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Abstract

Detecting a change as fast as possible in an observed stochastic process is

an important task. In this paper an online procedure is presented to detect

changes in the parameter of general discrete-time parametric stochastic pro-

cesses. As examples regression models, autoregressive processes, and Galton–

Watson processes are investigated. The test is called CUSUM-type as it is

based on the cumulated sums of the estimates of certain martingale difference

sequences belonging to the process. In case of a single change alternative hy-

pothesis the procedure is examined in terms of consistency. Due to the online

manner the time of change can also be estimated.

1 Introduction

In the literature of statistics offline and online procedures have both been introduced

to detect changes in stochastic systems. We call a procedure offline if the whole

sample is given at the time of the testing, and online if the testing is performed in

a sequential manner, taking observations one by one. The aim of this paper is to

perform online change-point detection on the parameter of a certain vector-valued

parametric process X1, X2, . . . .

The online procedure is considered the following way. Throughout the paper

we assume that the so-called noncontamination assumption holds for some positive

integer m, meaning that the parameter is unchanged until time m. This assumption

is regular in the context of online procedures and allows us to estimate the default
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value of the parameter in question. For the sake of generality we fix a constant T > 0

and define the test based on the observations X1, . . . , Xm, Xm+1, . . . , Xm+bTmc. If

T =∞, then the test is called open-end, otherwise it is called closed-end. The goal is

to test the null hypothesis that there is no change in the parameter on the entire given

time horizon. In the online case test statistics of the form τm,k = τm,k(X1, . . . , Xm+k),

k = 1, 2, . . . are considered, and a rejection is made if sup1≤k≤bTmc τm,k > xα, where

xα is the critical value corresponding to the significance level α ∈ (0, 1). The value κ

is called a rejection time if τm,κ > xα. The theoretical background of the procedure is

that under the null hypothesis and certain regularity conditions sup1≤k≤bTmc τm,k →D

τT , m → ∞, for some random variable τT that depends on the model and the

constant T . Then the critical value xα can be derived from the distribution of τT by

solving P (τT > xα) = α for xα. Indeed, if xα is a continuity point of the distribution

function of the limit variable τT , then

P
(

sup
1≤k≤bTmc

τm,k > xα

)
→ α, m→∞,

meaning that xα is an asymptotically correct critical value corresponding to the

significance level α.

Online change-point detection has been an investigated area in the last decades.

The above discussed noncontamination assumption was first introduced in the paper

of Chu et al. [4]. In the paper Chu et al. [4] and Horváth et al. [6] a statistical

methodology was developed that supplies a limit theorem establishing an online

procedure. The statistics in these papers are special cases of ours, having the form

τm,k = ‖Sm,k‖, where Sm,k is defined in (1). In Horváth et al. [6], Aue el al. [1], and

Horváth et al. [7] this general methodology is applied to linear regression models

in an open-end manner. Under a single change alternative hypothesis their tests

are shown to be consistent and they investigate the distribution of the rejection

times as well. In Kirch and Tadjuidje Kamgaing [9] open-end and also closed-end

procedures are given to test for a change in special functional autoregressive models.

Our aim is to generalize these results to discrete-time stochastic processes satisfying

certain general regularity conditions. Our paper and the above mentioned ones

contain statistics based on the CUmulated SUMs of suitable estimators of certain

martingale difference sequences of the process. Such statistics are called CUSUM-

type. Note that another CUSUM-type statistics is also frequently applied in online

change-point detection, that is based on the cumulated sums of likelihood quotients.

The main results of the paper are presented in Section 2, with the proofs given

in Section 3. Subsection 2.3 contains a discussion of some examples, processes that

fit into our model.
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2 Main results

2.1 Model and test statistics

In our model the observations are Rq×Rr valued random pairs (Xn,Yn), n = 1, 2, . . . ,

with some positive integers q and r. Let Fn−1 stand for the σ-algebra generated by

the random vectors {Xk,Yk−1 : k ≤ n}. Throughout the paper we will assume that

E
[
Yn | Fn−1

]
= E

[
Yn |Xn

]
= f(Xn, θn), n = 1, 2, . . . ,

where f : Rq×Θ→ Rr is a known measurable function with components f1, . . . , fr,

Θ is a measurable subset of a finite dimensional Euclidean space, and θn ∈ Θ

is a parameter of the joint distribution of Xn and Yn. By the noncontamination

assumption it is a priori known that θn = θ0 for n = 1, . . . ,m with a known positive

integer m and a fixed but unknown θ0 ∈ Θ. The aim of the online change detection

is to test if θm+1 = · · · = θm+bTmc = θ0 with a given T ∈ (0,∞]. For this goal we

will test the null hypothesis

H0 : E
[
Yn |Xn

]
= f(Xn, θ0), n = m+ 1, . . . ,m+ bTmc.

To obtain asymptotic results under the null hypothesis as m goes to infinity, we

must assume that H0 holds for every m. Then the variables Un := Yn − f(Xn, θ0),

n = 1, 2, . . . , form a martingale difference sequence with respect to the filtration

F0,F1, . . . For a given positive integer m we consider an estimator θ̂m of the true

parameter θ0 based on the training sample (X1,Y1), . . . , (Xm,Ym), and we define

an estimator of the martingale difference sequence by Ûm,n := Yn − f(Xn, θ̂m),

n = 1, 2, . . . , which variables our testing method is based on.

We summarize our regularity conditions and some additional notations in the

following assumption. Throughout the paper the vector norm is the Euclidean

norm, and 1A is the indicator of the event A. The notations Z+, Z++ and B(Rq)

stand for the set of nonnegative integers, positive integers, and the Borel σ-algebra

of the space Rq, respectively.

