly under water. Two 

separate aquatic invertebrate communities were distinguished: an impacted community within 

cultural layers and a pre- and post-impacted community in sediments above, below and in 

between cultural layers. Aquatic invertebrates indicated that human impact likely resulted in 

surplus organic material load and nutrient input into the water during the cultural periods. 

This substantially increased biological oxygen demand of the sediments and overall nutrient 

concentrations of the near-shore water and thereby led to hypoxic conditions. Chironomids 

showed generally higher amplitude assemblage changes than cladocerans. This could be 

explained by the very local influence of humans and higher susceptibility of the less mobile 

chironomids to local hypoxia in and above the sediment. After settlements were abandoned 

invertebrate assemblages rapidly recovered to pre-impacted states, suggesting their 

considerable resilience to local human impact. Our results confirm that cladoceran and 

chironomid remains can trace localised environmental changes associated with human 

presence and provide important information for the interpretation of prehistoric human 

activities. 
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1. Introduction 

Lakeside settlements provide a special and important type of archaeological site. Due to their 

location (i.e. at the lakeshore or even on the lake) a wide range of organic remains can be 

preserved under waterlogged conditions (Menotti, 2012; Ismail-Meyer et al., 2013). 

Paleolimnological methods applied to archaeological sites of former lakeshore settlements can 

provide valuable information about the conditions and processes of past human life (an 

archaeological perspective) and about human impact on the environment around ancient 

settlements (an ecological perspective). Various plant remains (pollen, macrofossils, etc.) 

occur generally in high numbers at waterlogged sites, and therefore, palaeobotanical (or 

archaeobotanical) studies have become an integral part of many archaeological projects (e.g. 

Jacomet, 2004; Antolín et al., 2016, 2017a, b). Remains of animals, such as vertebrate bones 

or exoskeleton remains of terrestrial insects (e.g. beetles) are also regularly analysed in 

archaeological studies (O’Brien et al., 2005). However, more recently “death assemblages” of 

aquatic invertebrate groups such as cladocerans or aquatic insects have also received 

increasing attention, especially in waterlogged deposits (e.g. Kenward, 1976; Szeroczyńska, 

2002; Ruiz et al., 2006; Whitehouse et al., 2008).  

Subfossil remains of Cladocera (water fleas), a group of microscopic branchiopod 

crustaceans, preserve in remarkable number in sediments. They provide excellent proxy data; 

since the various cladoceran species and assemblages can indicate climatic changes (e.g. 

Lotter et al., 1997; Duigan and Birks, 2000), changes in trophic status of lakes (e.g. Lotter et 

al., 1998; Jeppesen et al., 2001; Szeroczyńska, 2002) and lake level (e.g. Korhola et al., 2005; 

Nevalainen et al., 2011) or even biological interactions (such as predator-prey relationships; 

see Korhola and Rautio, 2001). Additionally, cladocerans are widely used to describe human-
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environment relationships, mainly from the ecological perspective (e.g. Jeppesen et al., 2001; 

Szeroczyńska, 2002). Further macroscopic aquatic invertebrate taxa are considered more 

sporadically in archaeological studies. For instance, subfossil remains of adult aquatic and 

terrestrial beetles (Coleoptera) and larvae of caddisflies (Trichoptera) were successfully 

included in some archaeological studies to indicate climatic and environmental changes, and 

to provide general information on past human activity and living conditions (e.g. Kenward, 

1976; Carrott and Kenward, 2001; Greenwood et al., 2006; Whitehouse et al., 2008; Schäfer, 

2017). However, subfossil remains of other aquatic insect groups, such as the head capsules of 

larvae of the Chironomidae (“non-biting midges”, Diptera), are also abundant in lake 

sediments and probably in several waterlogged deposits. Nevertheless their potential in 

archaeological studies has been recognized only recently (O’Brien et al., 2005; Ruiz et al., 

2006; Whitehouse et al., 2008; Taylor et al., 2013, 2017). In undisturbed small lakes, 

chironomids are excellent and sensitive indicators of air and water temperature changes (e.g. 

Eggermont and Heiri, 2012). However, the group also strongly responds to changes in lake 

trophic state (e.g. Saether, 1979; Brooks et al., 2001; Luoto, 2011), water depth (e.g. Engels 

and Cwynar, 2011; Velle et al., 2012), dissolved oxygen concentration (e.g. Luoto and 

Salonen, 2010; Stewart et al., 2013), and availability of different substrates and aquatic 

macrophytes for colonization (e.g. Brodersen et al., 2001; Langdon et al., 2010). Their 

ecological sensitivity with the short generation times and relatively good dispersal ability of 

the winged adults provides the basis for the broad application of larval assemblages of 

chironomids in recent ecological and paleoecological studies as environmental indicators (e.g. 

Brodersen and Quinlan, 2006; Langdon et al., 2010). 

In 2010, detailed excavations of the remains of Neolithic lakeside settlements were 

conducted, at a site discovered at the shore of Lake Zürich in the city of Zürich, Switzerland 

(site Zürich-Parkhaus Opéra, hereafter OP, Fig. 1). An area of approximately 3000 m
2
 was 

excavated and six layers of settlement deposits (cultural layers) with varying degrees of 
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organic preservation were documented. The oldest settlement on the site had produced a 

relatively indistinct cultural layer (Layer 12) with no organic preservation except for some 

pieces of wood. Two cultural layers (Layers 13 and 14) showed a high degree of organic 

preservation in the whole or a large part of the excavation area respectively, and contained 

large quantities of waterlogged organic material. The three youngest layers (Layers 15–17) 

showed little or partial organic preservation (Bleicher et al., 2018; Fig. 2). During the 

excavation, rich assemblages of more than ten thousand finds of different materials (ceramics, 

silex, wooden artefacts, bone and antler objects, textiles, etc.) were recovered (see Harb and 

Bleicher, 2016 Bleicher et al., 2018).  

Due to the high abundance of timber, dating of the cultural layers concentrated on 

dendrochronology, as this method gives the most precise dates. A detailed 

dendrochronological study of the pile field and stratified timber allowed not only dating of the 

cultural layers (see below) but also the identification of settlement phases and individual 

buildings within these along with their actual building dates and times of use (Bleicher and 

Harb, 2018). 

During the excavation numerous sediment samples were obtained, both as large volume bulk 

samples (Antolín et al., 2016) and as monoliths. Archaeobotanical analysis of sediments from 

such waterlogged prehistoric lakeside sites has a long tradition in Zürich and so detailed 

information was available on the Neolithic economy and ecology from the surrounding sites 

of Zürich-Mozartstrasse, Kleiner Hafner, Pressehaus and KanSan (Schibler et al., 1997; Fig. 

1). However, the aquatic environment and its mutual relation with local human settlements 

was only examined marginally in prior excavations (Jacomet and Ruoff, 1985). 