Assumption 2.1. (i) The process Xn, n ∈ Z++, is strictly stationary and er-

godic, or it is an aperiodic positive Harris recurrent Markov chain. The nota-

tion X̃0 stands for an arbitrary random vector whose distribution is the same

as the unique stationary distribution of this process.

(ii) Suppose that E
[
Yn |Xn

]
= f(Xn, θ0) for every n ∈ Z++.
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(iii) There exists an open neighborhood Θ0 ⊆ Θ of θ0 such that the functions

fi(x, θ), i = 1, . . . , r, are continuously differentiable with respect to the variable

θ at every point (x, θ) ∈ Rq×Θ0. Let ∇θfi(x, θ) stand for the vector of partial

derivatives.

(iv) There exists a real number a > 0 and a measurable function h : Rq → [0,∞)

such that∥∥∇θfi(x, θ)−∇θfi(x, θ0)
∥∥ ≤ ‖θ − θ0‖ah(x), x ∈ Rq, θ ∈ Θ0,

for i = 1, . . . , r.

(v) The expectations Eh(X̃0) and E∇θfi(X̃0, θ0), i = 1, . . . , r, are finite.

(vi) We have an estimator θ̂m of θ0 based on the training sample (X1,Y1), . . . , (Xm,Ym)

such that m1/2(θ̂m − θ0) = OP (1).

(vii) There exists an ε > 0 such that supn≥1E‖Un‖2+ε is finite, implying that the

constant v0 := supn≥1E‖Un‖2 is finite as well.

(viii) There exists a nonsingular matrix I0 ∈ Rr×r such that one of the following

convergences holds as m→∞:

1

m

m∑
n=1

UnU>n
P−→ I0,

1

m

m∑
n=1

E
[
UnU>n | Fn−1

] P−→ I0.

(ix) The matrix I0 has a weakly consistent positive semidefinite estimator Îm ∈
Rr×r based on the sample (X1,Y1), . . . , (Xm,Ym).

We note that the estimators θ̂m and Îm do not need to be well-defined with

probability 1 for every m, it is enough if they exist with asymptotic probability 1

as m→∞. Based on Assumption 2.1 the matrices I0 and Îm are positive semidefi-

nite, which implies that they have unique square roots I
1/2
0 and Î

1/2
m among positive

semidefinite matrices. Also, assumption (viii) ensures that the estimator Îm is non-

singular with asymptotic probability 1, meaning that Î
1/2
m is invertible in the same

sense.

In Subsection 2.3 we show examples of the considered model along with some

remarks on how to check the introduced assumptions.

Similarly to the papers Horváth et al. [6], Aue el al. [1], Horváth et al. [7], and

Kirch and Tadjuidje Kamgaing [9], we consider the weight function

gγ(m, k) = m1/2

(
1 +

k

m

)(
k

m+ k

)γ
, m, k ∈ Z++,
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where γ ∈ [0, 1/2) is an arbitrary tuning parameter, and introduce the random

vectors

(1) Sm,k := Î−1/2
m

∑m+k
n=m+1 Ûm,n − k

m

∑m
n=1 Ûm,n

gγ(m, k)
, m, k ∈ Z++.

Our main result is stated in the following theorem, whereW(t) = [W1(t), . . . ,Wr(t)]
>,

t ≥ 0, is an r dimensional standard Wiener process. Here and throughout the paper

we use the convention 0/0 := 0, and for T =∞ let T/(T + 1) := 1.

Theorem 2.2. If Assumption 2.1 holds, implying that H0 is true for every m ∈ Z++,

then for any continuous function ψ : Rr → R and for any T ∈ (0,∞] we have the

convergence

sup
1≤k≤bTmc

ψ(Sm,k)
D−→ sup

0≤t≤T/(T+1)

ψ
(
W(t)/tγ

)
, m→∞.

Let us note that by the law of the iterated logarithm the process W(t)/tγ is

sample continuous on the interval [0, 1]. This implies that the limit in Theorem 2.2

is a finite random variable. As a result, the null hypothesis H0 can be tested as

described in Section 1 by using the statistics τm,k = ψ(Sm,k). In the next corollary

we present three examples for such statistics, which can be obtained by using the

scaling property of the Wiener process with the norm-like functions

(2) ψ1(y) = ‖y‖, ψ2(y) = max
1≤i≤r

|yi|, ψ3(y) = |c>y|,

where y = [y1, . . . , yr]
>, c ∈ Rr. The variables Sm,k,1, . . . , Sm,k,r stand for the com-

ponents of the random vector Sm,k.

Corollary 2.3. Assume that Assumption 2.1 holds, implying that H0 is true for

every m ∈ Z++. For arbitrary constants T ∈ (0,∞] and c ∈ Rr we have that

sup
1≤k≤bTmc

‖Sm,k‖
D−→
(

T

1 + T

)1/2−γ

sup
0≤t≤1

‖W(t)‖
tγ

,

sup
1≤k≤bTmc

max
1≤i≤r

|Sm,k,i|
D−→
(

T

1 + T

)1/2−γ

max
1≤i≤r

sup
0≤t≤1

|Wi(t)|
tγ

,

sup
1≤k≤bTmc

|c>Sm,k|
D−→
(

T

1 + T

)1/2−γ

‖c‖ sup
0≤t≤1

|W1(t)|
tγ

,

as m→∞.