In the context of an interdisciplinary project (including archaeological, sedimentological, 

micromorphological and palaeoecological analyses; Bleicher and Harb, 2015; Harb and 

Bleicher, 2016; Bleicher and Harb, 2017) sediment samples from OP were analysed. Detailed 

results of this study, including the invertebrate identifications and some initial ecological 
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interpretations and numerical analyses, are provided in the published report of the OP project 

(Bleicher and Harb, 2017, Heiri et al., 2017, in German). Here we summarize the results of 

the analyses of chitinous aquatic invertebrate remains from these sediments, including 

remains of cladocerans, chironomids and other macroinvertebrates, provide a detailed 

ecological and numerical analyses of the results and discuss the broader palaeoecological and 

archaeological implications of these analyses. We aim to assess the extent to which these 

invertebrate assemblages allow the reconstruction of the environment at the Neolithic 

settlements, particularly whether the settlement was built on dry land or above open water, 

which has been a subject of debate in archaeology for decades (e.g. Bleicher and Schubert, 

2015; Dieckmann et al., 2006). Furthermore, we assess whether invertebrate assemblages 

allow the reconstruction of past changes in the local lacustrine environment at the shore of 

Lake Zürich during the settlement phases (between 3234 and 2727 BC in the Neolithic; 

Bleicher and Harb, 2015; Bleicher and Harb, 2018). From the ecological perspective, an 

important characteristic of our study is that the settlement phases were not persistent but were 

periodically interrupted by periods without evidence for on-site activities within the 

settlement area. This in turn provides the opportunity to assess the repeated impact of 

Neolithic human activity (defined by archaeological finds, sediment lithology and human 

indicator pollen; see Bleicher et al., 2018) on the aquatic environment and its recovery from 

these influences at the same site. The dendrochronologically dated settlement phases provided 

precise chronological constraints for phases of human impact and recovery. The repetitive 

responses of the biota to human presence can also provide information about the life of 

Neolithic lake-side civilization as detected by aquatic indicator groups. In this paper our main 

objectives were (1) to assess periodic anthropogenic alterations of the lakeshore environment 

and the aquatic ecosystem during the Neolithic, utilizing the indicator value of aquatic 

invertebrates; (2) to compare the response of various aquatic invertebrate groups (mainly 

cladocerans and chironomids) at the studied near-shore environments to prehistoric human 
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activity; and (3) to constrain the extent and the rate at which invertebrate assemblages 

recovered from settlement phases. 

 

2. Methods 

2.1. Study site and sampling design 

From various places within the excavated area of OP several sediment monoliths were 

obtained (henceforth referred to as sediment columns). These sediment columns were used for 

high-resolution analyses of fossil assemblages of cladocerans, and chironomids (and other 

aquatic invertebrates). Pollen were analysed in these records as well (Gobet et al. 2017). 

Moreover, a 13.6 m long sediment core (“lake core”; OP 11) was obtained directly outside of 

the former settlement area using an UWITEC coring platform. The location of the lake core is 

on dry land at present. On the lake core chironomid (and other aquatic invertebrates) remains 

were analysed and pollen were analysed as well by Gobet et al. (2017). In this paper, we 

present data from five cultural layers from the Neolithic (dated between 3234 and 2727 BC) 

situated in the sediment columns and in the lake core (Fig. 2 and 3). The cultural layers 

(defined by archaeological finds, sediment lithology and human indicator pollen; see Bleicher 

et al., 2018) showed various degrees of organic preservation and their distribution varied also 

within the excavating area (Bleicher and Harb, 2015; Bleicher et al., 2018). The cultural 

layers were clearly identifiable in the studied sediment cores (Fig. 2): visually, they were 

mainly made up of brown peat-like coarse material and they were much darker than the 

neighbouring fine-grained pale lake marl deposits (or non-cultural layers). Lithologically, the 

cultural layers consisted mostly of organic detritus regularly containing loam structures, 

stones, sand, ash and a large number of archaeological finds (for more details see Bleicher and 

Harb, 2015; Bleicher et al., 2018). Cultural layers could also be clearly separated based on the 

elevated abundance of pollen types indicative for human activity (e.g. Allium, Ranunculus, 

Cerealia, Papaver rhoeas and Plantago lanceolata pollen) compared with under- and 
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overlying non-cultural layers (see Gobet et al., 2017). Sediment composition, preservation of 

organic structures, spatial extent and thickness of the cultural layers varied in the studied area. 

For analyses of chitinous invertebrate remains, particularly of Cladocera and Chironomidae, 

five sediment columns were sampled and investigated within the area of the former Neolithic 

settlement (OP 5060; OP 8584; OP 9624; OP 10432; OP 13184; Fig. 3). Additionally, the 

lake core (OP 11) was examined for chironomids and other macroinvertebrate remains, 

whereas it was not investigated for cladocerans.  

The excavation site was extensively studied by means of dendrochronology which provided a 

chronological framework for the present study. In total, more than 2800 wood samples were 

measured and finally 2121 samples were dated. This revealed eight Late and Final Neolithic 

settlement phases between 3234 and 2727 BC (Bleicher and Burger, 2015; Bleicher and Harb, 

2018). The layers were dated mainly dendrochronologically based on the stratigraphic 

position of horizontal pieces of timber and to a lesser extent by find typology and radiocarbon 

measurements of clearly stratified material (Bleicher and Harb 2018). Therefore, the 

settlement deposits are precisely dated whereas the age of the lake sediments between them is 

constrained based on the age of the cultural layers (Fig. 2 and 3). 

In contrast, the chronological framework of the lake core (OP 11) was based on 10 AMS 

radiocarbon dates on terrestrial plant macrofossils, providing an independent chronology 

(Gobet et al., 2017). The radiocarbon ages were calibrated into calendar years before Christ 

(BC) using CALIB 6.1.0 and the age-depth relationship was assessed using a linear model 

that excludes the two youngest radiocarbon dates because they seemed to be too young 

(Gobet et al., 2017).  
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Figure 1. Location of Zürich within Switzerland and location of the Zürich-Parkhaus Opéra 

excavation area among other prehistoric lakeside settlements within Zürich. 
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Figure 2. Two examples of profile views of the cultural layers and the variability of their 

appearance and thickness (A-B); and the idealised sediment stratigraphy of Zürich-Parkhaus 

Opéra (C). 
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Figure 3. Location of the investigated sediment columns (OP 5060, OP 8584, OP 9624, OP 

10432, OP 13184) within the settlement area of Zürich-Parkhaus Opéra and of the lake core 

(OP 11) (A); and position of the cultural layers (13: 3176–3153 BC; 14: 3090 BC; 15: 3060 

BC; 16: 2885–2877 BC; 17: 2754–2749 and 2734–2727 BC) within the sediment columns 

(B). 

 

The oldest cultural layer, Layer 12, was associated with the first settlement phase from the 

Late Neolithic (dendrochronologically dated to 3234–3226 BC; Bleicher and Harb, 2015) and 

apparently did not produce any preserved organic remains except for dispersed timber so it 

was not visible in our studied sediment columns. Layer 13, dendrochronologically dated 

between 3176 and 3153 BC (associated with the third settlement phase), showed the best 

organic preservation and was documented throughout the entire excavated area (Fig. 2 and 3). 
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Therefore, several studies had already been performed concentrating mainly on this layer (e.g. 

Antolín et al., 2016, 2017a, b; Heiss et al., 2017 on archaeobotanical remains). Layer 14, 

dendrochronologically dated to 3090 BC, was most likely associated with the fourth 

settlement phase and showed good organic preservation (similar to Layer 13) in large parts of 

the site. It appeared in most of our studied sediment columns (OP 8584, OP 9624, OP 10432 

and OP 13184; Fig. 3). Layer 15, dendrochronologically dated to 3060 BC, was associated 

with the fifth settlement phase. It showed poor organic preservation of the anthropogenic 

material and was apparent only in one of the investigated sediment cores (in OP 10432; Fig. 

3). The two youngest cultural layers associated with settlement phase six (Layer 16; 

dendrochronologically dated to 2885–2877 BC) and settlement phases seven and eight (Layer 

17; dendrochronologically dated to 2754–2749 and 2734–2727 BC) showed similarly poor 

preservation of anthropogenic remains. These layers were also present in only some sediment 

columns in this study. Layer 16 was only visible in sediment columns OP 13184, while layer 

17 was only documented in OP 8584 (Fig. 3). More detailed information on the cultural layers 

in the site Zürich-Parkhaus Opéra is available in Bleicher et al. (2018). 

 

2.2. Cladocera analysis 

For Cladocera altogether 80 sediment sub-samples of 2 cm
3
 volume each were investigated 

from the five sediment columns located within the area of the Neolithic settlement (OP 5060; 

OP 8584; OP 9624; OP 10432; OP 13184).  