We omit the proof of this simple corollary. The main advantage of the three

tests based on the functions in (2) is that the critical values corresponding to the
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closed-end case can be easily calculated from the critical value xα of the open-

end test in the form (T/(1 + T ))1/2−γxα. Also note that the limit variables are

continuous, which implies that there exist asymptotically correct critical values for

any significance level α ∈ (0, 1). The test based on the function ψ1 is the classical

one, it was introduced by Chu et al. [4], and it was investigated by several authors

in the last two decades. Horváth et al. [6] published a table of the critical values in

the case r = 1 based on computer simulation. However, the quantiles of the limit

variable sup0≤t≤1 ‖W(t)‖/tγ are not available for every positive integer r. This fact

motivates the second test based on the function ψ2, having critical values that can

be determined by using only the quantiles of the 1-dimensional case. Indeed, let

xβ be the critical value of the one-dimensional limit process corresponding to the

significance level β = 1− (1− α)1/r. Then,

P

(
max
i=1,...,r

sup
0≤t≤1

|Wi(t)|
tγ

≤ xβ

)
= P

(
sup

0≤t≤1

|W1(t)|
tγ

≤ xβ

)r
= (1− β)r = 1− α,

meaning that xβ is the critical value corresponding to the r-dimensional limit process

and significance level α. We note that in several applications the components of the

statistics Sm,k have different sensitivity for the model change, and a suitable linear

combination of them can improve the power of the method. This is the concept of

the test corresponding to the function ψ3.

2.2 Results under the alternative hypothesis

In this subsection we investigate the test statistics under the alternative hypothesis

that there is a single change in the dynamics of the system. To ensure that the

noncontamination assumption holds we consider a sequence of nonnegative integers

k∗m, m ∈ Z++, and assume that for any m the change happens at the time point

m + k∗m. For simplicity we investigate only the open-end case, and we assume that

the dynamics before and after the change do not depend on the values m and k∗m.

The goal is to show the consistency of the test under some suitable conditions of the

model, and to investigate the time of rejection as a function of m.

To formalize the model consider a sequence of Rq × Rr valued observations

(Xn,Yn), n ∈ Z++, satisfying Assumption 2.1, and additionally Rq × Rr val-

ued random pairs (Xm,m+k∗m+n,Ym,m+k∗m+n), m,n ∈ Z++. For a given m we

will perform the test based on the sample (Xm,1,Ym,1), (Xm,2,Ym,2), . . . , where

(Xm,n,Ym,n) := (Xn,Yn) for n ≤ m+ k∗m. As a consequence of this construction, for

every m the dynamics of the system does not change before the (m + k∗m)-th step,

and some additional regularity conditions summarized in the next assumption will
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ensure that after this time point the system follows another dynamics starting from

the initial value (Xm,m+k∗m ,Ym,m+k∗m). To perform the test we introduce the random

vectors

Um,n := Ym,n − E
[
Ym,n |Xm,n

]
, Ûm,n := Ym,n − f

(
Xm,n, θ̂m

)
m,n ∈ Z++,

and we define Sm,k by formula (1).

Assumption 2.4. (i) The processes {Xm,m+k∗m+n, n ∈ Z++}, m ∈ Z++, are

strictly stationary with the same finite dimensional distributions, or they are

positive Harris recurrent Markov chains with the same transition probability

kernel. Let X̃A be an arbitrary Rq-valued random vector whose distribution is

the same as the unique stationary distribution of the processes.

(ii) We have E[Ym,n |Xm,n] = f(Xm,n, θA) for every integers m ≥ 1 and n ≥
m+k∗m+1 with some θA ∈ Θ0 and with the function f introduced in Assumption

2.1.

(iii) The expectations Eh(X̃A), Ef(X̃A, θ0), Ef(X̃A, θA), and E∇θfi(X̃A, θ0), i =

1, . . . , r, are finite.

(iv) There exists a positive integer mA such that

vA := sup
m≥mA

sup
n≥m+k∗m+1

E‖Um,n‖2 <∞.

In this subsection we work under the alternative hypothesis

HA : ∆ := Ef
(
X̃A, θA

)
− Ef

(
X̃A, θ0

)
6= 0.

We will test if the dynamics of the process (Xm,n,Ym,n), n ∈ Z++, is unchanged

over time under this single change alternative hypothesis by using the test statistics

τm,k := ψ(Sm,k) introduced in Section 1, where ψ : Rr → R is an arbitrary continuous

function. With a given critical value xα corresponding to a significance level α the

time of the first rejection after the (m + `)-th step is defined by κm,` := min{k >
` : τm,k > xα}. In particular, for every m the variables κm,0 and κm,k∗m stand for

the first time of rejection after the last element of the training sample and after the

time of the actual model change, respectively. The following result is motivated by

the similar theorems of Horváth et al. [6] and Aue el al. [1] stated for their linear

regression models.

Theorem 2.5. Assume that Assumptions 2.1 and 2.4, and the alternative hypothesis

HA are satisfied, and lim‖x‖→∞ ψ(x) =∞.
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(i) For any sequence k∗m of nonnegative integers we have κm,k∗m−k∗m = oP (m+k∗m)

as m→∞. It is a direct consequence that the related test is consistent.

(ii) If k∗m = bcmbc for every m with some constants b, c ≥ 0, then κm,k∗m − k∗m =

OP (mβ), where

β =


(1− 2γ)/(2− 2γ), 0 ≤ b ≤ (1− 2γ)/(2− 2γ),

1/2− γ(1− b), (1− 2γ)/(2− 2γ) < b ≤ 1,

b− 1/2, 1 < b.

Let us note that the functions ψ1 and ψ2 defined by (2) satisfy the conditions

of the theorem, which means that the results of statement (i) and (ii) are valid for

the related tests. Although the limit lim‖x‖→∞ ψ3(x) does not exist, we show it in

Remark 1 after the proof of the latter theorem that with some minor changes in the

calculations one can obtain the same rates for the function ψ3 under the additional

assumption that c>I
−1/2
0 ∆ 6= 0.

In Theorem 2.5 we examined the first time of rejection after the model change.

However, in the applications we may meet false alarms, when the test detects the

change of the model too early, before the actual time of the change, m+ k∗m. Using

our notations the false alarm is the event {κm,0 ≤ k∗m}. In our last result we examine

the asymptotic probability of this event.

Proposition 2.6. Assume that Assumption 2.1 is satisfied, and consider any of

the three testing methods of Corollary 2.3. If k∗m = bcmbc for every m with some

constants b ≥ 0 and c > 0, then

P
(
κm,0 ≤ k∗m

)
→


0, b < 1,

α∗, b = 1,

α, b > 1,

where α∗ ∈ (0, α).

2.3 Some general remarks and examples

Let us present some ideas how to check the conditions of Assumption 2.1 in applica-

tions. In most cases condition (i) has to be verified based on a priori informations

on the model. Positive Harris recurrence is already proved for many discrete time

Markov chains, and it can be shown along with (v) by using the Foster–Lyapunov

criteria (14.3) in Chapter 14 of Meyn and Tweedie [10]. In the simple case when
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the process Xn, n ∈ Z++, has countable state space, (i) of Assumption 2.1 holds if

the process has exactly one positive recurrent class, and it is aperiodic, and reached

within finitely many steps starting from any initial distribution with probability 1.

Assumptions (iii) and (iv) are analytical conditions, which must be checked by

standard calculations. We note that these conditions are satisfied with a = 1 and

h(x) = maxi=1,...,r supθ∈Θ ‖∇2
θfi(x, θ)‖ if the function f is twice continuously dif-

ferentiable with respect to θ on Rq × Θ0. In many applications we meet models

where the function is linear in the form f(x,A) = Ax, x ∈ Rq, with coefficient and

parameter A ∈ Rr×q. Although this model is not parameterized by vectors, is has

a natural reparametrization by using θ = θ(A) ∈ Rrq defined as the the vector of

the columns of A. The partial derivatives of the function Ax are linear and do not

depend on A, which implies that (iv) holds with h = 0. As a consequence of these,

in this linear case (v) is satisfied if the variable X̃0 has finite mean.

Note that (viii) of Assumption 2.1 is required because we would like to use the

Martingale Central Limit Theorem. By Theorem 3.33 in Chapter VIII of Jacod and

Shiryaev [8] under (vii) of Assumption 2.1 the conditions of (viii) of Assumption 2.1

are equivalent. In many applications the martingale differences Un, n ∈ Z++, are

i.i.d., then (viii) of Assumption 2.1 is satisfied with I0 := E(U1U>1 ) by the law of

large numbers.

For certain models the matrix I0 is singular. The matrix I0 is the limit of covari-

ance matrices. Therefore, the singularity of this matrix indicates that asymptotically

the components of Un are linearly dependent, meaning that some components can

be expressed as the linear combinations of others. In such cases it can help to re-

move the corresponding components of the process Yn, n ∈ Z++. Then, the matrix

I0 related to this modified process possibly becomes non-singular.

The method to estimate the parameter θ depends on the concrete model. Possi-

ble estimations are the Least Squares, Conditional Least Squares (CLS), Weighted

Conditional Least Squares (WCLS), Maximum Likelihood, or Yule-Walker. Note

that if we apply the CLS estimation for θ, and for every 1 ≤ i ≤ r the function

∇θfi(x, θ) has a constant, non-zero component, then the statistics Sm,k reduces to

Sm,k = Î−1/2
m

∑m+k
n=m+1 Ûm,n

gγ(m, k)
, m, k ∈ Z++.

In some cases I0 = I0(θ) is a continuous function of θ. Then, Îm := I0(θ̂m) is a

weakly consistent estimator of I0.
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2.3.1 Regression and autoregressive models

Consider the model ξn = φ(ζn, θ)+ηn, n ∈ Z++, where φ : Rq×Θ→ R and ζ1, ζ2, . . .

is a sequence of Rq-valued input variables. Furthermore, η1, η2, . . . are error terms

with mean 0 and variance σ2, independent of the previous sequence. In this model

we can test the change of the parameter θ by using Theorem 2.2 with the setup

Xn = ζn, Yn = ξn, f(x, θ) = φ(x, θ), and Un = ηn = ξn − φ(ζn, θ). Also, we can test

the change of both θ and σ with Xn = ζn, Yn = [ξn, η
2
n]>,

f(x, θ, σ) =

 φ(x, θ)

σ2

 , Un =

 ηn

η2
n − σ2

 =

 ξn − φ(ζn, θ)

[ξn − φ(ζn, θ)]
2 − σ2

 .
Although in the applications the exact values of the error terms are not available,

the test can be performed without this information. Since Un can be represented

as a function of the parameters and the known pair (ζn, ξn), the variables Ûm,n can

be written up by using some estimators θ̂m and σ̂m based on the real observations

(ζ1, ξ1), . . . , (ζm, ξm).

If ζn = [ξn−1, . . . , ξn−q]
> for every n ∈ Z++ with some q ∈ Z++ and initial vector

[ξ0, . . . , ξ1−q], then ξn, n ∈ Z++, is an autoregressive process that behaves similarly

as the regression model in terms of the above described method.

One can consider for example the Least Squares, Conditional Least Squares, or

Yule-Walker methods to obtain applicable estimators.

2.3.2 Homogeneity of independent observations

Consider independent random variables ξ0, ξ1, . . . coming from a parametric family

parameterized by θ. We can test the change of the this parameter with the setup

Xn = ξn−1, Yn = [φ1(ξn), . . . , φr(ξn)]>,

f(x, θ) = f(θ) =


Eθφ1(ξ1)

...

Eθφr(ξ1)

 , Un =


φ1(ξn)− Eθφ1(ξ1)

...