Sub-samples were treated with 10% KOH for 30 minutes at 70°C in a water bath and sieved 

through a 45 µm mesh. Samples containing significant amounts of (mainly plant) debris were 

first sieved through 1 mm mesh, and the large particle fractions were checked for Cladocera 

remains. Sieved samples were then treated with 5% HCl for 15 minutes at room temperature, 

sieved through 45 µm mesh again and transferred to test tubes containing 1 Lycopodium 

tablet, centrifuged for 5 minutes and the supernatant was then decanted. Before use the 
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Lycopodium tablets were dissolved in 10% HCl, the samples were then centrifuged and the 

fluid above the Lycopodium spores was decanted. 

After the chemical treatment 15–30 drops of glycerol-safranin dye were added, the samples 

were mixed well and glycerol was added. Next, samples were warmed to 70°C in a water 

bath, centrifuged for 5 minutes and the supernatant was then decanted. The samples were 

mixed and used to produce semi-permanent microscope slides in glycerol, sealed with wax or 

nail varnish.  

Identification of Cladocera remains followed Frey (1958, 1959, 1960, 1993), Flössner (2000) 

and Szeroczyńska and Sarmaja-Korjonen (2007).  

 

2.3. Analysis of chironomids and other macroinvertebrate remains  

For chironomid analysis altogether 103 sub-samples of 3–5 cm
3
 volume each from the 

sediment columns in the area of the Neolithic settlement (the same samples as for the 

cladoceran analysis) as well as of 1.5–2 cm
3
 volume each from the lake core were 

investigated.  

Sub-samples were treated with 10% KOH at room temperature for 2 hours. Afterwards the 

sediment was sieved with a 100 µm mesh. Some of the samples were also shortly treated with 

10% HCl (until no gas bubbles formed anymore) and sieved again with a 100 µm mesh sieve.  

Chironomid larval head capsules were picked from a Bogorov-counting tray (Gannon, 1971) 

under stereomicroscope at 40x magnification. Larval head capsules were mounted on 

microscope slides in Euparal
®
 mounting medium for microscopic identification. Identification 

of chironomid head capsules followed Wiederholm (1983), Rieradevall and Brooks (2001), 

and Brooks et al. (2007). Generally, 26–33 chironomid head capsules were identified per cm
3
 

with an overall count of 135–140 head capsules per sample. 

We qualitatively evaluated the preservation state of the subfossil chironomid remains in each 

sample based on three different categories: brittleness, evidence for microbial degradation and 
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folding, respectively. Each sample was assigned scores between 0 and 5 for these categories, 

with 5 indicating the poorest preservation state. Our aim with this description was to 

determine possible differences in the preservation conditions of the chironomid remains 

between the cultural and non-cultural layers. 

Remains of other macroscopic invertebrates such as mandibles of Ephemeroptera (mayflies), 

Coleoptera (beetles), Sialis (Sialidae, alderflies), Trichoptera (caddisflies) and Chaoborus 

(Chaoboridae, phantom midges); resting stages of Bryozoa (moss animals) and larval 

fragments of Sialis, Trichoptera (caddisflies) and Dashyelea (Ceratopogonidae, biting midges) 

were also sorted from the sediment sub-samples used for chironomid analysis, and identified 

generally to coarser taxonomic level (ranging from genus to order).  

 

2.4. Numerical analysis 

Stratigraphic patterns of cladoceran, chironomid and other macroinvertebrate remains with the 

preservation scores of chironomid remains were plotted for each sediment record separately 

using the program psimpoll 4.27 (Bennett, 2007; see Supplementary material and Heiri et al., 

2017). 

Other invertebrate remains occurred in relatively small numbers in every sediment column 

(relative to cladoceran and chironomid remains) and they were identified at coarser taxonomic 

resolution than the chironomid and cladoceran remains. Therefore, other invertebrates were 

not included in the statistical analyses, however, they provide important supplementary 

information about past ecosystem changes at the study site. 

To investigate whether cultural and non-cultural layers (defined by archaeological finds, 

sediment lithology and human indicator pollen; Bleicher and Harb, 2015; Gobet et al., 2017; 

Bleicher et al., 2018) could be separated based on cladoceran and chironomid remains, one-

way ANOSIM (analysis of similarities) was applied by using the PAST software (Hammer et 

al., 2001). One-way ANOSIM is based on comparing distances (using Euclidean distances) 
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between a priori defined groups and significance is calculated by permutation of group 

membership (9999 permutations). All pairs of groups (i.e. cultural versus non-cultural layers 

and between individual cultural layers) were compared to detect significant (p<0.05) 

differences using a post hoc test (Table 1A–B).  

To summarize major changes in assemblages of Cladocera and Chironomidae, detrended 

correspondence analysis (DCA) was performed for the individual sediment cores using 

CANOCO version 4.5 (ter Braak and Šmilauer, 1998). Before the ordinations, percentage data 

were square root transformed and rare taxa were down-weighted. DCA axes were rescaled 

where it was necessary by multiplying by –1 and subtracting the minimum value of the 

transformed axis scores to ensure high DCA axes scores represented impacted conditions in 

all DCAs. Apart from the ordinations for each individual sediment column, two further DCAs 

were calculated including all data (all sediment columns combined) of Cladocera and 

Chironomidae assemblages, respectively. 

Significant indicator taxa of Cladocera and Chironomidae for cultural and non-cultural layers 

were identified with the indicator value method using IndVal 2.0 software (Dufrêne and 

Legendre, 1997). This method calculates an indicator value (IV) that may range between 0 

and 100 for each taxon for pre-defined groups of samples and tests the significance by Monte 

Carlo permutations (9999 permutations). The indicator taxa are described as the most 

characteristic taxa of a priori defined groups of samples, which are mainly found in a certain 

group (specificity) and usually or even always present in all samples belonging to that group 

(fidelity). IV index values can reach the maximum value of 100 when a taxon is found only in 

a certain group of samples and occurs in all samples of that group. The a priori defined 

groups of samples in our analyses were the cultural and non-cultural samples within the 

sediment columns. Two IndVal analyses were run including all five sediment columns 

situated within the settlement area: one for the cladoceran and one for the chironomid data.  
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Finally, in order to assess possible water quality changes, saprobity index values were 

calculated based on the chironomid data. Based on the saprobic values of taxa occurring in a 

sample, we calculated the saprobity index (SI) based on tabulated values in Moog (2002). 

These saprobic values are defined for individual chironomid species, whereas identification of 

fossil chironomids is typically possible only to morphotype or genus level. To account for this 

we worked with mean saprobic index scores for higher order taxa based on the index values 

for all species belonging to this morphotype (Moog 2002; see Suppl. table 1). We excluded 

strictly rheophilic taxa presented in Moog (2002) from these calculations, since our samples 

originated from lentic environment and the role of flowing water was clearly minor. Saprobic 

index values for individual samples were calculated as mean values of the chironomid taxa in 

this sample, weighted by their abundance (for more details about the method and the 

calculation see Moog, 2002). 

 

3. Results 

3.1. Cladocera assemblages 

Altogether more than 8600 Cladocera remains belonging to 36 taxa were identified from the 

five sediment columns located within the Neolithic settlement. Half of the identified 

cladoceran taxa (19) reached at least 1% relative abundance in the assemblage. The 

cladoceran assemblages were mainly characterized by the dominance of the Chydoridae 

family. However, taxa belonging to the families of Bosminidae, Daphniidae, Sididae and 

Macrothricidae were also present at low numbers. Accordingly, most of the identified 

cladoceran taxa are typically associated with benthic habitats, while planktonic taxa occurred 

in small proportion and reached only 0–13% in the assemblage. 

 

3.2. Assemblages of Chironomidae and other macroinvertebrate remains 
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Altogether more than 14,800 chironomid head capsules belonging to 66 Chironomidae taxa 

and three subfamilies (Tanypodinae, Orthocladiinae and Chironominae) were identified from 

six sediment columns. Most of the chironomid taxa occurred in all sediment records, although 

only 21 taxa reached at least 1% relative abundance in the assemblages. In general, the 

subfamily Chironominae occurred at the highest overall abundance, while Orthocladiinae and 

Tanypodinae occurred at lower abundance. Subfossil chironomid head capsules showed 

evidence of fragmentation, decay and folding, probably due to the littoral position of the 

sediment columns. However, their overall preservation state was still generally good (index 

scores 0 to 2 units) and allowed reliable identification of the head capsules. Preservation state 

was noticeably weaker in the cultural layers, possibly due to compaction of these more 

organic-rich layers which promoted fragmentation and folding (see Suppl. figures 1B–6A). 

Remains of other macroinvertebrate groups occurred consistently in all the sediment cores 

and altogether more than 1700 such remains were identified. The most abundant ones were 

mouthparts of larvae of mayflies (Ephemeroptera) and caddisflies (Trichoptera), but remains 

of several other invertebrate groups (e.g. Rhabdocoela, Bryozoa, Ceratopogonidae, 

Chaoboridae) also occurred regularly in the samples. 

 

3.3. Differences between cultural and non-cultural layers 

Both in the cladoceran and chironomid assemblages no significant differences were found 

between the individual cultural layers in most of the sediment columns, while most of the 

cultural layers differed significantly from non-cultural sediment sections (Table 1A–B). 

However, there are some exceptions: Layer 17 (in column OP 8584) differed significantly 

from Layers 13 and 14 but did not differ from non-cultural layers based on cladoceran and 

chironomid data; Layer 16 (in column OP 13184) significantly differed from Layer 13 based 

on chironomid data. In the lake core (OP 11) we did not find any significant difference 

between cultural and non-cultural layers (Table 1A–B). 
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Table 1A. Results of dissimilarity analyses between cultural and non-cultural layers and 

between the individual cultural layers identified based on one-way ANOSIM (R = rate of 

dissimilarity between groups, p = significance level, NS = non-significant) using Cladocera 

data, respectively, in the individual sediment columns of Zürich-Parkhaus Opéra (OP 5060, 

OP 8584, OP 9624, OP 10432, OP 13184). 

 

 

Table 1B. Results of dissimilarity analyses between cultural and non-cultural layers and 

between the individual cultural layers identified based on one-way ANOSIM (R = rate of 

dissimilarity between groups, p = significance level, NS = non-significant) using 

Chironomidae data, respectively, in the individual sediment columns of Zürich-Parkhaus 

Opéra (OP 5060, OP 8584, OP 9624, OP 10432, OP 13184) and in the lake core (OP 11). 
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3.4. Compositional changes associated with the cultural layers 

Cladoceran assemblages showed distinct changes in the cultural layers. Layer 13 and 16 were 

marked by increased relative abundance of Alona rectangula, Pleuroxus trigonellus, 

Pleuroxus unicatus and Graptoleberis testudinaria (reaching 24–37% and 34% of total 

cladoceran abundance in Layer 13 and 16, respectively; Suppl. figures 1–5A). In Layer 14, A. 

rectangula, Alona quadrangularis and Paralona pigra increased in relative abundance with 

Chydorus sphaericus and P. trigonellus (reaching 20–41% of total cladoceran abundance; 

Suppl. figures 2–5A). Finally, in Layers 15 and 17 Alona affinis and Paralona pigra reached 

high relative abundance with A. quadrangularis, Disparalona rostrata and Pleuroxus 

truncatus reaching 24% relative abundances in both layers (Suppl. figures 2A and 4A). Based 

on IndVal analysis, four cladoceran taxa can be considered significant indicators for the 

cultural layers: P. trigonellus, G. testudinaria, P. unicatus and D. rostrata. Additionally, A. 
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rectangula and A. quadrangularis also characterized cultural layers with high IV, although 

they were not identified as significant indicators (Table 2). 

 

Table 2. Indicator values (IndVal) and significance level (p; NS= non–significant result) for 

Cladocera and Chironomidae taxa, respectively, in cultural and non-cultural layers of the 

sediment columns of Zürich-Parkhaus Opéra (OP 5060, OP 8584, OP 9624, OP 10432, OP 

13184). 

 

 

At subfamily/tribe level, chironomid assemblages were dominated by the tribe Chironomini 

(belonging to the subfamily Chironominae) in all cultural layers and this group reached 

distinctly higher relative abundances (e.g. in Layers 13 and 14) than in the lake marl deposits 

(non-cultural layers) within the Neolithic settlement area. Contrarily, in the non-cultural 

layers overlying the cultural layers, relative abundance of Chironomini mostly dropped to 

lower values, while Tanytarsini, and subfamilies of Orthocladiinae and Tanypodinae 

increased (Fig. 4). 
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Figure 4. Relative abundance changes of chironomid subfamilies (Chironominae (including 

Tanytarsini and Chironomini tribes), Tanypodinae and Orthocladiinae) in cultural layers (13: 

3176–3153 BC; 14: 3090 BC; 15: 3060 BC; 16: 2885–2877 BC; 17: 2754–2749 and 2734–

2727 BC) in the individual sediment columns located in the settlement area of Zürich-

Parkhaus Opéra (OP 5060, OP 8584, OP 9624, OP 10432, OP 13184) and in the lake core 

(OP 11). 

 

 

At species group and genus level, minor differences in dominant chironomid taxa among the 

individual cultural layers were apparent. In Layers 13, 14 and 15 Chironomus plumosus-, 

Phaenopsectra flavipes-, Microtendipes pedellus- and Polypedilum nubeculosum-type 

dominated. Moreover, Dicrotendipes notatus-, Polypedilum sordens- and Cricotopus 

intersectus-type reached high relative abundance within the settlement area (reaching 50–

62%, 29–54% and 40% of total chironomid abundance in Layers 13, 14 and 15, respectively; 

Suppl. figures 1–6B). In Layer 16 P. nubeculosum-, M. pedellus- and P. flavipes-type 
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dominated (reaching 25% of the total chironomid abundance; Suppl. figure. 5B). Finally, in 

Layer 17 next to C. plumosus- and P. sordens-type, only C. anthracinus- and C. intersectus-

type dominated and these taxa reached 17–24% of the total chironomid abundance (Suppl. 

figure 3B). Indicator value analysis showed a very consistent picture in the Neolithic 

settlement area, where P. flavipes-, P. nubeculosum-, M. pedellus-, C. plumosus-, D. notatus- 

and P. sordens-type were significant indicators for the cultural layers, while C. intersectus- 

and C. anthracinus-type also had high IV for the cultural layers but were not identified as 

significant indicators. In the lake core, however, no significant indicator taxa were identified 

for the cultural layers (Table 2).  

Finally, remains of other macroinvertebrates showed a similar pattern in most cultural layers 

and sediment columns with highest absolute numbers of caddisfly remains (Trichoptera). 

Exceptions are lake core and Layer 17 in OP 8584, where remains of turbellarian flatworms 

(Rhabdocoela) became dominant (Suppl. figures 1–6B). Next to caddisfly larvae, mandibles 

of phantom midge larvae (Chaoborus spp.) reached relatively high number in Layer 16 in OP 

10432 (Suppl. figure 5B). 

 

3.5. Assemblage changes associated with the cultural layers 

In general, cladoceran and chironomid assemblage changes were clearly visible on the first 

DCA axes for most cultural layers in most sediment columns. The amplitude of these changes 

(based on mean DCA axis 1 scores changes), however, varied between invertebrate groups, 

between sediment columns and between the cultural layers as well (Fig. 5).  
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Figure 5. DCA axis 1 score changes of cladocerans (grey line) and chironomids (black line) 

and chironomid-inferred saprobic index changes in cultural layers (13: 3176–3153 BC; 14: 

3090 BC; 15: 3060 BC; 16: 2885–2877 BC; 17: 2754–2749 and 2734–2727 BC) in the 

individual sediment columns located in the settlement area of Zürich-Parkhaus Opéra (OP 

5060, OP 8584, OP 9624, OP 10432, OP 13184) and in the lake core (OP 11). 