φr(ξn)− Eθφr(ξ1)

 ,
where φ1, . . . , φr : R → R are arbitrary such that f(θ) exists. Choose functions

φ1, . . . , φr that characterize the parameter θ by resulting a bijective f(θ) function.

Then, a change of f(θ) is equivalent to a change in the parameter θ itself.

Now assume that ξ0, ξ1, . . . are independent, but not necessarily from a para-

metric family. Again, consider the same setup for Xn, Yn, and some functions
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φ1, . . . , φr : R→ R. Then we can test for a change in the parameter

f(x, θ) := θ :=


Eφ1(ξ1)

...

Eφr(ξ1)

 .
For example one can test for a change in the first r moments of the variables by

choosing the functions φ1(x) = x, . . . , φr(x) = xr.

2.3.3 Multitype Galton–Watson processes

Consider a positive integer p and a random or deterministic, Zp+-valued vector ξ0.

The Zp+-valued process ξn = [ξn,1, . . . , ξn,p]
>, n ∈ Z+, is a multitype Galton–Watson

process if it can be represented in the form

ξn =

ξn−1,1∑
k=1

ζ1(n, k) + · · ·+
ξn−1,p∑
k=1

ζp(n, k) + η(n), n ∈ Z++,

where

ξ0, ζi(n, k), η(n), k, n ∈ Z++, i = 1, . . . , p,

are Zp+-valued random vectors being independent of each other, and the offspring

variables ζi(n, k), k ∈ Z++, are identically distributed for every i and n.

Our goal is to test if the distributions of the offsprings and the innovations are

unchanged over time. For this goal we consider two tests. With the first one we

test if the means of the distributions are unchanged. With the second one we test if

both the means and variances are unchanged. Under the null hypothesis we refer to

the offspring and innovation distributions by ζ1, . . . , ζp,η, since their distributions

do not depend on the parameters n and k. Also, we introduce the matrix

M :=
[
Eζ1, . . . , Eζp, Eη

]
∈ Rp×(p+1)

and we define the first test by setting

Xn :=

 ξn−1

1

 =
[
ξn−1,1, . . . , ξn−1,p, 1

]>
, Yn := ξn, n ∈ Z++,

resulting that f(x,M) = Mx and Un = ξn −M[ξ>n−1, 1]>.

For the second test, under the null hypothesis we consider the matrix

V :=
[
D2ζ1, . . . , D

2ζp, D
2η
]
∈ Rp×(p+1),
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where the variance of a vector is understood componentwise. Then, by the results

of Nedényi [11] one can test the change of (M,V) by the setup

Xn =

 ξn−1

1

 , Yn =

 ξn

(ξn −MXn)2

 , f(x,M,V) =

 M

V

x.

Then, Un = [(ξn−MXn)>, ((ξn−MXn)2−VXn)>]>. We suggest to apply the CLS

and WCLS methods to achieve the necessary parameter estimators in both cases.

The estimators are detailed in Nedényi [11].

3 Proofs

Proposition 3.1. Consider a measurable set S ⊆ Rq and an array of S-valued

random vectors with rows {Mm,0,Mm,1, . . . }, m ∈ Z++, which satisfies any of the

following assumptions:

(i) The rows of the array are strictly stationary ergodic processes with the same

finite dimensional distributions.

(ii) The rows are positive Harris recurrent Markov chains with the same probability

transition kernel. Furthermore, the process of the initial values {Mm,0 : m ∈
Z++}, is strictly stationary, or it is an aperiodic positive Harris recurrent

Markov chain.

In both cases let π denote the unique stationary distribution of the rows. Consider

a measurable function φ : S → Rr such that
∫
S
‖φ(x)‖π(dx) <∞, and introduce

Am,k :=
1

k

k∑
n=1

φ(Mm,n)−
∫
S

φ(x)π(dx), m, k ∈ Z++.

Then, for any real sequence am tending to infinity, we have supk≥am ‖Am,k‖ = oP (1)

and supk≥1 ‖Am,k‖ = OP (1) as m→∞.

Proof. If the array satisfies condition (i), then for any m we have

1

k

k∑
n=1

φ(Mm,n)
D
=

1

k

k∑
n=1

φ(M1,n)→
∫
S

φ(x)π(dx), k →∞,

where the convergence holds with probability 1, proving both statements. In the

remaining of the proof we show that the statements are true under assumption (ii)

as well.

12



Let π′ stand for the unique stationary distribution of the process Mm,0, m ∈ Z++,

and let pm denote the distribution of the random vector Mm,0. If the initial values

form an aperiodic positive Harris recurrent Markov chain, then by Theorem 13.0.1

of Meyn and Tweedie [10] the transition probabilities of the chain converge to the

stationary distribution in the total variation metric. From this we obtain that

sup
B∈B(S)

∣∣pm(B)− π′(B)
∣∣ ≤ ∫

S

sup
B∈B(S)

∣∣∣P(Mm,0 ∈ B |M1,0 = x
)
− π′(B)

∣∣∣ p1(dx)→ 0,

(3)

as m → ∞. Note that the convergence in (3) is obvious if the process Mm,0,

m ∈ Z++, is strictly stationary. Also, Theorem 17.0.1 of Meyn and Tweedie [10]

implies the ”law of large numbers” A1,k → 0, k → ∞, in case of any distribution

p1, where the convergence is understood in almost sure sense. Hence, we have

supk≥am A1,k →P 0 as m → ∞ on the event {M1,0 = x} in case of an arbitrary

x ∈ S. This implies the convergence

ρm(x, δ) := P

(
sup
k≥am

‖A1,k‖ > δ
∣∣M1,0 = x

)
→ 0, m→∞,

for any fixed value δ > 0. Note that by the Markov property

P

(
sup
k≥am

‖A1,k‖ > δ
∣∣M1,0 = x

)
= P

(
sup
k≥am

‖Am,k‖ > δ
∣∣Mm,0 = x

)
, m ∈ Z++,

for every x ∈ S. By using this consequence of the Markov property and the domi-

nated convergence it follows that

P

(
sup
k≥am

‖Am,k‖ > δ

)
=

∫
S

ρm(x, δ)pm(dx)