 

 

Generally, cladoceran and chironomid assemblage changes were most pronounced in Layers 

13 and 14. However, chironomids always showed higher amplitude change than cladocerans 

(Fig. 5).  

The comparison of assemblage changes between sediment columns was possible only for 

Layers 13 and 14, because only these two layers were present in most sediment records. For 
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cladocerans, differences between the records were not remarkable for Layer 13 (varied 

between ca. 0.46–0.64 SD units; Fig. 5). For Layer 14 the strongest cladoceran assemblage 

changes were noted in OP 13184 (by ca. 0.54 SD units), followed by OP 9624 (by ca. 0.33 

SD units) and OP 10432 (by ca. 0.31 SD units) and finally by OP 8584 (by ca. 0.14 SD units; 

Fig. 5). Based on chironomids, changes in Layer 13 were strongest in the most landward 

positioned OP 5060 (by ca. 1.29 SD units) and OP 9624 (by ca. 1.05 SD units), followed by 

OP 8584 (by ca. 0.85 SD units), OP 13184 (by ca. 0.81 SD units) and OP 10432 (by ca. 0.77 

SD units), and finally by the lake core (OP 11; by ca. 0.33 SD units) (Fig. 5). 

Overall DCA analyses including all cladoceran and chironomid assemblages from all columns 

together showed a gradient length <3 SD units (1.06 SD units for cladoceran and 2.26 SD 

units for chironomid data, respectively). The first two DCA axes explained 27.3% and 24.1% 

of total variance based on cladoceran and chironomid data, respectively. Overall DCAs 

showed clear division of assemblages from cultural and non-cultural (or lake marl) samples 

for both cladoceran and chironomid taxa (Fig. 6). However, for chironomids this division was 

along the strongest, first DCA axis, whereas for cladocerans cultural and non-cultural samples 

were divided along DCA axis 2. This suggests that this separation was stronger and more 

pronounced for the chironomids samples. 

 



25 
 

Figure 6. Results of overall DCA analyses. Left: species scores for Cladocera and 

Chironomidae taxa (open diamond: taxa indicating non-cultural layer samples; black 

diamond: taxa indicating cultural layer samples). Right: Site scores indicating the division of 

samples from lake marl (i.e. from non-cultural layer; open circles) and from cultural layers 

(black circles) along the first two DCA axes (variance explained by the axes in brackets). The 

analyses were based on all Cladocera and Chironomidae data from the sediment columns 

located within the settlement area of Zürich-Parkhaus Opéra. 

 

 

3.6. Saprobity changes associated with the cultural layers 

Chironomid-based SI values indicated increasing saprobity (i.e. increasing abundances of taxa 

indicative of high rates of organic matter degradation and oxygen demand) in cultural layers. 

The strongest increase in SI values was detected in OP 5060, OP8584, OP 9624 and OP 
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10432, whereas SI values were less elevated in OP 13184 and OP 11 (Fig. 5). Similarly, SI 

index values showed a clear tendency to higher values in Layers 13 and 14, with the exception 

in OP 13184, where only a slight increase was apparent (Fig. 5). In the younger sediment 

layers, however, SI did not change or even decreased slightly compared to the preceding non-

cultural layer, except in Layer 17 of OP 8584, where increasing saprobity values were noted 

again (Fig. 5). 

 

4. Discussion 

 

Embedded in an interdisciplinary project, we investigated near-shore Neolithic sediment 

sequences at Lake Zürich (Switzerland) with the aim of describing the aquatic environmental 

conditions at the ancient settlement and to assess periodic environmental alterations induced 

by human presence and activity by utilizing the indicator value of aquatic invertebrates. Our 

observations indicate that aquatic invertebrates occurred in considerable number throughout 

all the investigated sediment sections, both in cultural and non-cultural layers. Therefore, our 

data support the interpretation that the Neolithic settlements in the OP excavation area were 

established above the lake surface and sedimentation happened mostly under water. This 

agrees with other findings such as the lack of evidence of trampling and bioturbation by 

livestock, the presence of aquatic plant remains in the cultural layers and the results of 

palaeotopographical investigations (Schneider et al., 2015; Bleicher et al., 2018). Only the 

area in the most landward part of the settlement showed some evidence that it may have 

temporarily fallen dry for short periods (e.g. evidence for currents and wave action, see 

Bleicher and Harb, 2015; Schneider et al., 2015; Bleicher et al., 2017). The results and 

analyses described in this study furthermore demonstrate consistent and clear responses of 

aquatic invertebrate assemblages during periods of human presence (i.e. in the cultural 
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layers), indicating a major and systematic effect of Neolithic human activity on the near-shore 

environments and habitats at this lake. 

 

4.1. Human-induced alterations of the aquatic environment 

Typically, the assessment of human impact on ecosystems and environments is based on 

comparisons of pre-impacted and impacted states (e.g. European Union, 2000; Bennion and 

Battarbee, 2007). In our study, we are in a situation where we can compare several 

consecutive phases of human impact with aquatic invertebrate assemblages before and after 

the phases of human occupancy of the lakeside settlements. We found essentially two types of 

aquatic invertebrate communities: impacted communities within the cultural layers differing 

in several aspects from pre- and post-impact communities in the non-cultural layers. 

Indicative cladoceran taxa in non-cultural sediment sections are Alona excisa, Eurycercus, 

Alona intermedia, Alona affinis and Acroperus harpae. All of these taxa typically occur in 

low productivity lake environments (e.g., Whiteside, 1970; Lotter et al., 1998; Bjerring et al., 

2009). Similarly, chironomid taxa associated with non-cultural layers belonged mainly to the 

tribe Tanytarsini (e.g. Tanytarsus spp., Paratanytarus penicillatus- and Cladotanytarsus 

mancus-type) as well as the subfamilies of Tanypodinae (Procladius and Pentaneurini) and 

Orthocladiinae (Cricotopus cylindraceus-type). Such assemblages dominated by Tanytarsini 

and Orthocladiinae are typically found in relatively unimpacted environments with low to 

moderate productivity and high oxygen availability (e.g., Saether, 1979; Moog, 2002; 

Langdon et al., 2006). Moreover, P. penicillatus-, C. mancus-, Dicrotendipes nervosus- and 

Cladopelma lateralis-type larvae often indicate macrophyte coverage and moderately 

productive waters (Brodersen et al., 2001; Brooks et al., 2007; Moller Pillot, 2009). An 

important common feature of this chironomid assemblage is that its members do not tolerate 

anoxia (e.g., Brodersen and Quinlan, 2006; Luoto and Salonen, 2010; Luoto, 2011). 

Moreover, amongst other macroinvertebrate remains those of Ephemeroptera (mayflies) and 
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Plumatella (bryozoans) dominated. Although Plumatella statoblasts can be widely transported 

in lakes, Ephemeroptera remains are less mobile and this group occurs mainly in well-

oxygenated waters. 

In contrast, cladoceran assemblages in the cultural or human-impacted sediment layers were 

dominated by species often associated with eutrophic lake conditions, such as Pleuroxus 

trigonellus, Pleuroxus unicatus, Alona rectangula, Alona quadrangularis and Disparalona 

rostrata (Fig. 7A) (e.g., Whiteside, 1970; Lotter et al., 1998; Sarmaja-Korjonen, 2003; 

Bjerring et al., 2009). Most of these species have been identified in earlier studies as 

indicators of human impact, probably due to their preference for higher lake productivity 

(Whiteside, 1970; Szeroczynska, 2002). Similarly, the chironomid assemblages of cultural 

layers were dominated by taxa that can tolerate high lake productivity and low oxygen 

concentrations, such as Phaenopsectra flavipes-, Polypedilum nubeculosum-, Polypedilum 

sordens-, Microtendipes pedellus-, Dicrotendipen notatus-, Cricotopus intersectus- and 

Chironomus anthracinus-type (Fig. 7B) (e.g., Langdon et al., 2006; Moller Pillot, 2009; 

Luoto and Salonen, 2010; Luoto, 2011; Potito et al., 2014). Periodic anoxia might have 

occurred, as indicated particularly by the high abundances of Chironomus in the samples, a 

taxon that is able to survive in hypoxic environments (Brooks et al., 2007; Moller Pillot, 

2009; Luoto and Salonen, 2010). In addition, amongst the other macroinvertebrates, 

Trichoptera (caddisflies) and sometimes Rhabdocoela (turbelarian flatworms) remains 

dominated, whereas Ephemeroptera (mayflies) remains disappeared or were found only at 

lower abundances. This also agrees with increased organic matter loading and lower oxygen 

concentration compared to the non-cultural conditions. Alterations of aquatic invertebrate 

communities at OP, therefore, indicate periodic phases of significant human impact on the 

shallow water ecosystem of Lake Zürich. 
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Figure 7A. Relative abundance of the most important cladoceran species associated with 

cultural or human-impacted sediment layers (13: 3176–3153 BC; 14: 3090 BC; 15: 3060 BC; 

16: 2885–2877 BC; 17: 2754–2749 and 2734–2727 BC) in the individual sediment columns 

located in the settlement area of Zürich-Parkhaus Opéra (OP 5060, OP 8584, OP 9624, OP 

10432, OP 13184). 
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Figure 7B. Relative abundance of the most important chironomid morphotypes (C. 

anthracinus-type=Chironomus anthracinus-type; C. plumosus-type=Chironomus plumosus-

type; C. intersectus-type=Cricotopus intersectus-type; D. notatus-type=Dicrotendipes 

notatus-type; M. pedellus-type=Microtendipes pedellus-type; P. flavipes -

type=Phaenopsectra flavipes-type; P. nubeculosum-type=Polypedilum nubeculosum-type; P. 
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sordens-type=Polypedilum sordens-type) associated with cultural or human-impacted 

sediment layers (13: 3176–3153 BC; 14: 3090 BC; 15: 3060 BC; 16: 2885–2877 BC; 17: 

2754–2749 and 2734–2727 BC) in the individual sediment columns located in the settlement 

area of Zürich-Parkhaus Opéra (OP 5060, OP 8584, OP 9624, OP 10432, OP 13184). 

 

 

Available evidence (e.g. concentrations of bones, ash, plant remains and dung within the 

settlement layers) indicates a massive organic material load into the water during the cultural 

periods (see Bleicher et al., 2018). This is also confirmed by the high overall organic matter 

contents of the cultural layers relative to the under- and overlying sediments. The origin of the 

surplus organic matter during the settlement phases is probably the household waste, which 

was deposited directly into the lake from the houses within the settlement area. Such input 

will have substantially increased the biological oxygen demand of the sediment and increased 

the overall nutrient concentrations and productivity of the near-shore waters. Anoxic or at 

least hypoxic conditions during deposition of the cultural layers is supported also by excellent 

preservation of biological remains (e.g. leaf remains which were still green at excavation; 

Bleicher et al., 2018). Since chironomid assemblages in the sediment core taken outside the 

settlement area (i.e. from the lake core; OP 11) showed less pronounced changes, this implies 

that human impact and the influence of the elevated organic matter load were very local and 

mainly restricted to the vicinity of the settlement. In addition, the archaeological analyses 

noted that elevated accumulations of waste material or middens were located around the 

centres of buildings (see Bleicher et al., 2018), which indicates that secondary movement by 

water currents and erosion was very limited. Accordingly, organic matter stayed mostly where 

it was deposited. Therefore, nutrient input, the bulk of organic matter decomposition and the 

related oxygen depletion probably occurred locally within the settlement area. 
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A clear decrease in water quality during the deposition of the cultural layers is supported by 

the saprobic index (SI) scores calculated based on the chironomid data (Fig. 5). During these 

phases SI consistently moved to higher values and indicated poorer water quality than before. 

The changes in SI values are relatively minor in this study (from 1.7 to 2.9 units, with 

maximum values for the taxon Chironomus; Suppl. table 1). However, this is a consequence 

of applying this approach at the genus and species group level, which results in a smaller 

range of SI values for fossil chironomid taxa than possible for the individual chironomid 

species belonging to the chironomid morphotypes we identified (e.g. the species Chironomus 

riparius and C. plumosus, belonging to our fossil taxon Chironomus, could reach SI values of 

3.5 and 3.6, respectively; see Moog, 2002). 

Our data also clearly show that when humans abandoned the settlement, lake conditions 

recovered rapidly and aquatic invertebrate assemblages were very similar to the pre-impact 

state. Taylor et al. (2013, 2017) assessed the effects of Neolithic and Bronze Age farming 

activity on chironomid assemblages in Ireland and found that Neolithic farming increased 

notably the productivity of the studied lake but this effect was not persistent, and with the 

decrease of farming activity, the lake ecosystem rapidly reverted back to its pre-impact state 

(unlike the response to later Bronze Age farming). According to the results from some of our 

sediment columns from OP the ecological recovery process was likely rapid, based on the 

well-constrained chronology of the cultural layers and evidence from cladoceran and 

chironomid assemblages (see Suppl. figures 1–6). For example, the time between Layer 13 

and 14 is estimated at ca. 60 years based on dendrochronology (Bleicher and Burger, 2015), 

represented by 5–15 cm of lake marl (1–2 mm lake marl per year). The recovery from high 

DCA scores and SI values in cultural layers to low values in non-cultural layers never took 

more than a third of the time in between cultural layers, suggesting recovery took at most 20 

years. 2 mm of lake marl is enough to effectively seal off oxygen (Maerki et al., 2009). This 

would mean that after at most 5 years there was no or only very reduced organic degradation, 
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and decomposition of material from cultural layers was no longer decreasing available oxygen 

and thereby impacting aquatic invertebrate communities at the study site. 

Kenward (1976) provided an early summary about the problems associated with utilizing 

“death assemblages” (in this case subfossils of Coleoptera or beetles) in archaeological 

studies in terms of the possible existence of transported elements in the locally reconstructed 

fauna. These transported elements represent the subfossil remains of insects that moved into 

the study site (during their life) from the nearby surroundings which may seriously affect and 

bias ecological reconstructions. However, by using chironomid larvae as biotic indicators this 

problem can be circumvented. Due to their flying adults and short generation time, these 

insects are good dispersers and can respond rapidly to environmental changes. On the other 

hand, the larvae of chironomids have very limited ability to move independently, and they 

usually remain within a few metre range until pupation. The role of local environmental 

processes in determining the distribution of chironomid larvae assemblages, due to their 

limited dispersal capacity and their strong taxa–environment relationships, has been described 

even at small spatial scales (within a lake; Árva et al., 2015). In contrast, since cladocerans 

may be transported by water flow, their remains could provide a less strict assessment of local 

lake ecosystem conditions. This agrees with weaker responses of cladocerans to the above 

described environmental alterations compared with chironomids. The deposition of 

cladoceran remains, however, must have taken place in standing water, leaving little doubt 

that the settlement was built above the lake surface.  