≤
∣∣∣∣ ∫

S

ρm(x, δ)(pm − π′)(dx)

∣∣∣∣+

∫
S

ρm(x, δ)π′(dx)

≤ sup
x∈S

ρm(x, δ) sup
B∈B(S)

∣∣pm(B)− π′(B)
∣∣+

∫
S

ρm(x, δ)π′(dx)→ 0,

as m→∞.

For the second statement let us recall that A1,k → 0, k → ∞, almost surely,

which implies that the sequence A1,k, k ∈ Z++, is bounded stochastically. From this

we get the convergence

ρ(x, c) := P

(
sup
k≥1
‖A1,k‖ > c

∣∣M1,0 = x

)
→ 0, c→∞,

for any x ∈ S. As ρ(x, c) is a measurable function of the variable x in case of any

fixed c > 0, the sets

S(c) =
{
x ∈ S : ρ(x, c) ≤ ε/3

}
, c > 0 ,

13



form an increasing system of measurable subsets of S with limit set ∪c>0S(c) = S for

every ε > 0. This implies that there exists c0 > 0 such that π′(S(c0)) ≥ 1− ε/3 and

supx∈S(c0) ρ(x, c0) ≤ ε/3. By using the Markov property we obtain the inequalities

P

(
sup
k≥1
‖Am,k‖ > c0

)
=

∫
S

ρ(x, c0)pm(dx)

≤
∣∣∣∣ ∫

S

ρ(x, c0)(pm − π′)(dx)

∣∣∣∣+

∫
S(c0)

ρ(x, c0)π′(dx) +

∫
S\S(c0)

ρ(x, c0)π′(dx)

≤ sup
x∈S

ρ(x, c0) sup
B∈B(S)

∣∣pm(B)− π′(B)
∣∣+ ε/3 + ε/3.

Since the first term converges to 0 by (3), it follows that P (supk≥1 ‖Am,k‖ > c0) ≤ ε

if m is large enough, completing the proof of the second statement.

For every positive integer m consider the processes

X̂m(t) :=

∑m+btmc
n=m+1 Ûm,n − btmcm

∑m
n=1 Ûm,n

gγ(m, btmc)
, X (t) := I

1/2
0

W
(

t
1+t

)(
t

1+t

)γ , t ≥ 0,

and let Xm be the theoretical counterpart of X̂m, which is obtained by replacing the

vectors Ûm,n by Un, respectively. The processes Xm and X̂m are random elements of

the Skorokhod space Dr[0,∞) of Rr-valued càdlàg functions defined on [0,∞). (For

the topology of Dr[0,∞) see Chapter VI of Jacod and Shiryaev [8], or see Section 16

of Billingsley [2] for the case r = 1.) Additionally, the law of the iterated logarithm

implies that X is a random element of the space Cr[0,∞) ⊆ Dr[0,∞) of continuous

functions.

The theoretical base of our main results is the fact that the process X̂m converges

in distribution to X in Dr[0,∞) if Assumption 2.1 is satisfied. This convergence is

a direct consequence of Propositions 3.2 and 3.3 stated below. We note that under

some additional regularity conditions one can also construct copies X (1),X (2), . . . of

the process X such that supt≥0 ‖X̂m(t)− X (m)(t)‖ →P 0 as m→∞. This stronger

tool was used by Horváth et al. [6], Aue el al. [1], and Kirch and Tadjuidje Kamgaing

[9] to prove similar results as our Theorems 2.2 and 2.5.

Proposition 3.2. If (i)–(vi) of Assumption 2.1 hold, then supt≥0 ‖X̂m(t) −
Xm(t)‖ →P 0 as m→∞.

Proof. Consider Θ0, an open sphere with center θ0. Since θ̂m is a weakly consistent

estimator of θ0 by (vi) of Assumption 2.1, we have P (θ̂m ∈ Θ0) → 1 as m → ∞.

Our goal is to prove a stochastic convergence, which means that we can condition
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on the event {θ̂m ∈ Θ0} for every m. We will often use the inequalities

gγ(m, k) = m1/2

(
1 +

k

m

)(
k

m+ k

)γ
≥

 cγm
1/2−γkγ, k ≤ m,

cγm
−1/2k, k > m,

where cγ is a suitable positive constant not depending on m and k.

Since the proposition follows from the stochastic convergence of the suprema of

the norms of the components of the process X̂m(t) − X (t), t ≥ 0, it is enough to

prove the statement for r = 1. Because X̂m and Xm are step functions defined on

the same partition, we must show that

(4) sup
k≥1

∣∣(∑m+k
n=m+1 Ûm,n − k

m

∑m
n=1 Ûm,n

)
−
(∑m+k

n=m+1 Un − k
m

∑m
n=1 Un

)∣∣
gγ(m, k)

= oP (1)

as m → ∞. From (iii) of Assumption 2.1 it follows that for each m and n there

exists a parameter θm,n ∈ Θ such that ‖θm,n − θ0‖ ≤ ‖θ̂m − θ0‖ and

Ûm,n − Un = f(Xn, θ0)− f(Xn, θ̂m) = (θ0 − θ̂m)>∇θf(Xn, θm,n)

= (θ0 − θ̂m)>
[
Dm,n + φ(Xn) + E∇θf(X̃0, θ0)

]
,

where

Dm,n = ∇θf(Xn, θm,n)−∇θf(Xn, θ0), φ(x) = ∇θf(x, θ0)−E∇θf(X̃0, θ0), x ∈ S.