Some chironomids, mainly belonging to the tribe Chironomini, are able to burrow to several 

cm below the sediment surface (Int Panis et al., 1996; Moller Pillot, 2009) in unconsolidated 

sediments and some of these taxa (e.g. Chironomus) occurred in large numbers in the 

sediment columns of OP, particularly in the cultural layers. At the same time, other 

chironomids, which are not able to burrow far into the sediment (e.g. Cricotopus or 

Tanytarsus taxa; see Moller Pillot, 2013; Epler et al., 2013), were present regularly in both 
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cultural and non-cultural layers. Similarly, remains of cladocerans occurred continuously in 

the sediment columns. Of the identified cladoceran taxa it is known that they usually crawl on 

the sediment but cannot burrow significantly below the sediment surface (e.g. Fryer, 1974). 

These results confirm that the invertebrate remains in the cultural sediment layers were not 

deposited during secondary colonization but represent the invertebrate fauna that existed at 

the sites when the cultural layers were formed.  

 

4.2. Amplitude of biotic responses to human presence and activity at the settlement 

In most parts of the excavated area, a sharp stratigraphic transition is visible from the lake 

marl deposits to the organic-rich anthropogenic cultural layers (Bleicher et al., 2018). This 

sharp transition is supported also by pollen types indicating local human activity (e.g. Allium, 

Ranunculus, Cerealia, Papaver rhoeas and Plantago lanceolata; see Gobet et al. 2017), which 

also clearly change in abundance at the boundaries of the cultural layers. Similarly, our results 

indicate that assemblages of cladocerans, chironomids and other macroinvertebrates altered 

rapidly and consistently between deposition of the non-cultural and cultural layers.  

Comparing the individual cultural layers, Layers 13 and 14 showed very similar results 

regarding all investigated invertebrate assemblages. For the younger layers (Layers 15, 16 and 

17) aquatic invertebrate assemblages exhibited weaker but also consistent biological 

responses. This could at least partly be due to differences in the deposition rate and degree of 

organic preservation of the individual cultural layers. Layers 13 and 14 are organically well 

preserved, possibly because of quick burial and oxygen depletion (Bleicher and Schubert, 

2015), while in younger cultural layers the generally poorer preservation of the archaeological 

deposits indicate that biological oxygen demand probably did not reach a level supporting 

similarly good organic preservation (see Bleicher et al., 2018). 

Moreover, the younger cultural layers do not appear in every sediment core, complicating 

their interpretation in our data set. Absence of certain cultural layers in certain parts of the 
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area might be explained by the results of topographical analysis, which showed that the 

excavated area was located on a slope to the lake (up to 10%; Schneider et al., 2015). It is 

possible, therefore, that younger layers (situated above Layer 13) were not preserved at 

particular parts of the excavated area located close to the land (i.e. at higher elevation) 

because of mechanical erosion and/or lack of flooding at that time (Schneider et al., 2015; 

Bleicher and Ruckstuhl, 2015; Bleicher et al., 2018). 

Comparison of the response of invertebrate assemblages across different profiles is only 

possible for Layers 13 and 14, as these layers are present in multiple cores. Generally, 

chironomids showed higher amplitude assemblage changes from non-cultural to cultural 

layers than cladocerans (Fig. 5). At the same time, both cladoceran and chironomid 

assemblages showed differences in the amplitude of their response to human presence within 

various parts of the settlement area that likely confirm the role of local environmental 

conditions. In Layer 13, cladoceran assemblages showed very similar responses in all 

sediment columns, while in Layer 14 the strongest cladoceran assemblage change was noted 

in the most lakeward OP 13184 column, followed by the landward OP 9624 and by the 

intermediate positioned OP 10432 and OP 8584 columns (Fig. 5). In contrast, the amplitude 

of chironomid assemblage changes in Layer 13 tended to decrease from the most landward 

sediment column (OP 5060, followed by the landward OP 9624 and OP 8584) to the most 

lakeward columns (OP 13184 and OP 10432), and finally to the lake core (OP 11; Fig. 5). In 

Layer 14, chironomids showed the strongest assemblage change in the intermediately 

positioned OP 10432, followed by the landward OP 9624 and then by close-to-land positioned 

OP 8584 and the most lakeward OP 13184 (Fig. 4). Accordingly, we could assume, based on 

chironomids, that Neolithic human activity affected mainly the close vicinity of the settlement 

with a generally decreasing impact from the most landward to the most lakeward sites; and 

that this influence rapidly weakened beyond the settlement area (i.e. at location of the lake 

core). At the same time, cladocerans showed a less consequent picture that could likely 
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correspond with their mobility (i.e. they can temporarily move away from sites that are not 

favourable) while chironomid larvae have only limited dispersal capacity. Therefore, the less 

mobile chironomids had higher susceptibility to local hypoxia in and just above the sediment 

then the more mobile cladocerans. Another possible explanation for weaker cladoceran 

assemblage responses could be that cladocerans probably have a wider tolerance range against 

nutrient level changes than chironomids (e.g. Lotter et al., 1998). 

It would be logical to assume that sediment columns located at the most frequently populated 

(and likely most impacted) areas would record the strongest assemblage responses in the 

cultural layers, since these areas would receive the highest amount organic material causing 

increased nutrient concentration and biological productivity, and would have the highest 

increased oxygen demand in the sediment. However, there is no evidence for substantial 

differences in density and duration of the human presence within the excavated settlement 

area (Bleicher et al., 2018). At the same time, clear differences are visible when comparing 

the thickness of the individual cultural layers. Layer 13, for instance, is around 16 cm thick in 

OP 5060 (with the strongest assemblage response), while only 5 cm thick in OP 10432 (with 

some of the weakest assemblage response based on chironomids). Results indicate that the 

organic deposits in the cultural layer consist to a considerable extent of refuse such as animal 

bones, dung, plant remains and ashes deposited in the sediments (Bleicher et al., 2018). 

Differential deposition of such refuse across the study site may therefore explain the stronger 

response of chironomids in some sediment profiles (e.g. OP 5060) compared with others. This 

indicates that possibly layer thickness and probably related sedimentation and preservation 

rate may have affected the observed spatial pattern of invertebrate assemblages to some 

extent. 

Nevertheless, cladoceran and chironomid assemblages showed clear and consequent 

responses both in their taxonomic composition and relative abundances of the dominant taxa 

(e.g. results of ANOSIM and DCA analyses) to the periodic human presence within the 
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excavated area during the Neolithic. Our results and previous studies confirm that Neolithic 

human impacts on aquatic ecosystems may have been locally substantial and caused major 

changes in species assemblages of aquatic organism groups (e.g. Taylor et al., 2013, 2017). 

These results therefore are in contrast with views that major human ecosystem impacts in 

Central Europe predominantly occurred during the Bronze or Iron Ages or even later in the 

Medieval or Industrial periods (e.g. Dotterweich, 2008). 

 

5. Conclusions 

As part of an interdisciplinary project we investigated subfossil Cladocera and Chironomidae 

remains from the excavation area of Neolithic lakeside settlements (Zürich-Parkhaus Opéra; 

OP) discovered at the shore of Lake Zürich (Switzerland). Our aims were to assess the 

surrounding environmental conditions at the ancient settlements and to assess periodic 

anthropogenic environmental alterations by utilizing the indicator value of aquatic 

invertebrates. 