Since θ̂m ∈ Θ0, we also have θm,n ∈ Θ0, and (iv) of Assumption 2.1 implies the

inequality ‖Dm,n‖ ≤ ‖θ̂m − θ0‖ah(Xn). By (i) of Assumption 2.1 we can apply

Proposition 3.1 to the array of random vectors {Xm,Xm+1, . . . },m ∈ Z++, and we

get that

sup
k≥1

∑m+k
n=m+1 ‖Dm,n‖
gγ(m, k)

≤ ‖θ̂m − θ0‖a sup
1≤k≤m

(
k

m

)1−γ∑m+k
n=m+1 h(Xn)

cγm−1/2k

+ ‖θ̂m − θ0‖a sup
k>m

∑m+k
n=m+1 h(Xn)

cγm−1/2k
≤ 2m1/2

cγ
‖θ̂m − θ0‖a sup

k≥1

∑m+k
n=m+1 h(Xn)

k
= oP (m1/2),

as m→∞. Similarly, from ergodicity it follows that

sup
k≥1

k
m

∑m
n=1 ‖Dm,n‖
gγ(m, k)

≤ ‖θ̂m − θ0‖a sup
1≤k≤m

(
k

m

)1−γ∑m
n=1 h(Xn)

cγm1/2

+ ‖θ̂m − θ0‖a sup
k>m

∑m
n=1 h(Xn)

cγm1/2
≤ 2m1/2

cγ
‖θ̂m − θ0‖a

∑m
n=1 h(Xn)

m
= oP (m1/2),

as m→∞. Using (v) of Assumption 2.1 and the same steps as in the last formula

one can also show that

sup
k≥1

k
m
‖
∑m

n=1 φ(Xn)‖
gγ(m, k)

≤ 2m1/2

cγ

‖
∑m

n=1 φ(Xn)‖
m

= oP (m1/2), m→∞.
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Finally, from Proposition 3.1 with am = m1/2 it follows that

sup
k≥1

‖
∑m+k

n=m+1 φ(Xn)‖
gγ(m, k)

≤ sup
1≤k≤m1/2

(
k

m

)1−γ∑m+k
n=m+1 |φ(Xn)|
cγm−1/2k

+ sup
m1/2<k≤m

(
k

m

)1−γ∑m+k
n=m+1 |φ(Xn)|
cγm−1/2k

+ sup
k>m

∑m+k
n=m+1 |φ(Xn)|
cγm−1/2k

≤ mγ/2

cγ
sup

1≤k≤m1/2

∑m+k
n=m+1 |φ(Xn)|

k
+

2m1/2

cγ
sup

k>m1/2

∑m+k
n=m+1 |φ(Xn)|

k
= oP (m1/2).

By summarizing the last four formulae we obtain the approximations

sup
k≥1

∣∣∑m+k
n=m+1(Ûm,n − Un)− k(θ0 − θ̂m)>E∇θf(X̃0, θ0)

∣∣
gγ(m, k)

= ‖θ̂m−θ0‖oP (m1/2) = oP (1),

and

(5)

sup
k≥1

∣∣ k
m

∑m
n=1(Ûm,n − Un)− k(θ0 − θ̂m)>E∇θf(X̃0, θ0)

∣∣
gγ(m, k)

= ‖θ̂m−θ0‖oP (m1/2) = oP (1),

as m→∞. From these (4) follows, and the proof is complete.

Proposition 3.3. If (ii), (vii) and (viii) of Assumption 2.1 hold, then Xm →D X
as m→∞ in the space Dr[0,∞).

Proof. Our goal is to apply the multivariate MCLT (Martingale Central Limit The-

orem, Theorem 3.33 in Chapter VIII of Jacod and Shiryaev [8]) to the martingale

difference sequences {U1/m
1/2,U2/m

1/2, . . . },m ∈ Z++. Note that for any values

t, δ > 0 we have the convergence

1

m

bmtc∑
n=1

E
[
‖Un‖2

1{‖Un‖>δm1/2}
∣∣Fn−1

]
≤ 1

δεm1+ε/2

bmtc∑
n=1

E
[
‖Un‖2+ε

∣∣Fn−1

]
P−→ 0,

as m → ∞, because by (vii) of Assumption 2.1 the variable on the right side

converges to zero in L1 sense. This means that the conditional Lindeberg condition

is satisfied, and one can show similarly that (viii) of Assumption 2.1 implies that at

least one of conditions [γ′6-D] and [γ̂′6-D] to the same theorem holds as well. As a

result, the MCLT can be applied, and it implies the weak convergence of

Um(t) := m−1/2

bmtc∑
n=1

Un, t ≥ 0,
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to I
1/2
0 W(t), t ≥ 0, in Dr[0,∞) as m→∞. (Let us recall thatW is an r dimensional

standard Wiener process.) Introduce the processes

Ym(t) :=
1

m1/2

(
m+bmtc∑
n=m+1

Un −
bmtc
m

m∑
n=1

Un

)
, Y(t) := I

1/2
0 (t+ 1)W

(
t

t+ 1

)
,

defined for t ≥ 0. From the convergence of Um we obtain that

Ym =

[
Um(t+ 1)− bm(t+ 1)c

m
Um(1)

]
t≥0

D−→
[
I

1/2
0 W(t+ 1)− (t+ 1)I

1/2
0 W(1)

]
t≥0
,

as m→∞. Since the limit is a Gaussian process with the same mean and covariance

function as Y , we get that Ym →D Y holds in Dr[0,∞).