Concluding, our results show that the Neolithic settlements in the OP excavation area were 

established on the lake and sedimentation happened mainly under water. Moreover, human 

activity in settlements at OP resulted in severe degradation of water quality within the 

settlement area. This confirms that Neolithic human impacts on aquatic ecosystems, though 

generally considered to have been moderate, may have been locally substantial and caused 

major changes in species assemblages of aquatic organism groups. These results therefore 

show that major human ecosystem impacts on aquatic ecosystems in Central Europe might 

have started earlier than the Bronze or Iron Ages, as has also been shown for terrestrial 

ecosystems (e.g. Rey et al., 2017). At the same time, we are able to show that the effects of 

human activity were very local, implying that in the case of Lake Zürich this impact did not 

lead to system level responses of the lake ecosystem. This also explains why conditions 

rapidly reverted to pre-impact state after the ending of the settlement activities. Nevertheless, 
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our analyses, together with previous studies on lake ecosystem response to Neolithic activities 

(e.g. Taylor et al., 2013; Rey et al., 2017) imply that a long-term perspective is essential when 

reconstructing the history of anthropogenic influence on aquatic ecosystems, e.g. in the 

context of defining pre-impact reference states for modern ecosystem assessments. Clearly 

human alteration of lakeside environments and ecosystem components at OP started the latest 

at ca 3234 cal BC. During this early phase, human impact on lakeside environments at Lake 

Zürich appears to have been characterized by repeated phases of locally strong, human-

induced alterations of biotic communities and environmental conditions followed by phases of 

recovery. Such sequences of impact phases followed by recovery have also been reported 

based on palynological analyses from sediment records from small lakes in Northern 

Switzerland that were characterized by distinct phases of local Neolithic human impact (e.g. 

Akeret et al., 1999; Rey et al., 2017), also believed to have been associated with the 

establishment of activities in Neolithic lakeside settlements. 

Finally, our study emphasises the potential of analyses of cladocerans, chironomids and other 

aquatic insect remains for archaeological studies of waterlogged archaeological deposits. Our 

analyses provide particularly evidence for shallow water habitats expanding over most of the 

Neolithic settlements and clear indications on the environment within the ancient settlement at 

OP. Future analyses of aquatic invertebrate remains (e.g cladocerans and chironomids) in 

similar lakeside deposits, therefore have the potential to supplement existing commonly 

applied palaeoecological approaches and to provide detailed assessments of lake level 

changes and variations in subaquatic environments within past lake-side settlements as well as 

for the periods between settlement phases.  
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Supplementary figures 

 

Raw data for the aquatic invertebrate data from the Zurich Opéra project are available in the 

published project report (Heiri et al., 2017, in German). Here we provide summary diagrams 

for chironomid and cladoceran analyses of the different sediment columns and cores. 

 

Supplementary figure 1A. Changes in the concentration, taxon richness and relative 

abundance of selected Cladocera species (>1% relative abundance) in the OP 5060 sediment 

column. The grey band indicates cultural Layer 13 (3176–3153 cal BC). 
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Supplementary figure 1B. Changes in the preservation (brittleness, degradation and folding), 

concentration, taxon richness and relative abundance of selected Chironomidae (>1% relative 

abundance) and other invertebrate taxa in the OP 5060 sediment column. The grey band 

indicates cultural Layer 13 (3176–3153 cal BC). 
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Supplementary figure 2A. Changes in the concentration, taxon richness and relative 

abundance of the selected Cladocera species (>1% relative abundance) in the OP 8584 

sediment column. Grey bands indicate cultural Layer 13 (3176–3153 cal BC), 14 (~3090 cal 

BC) and 17 (2754–2749 and 2734–2727 cal BC). 
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Supplementary figure 2B. Changes in the preservation (brittleness, degradation and folding), 

concentration, taxon richness and relative abundance of selected Chironomidae (>1% relative 

abundance) and other invertebrate taxa in the OP 8584 sediment column. Grey bands indicate 

cultural Layer 13 (3176–3153 cal BC), 14 (~3090 cal BC) and 17 (2754–2749 and 2734–2727 

cal BC). 
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Supplementary figure 3A. Changes in the concentration, taxon richness and relative 

abundance of selected Cladocera species (>1% relative abundance) in the OP 9624 sediment 

column. Grey bands indicate cultural Layer 13 (3176–3153 cal BC) and 14 (~3090 cal BC). 
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Supplementary figure 3B. Changes in the preservation (brittleness, degradation and folding), 

concentration, taxon richness and relative abundance of selected Chironomidae (>1% relative 

abundance) and other invertebrate taxa in the OP 9624 sediment column. Grey bands indicate 

cultural Layer 13 (3176–3153 cal BC) and 14 (~3090 cal BC). 
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Supplementary figure 4A. Changes in the concentration, taxon richness and relative 

abundance of selected (>1% relative abundance) Cladocera species (>1% relative abundance) 

in the OP 10432 sediment column. Grey bands indicate cultural Layer 13 (3176–3153 cal 

BC), 14 (~3090 cal BC) and 15 (~3063 cal BC). 
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Supplementary figure 4B. Changes in the preservation (brittleness, degradation and folding), 

concentration, taxon richness and relative abundance of selected Chironomidae (>1% relative 

abundance) and other invertebrate taxa in the OP 10432 sediment column. Grey bands 

indicate cultural Layer 13 (3176–3153 cal BC), 14 (~3090 cal BC) and 15 (~3063 cal BC). 
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Supplementary figure 5A. Changes in the concentration, taxon richness and relative 

abundance of selected Cladocera species (>1% relative abundance) in the OP 13184 sediment 

column. Grey bands indicate cultural Layer 13 (3176–3153 cal BC), 14 (~3090 cal BC) and 

16 (2885–2882 cal BC). 
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Supplementary figure 5B. Changes in the preservation (brittleness, degradation and folding), 

concentration, taxon richness and relative abundance of selected Chironomidae (>1% relative 

abundance) and other invertebrate taxa in the OP 10432 sediment column. Grey bands 

indicate cultural Layer 13 (3176–3153 cal BC), 14 (~3090 cal BC) and 16 (2885–2882 cal 

BC). 
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Supplementary figure 6. Changes in the preservation (brittleness, degradation and folding), 

concentration, taxon richness and relative abundance of selected Chironomidae (>1% relative 

abundance) and other invertebrate taxa in the OP 11 sediment core. Grey band indicates 

cultural Layer 13 (3176–3153 cal BC). 
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Supplementary table 

Supplementary table 1. Mean saprobic values of the subfossil chironomid genera following 

Moog (2002). x = Xenosaprobic, o = Oligosaprobic,  = Beta-mesosaprobic,  = Alpha-

mesosaprobic, p = Polysaprobic, G = indicator value, SI = Saprobic Index.  

 

  x o   p G SI 

Chironomus 0 0.75 2.25 3.63 3.38 1.63 2.96 

Cladopelma 0 2 4 4 0 2 2.2 

Cryptochironomus 0 1 4 4 1 1 2.5 

Demicryptochironomus 0 1 4 5 0 2 2.3 

Dicrotendipes 0 0.67 4.67 4 0.67 1.67 2.47 

Einfeldia 0 0 3 5 2 2 2.9 

Endochironomus 0 1 4 4 1 1 2.5 

Glyptotendipes 0 0.5 4.25 4.25 1 1.5 2.58 

Microtendipes 0 2 4.67 3.33 0 2 2.13 

Parachironomus 0 1 4 4 1 1 2.5 

Phaenopsectra 0 1 4 4 1 1 2.5 

Paratendipes 0 1 5 4 0 2 2.3 

Polypedilum 0 1.57 4.86 3.14 0.43 2.14 2.24 

Sergentia 0 3 6 1 0 3 1.8 

Corynoneura 0 4 5 1 0 2 1.7 

Cricotopus 0.22 1 4.78 3.78 0.22 2.11 2.28 

Heterotrissocladius 1 5 4 0 0 3 2.3 

Orthocladius 2 2 3 2 1 1 1.8 

Paracladius 0 1 6 3 0 3 2.2 

Parakiefferiella 0 2 6 2 0 3 2 

Psectrocladius 0 3 6 1 0 3 1.8 

Procladius 0 0 5 5 0 3 2.5 

Pentaneurini 0 1.33 5.33 3.33 0 2.33 2.2 

Cladotanytarsus 0 1 7.5 1.5 0 3.5 2.05 

Paratanytarsus 0.33 3.67 4 2 0 2.33 1.77 

Stempellina 4 5 1 0 0 2 1.7 

Tanytarsus 0.25 2.25 5.5 2 0 2.25 1.93 

 