For every positive integer ν introduce the function

Φν : Dr[0,∞)×D[1/ν,∞)→ Dr[0,∞), Φν(y, w)(t) = y(t)w(t)1{t≥1/ν}.

By the results in Chapter VI of Jacod and Shiryaev [8] the Borel σ-algebra generated

by the Skorokhod topology on the space Dr[0,∞) is identical with the σ-algebra

generated by the finite dimensional projections, and the convergence to a continuous

function in Skorokhod sense is equivalent with the local uniform convergence. These

facts imply that the function Φν is measurable, and it is continuous at the elements

of the set Cr[0,∞) × C[1/ν,∞). For the shorter notations introduce the processes

Xm,ν(t) := Xm(t)1{t≥1/ν} and X0,ν(t) := X (t)1{t≥1/ν}, along with the functions

w(t) :=

[
(1 + t)

(
t

1 + t

)γ]−1

, wm(t) :=
m1/2

gγ(m, bmtc)
= w

(
bmtc
m

)
, t ≥ 1/ν.

Since Ym →D Y and wm converges to w uniformly on the interval [1/ν,∞), we get

that (Ym, wm) →D (Y , w), and using the continuous mapping theorem we get the

convergence

Xm,ν = Φν(Ym, wm)
D−→ Φν(Y , w) = X0,ν , m→∞.

Let us recall that by the law of the iterated logarithm we have limt→0 ‖X (t)‖ = 0

almost surely. This implies that the process X0,ν converges to X in the supremum

distance with probability 1 as ν →∞, resulting the convergence of the distributions

as well.

To finish the proof of the statement we only need to show that the processes

Xm,ν are uniformly close to Xm. Let Un,1, . . . , Un,r stand for the components of the

random vector Un, and note that U1,j, U2,j, . . . is a martingale difference sequence for

every j. Theorem 1 of Chow [3] states that for a non-increasing sequence of positive
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numbers, c1, c2, . . . , a submartingale sequence of random variables, Z1, Z2, . . . , and

ε > 0 it holds for every ` ∈ Z++ that

εP

(
max
1≤k≤`

ckZk ≥ ε

)
≤

`−1∑
k=1

(ck − ck+1)E(Z+
k ) + c`E(Z+

` )

= c1E(Z+
1 ) +

`−1∑
k=2

ck
[
E(Z+

k )− E(Z+
k−1)

]
,

where Z+ := max(Z, 0) for any random variable Z. For a fixed m ∈ Z++ and

j ∈ {1, . . . , r} identify the sequences as ck := 1/g2
γ(m, k) and Zk := (

∑m+k
n=m+1 Un,j)

2,

k ∈ Z++. As U1,j, U2,j, . . . is a martingale difference sequence, the sequence Zk,

k ∈ Z++ is a submartingale. Note that{
max

1≤k≤bm/νc

∥∥∑m+k
n=m+1 Un

∥∥
gγ(m, k)

≥ ε

}
⊆

r⋃
j=1

{
max

1≤k≤bm/νc

(∑m+k
n=m+1 Un,j

)2

gγ(m, k)2
≥ ε2

r

}
.(6)

Then applying Chow’s inequality we get that

P

(
max

1≤k≤bm/νc

∥∥∑m+k
n=m+1 Un

∥∥
gγ(m, k)

≥ ε

)

≤
r∑
j=1

P

(
max

1≤k≤bm/νc

(
w(k/m)

∑m+k
n=m+1 Un,j

)2

m
≥ ε2

r

)

≤
r∑
j=1

r

ε2

bm/νc∑
k=1

w2(k/m)EU2
m+k,j

m
≤ r2v0

ε2

∫ 1/ν

0

1

t2γ
dt =

r2v0

ε2(1− 2γ)ν1−2γ
→ 0

as ν → ∞. Also, the convergence of the process Um implies that the variables

‖Um(1)‖ are stochastically bounded, which results the convergence

max
1≤k≤bm/νc

k
m

∥∥∑m
n=1 Un

∥∥
gγ(m, k)

= ‖Um(1)‖ max
1≤k≤bm/νc

k

m
w

(
k

m

)
≤ ‖Um(1)‖ 1

ν1−γ
P−→ 0,

uniformly in m as ν →∞. From these we get that

sup
0≤t≤1/ν

∥∥Xm(t)−Xm,ν(t)
∥∥ = max

1≤k≤bm/νc
‖Xm(k/m)‖ P−→ 0, ν →∞,

uniformly in m. Note that X0,ν → X almost surely as ν → ∞. Then, Theorem

3.2 of Billingsley [2] implies that the process Xm converges in distribution to X as

m→∞ in the space Dr[0,∞).

Proof of Theorem 2.2. By the properties of the Skorokhod topology Propositions 3.2

and 3.3 imply the convergence X̂m →D X in the space Dr[0,∞) as m → ∞. Since
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Î
−1/2
m is a weakly consistent estimator of I

−1/2
0 , we also get that Î

−1/2
m X̂m →D I

−1/2
0 X

as m→∞.

Consider the function ΨT : Dr[0,∞)→ R defined as ΨT (y) := sup0≤t≤T ψ(y(t)).

It can be shown that ΨT is measurable for any T ∈ (0,∞], and by Proposition 2.4

of Jacod and Shiryaev [8] it is continuous at the elements of the set Cr[0,∞) if T is

finite. Since I
−1/2
0 X is a sample continuous process, it follows from the continuous

mapping theorem (see Theorem 2.7 of Billingsley [2]) that

(7) sup
1≤k≤bTmc

ψ(Sm,k) = ΨT

(
Î−1/2
m X̂m

) D−→ ΨT

(
I
−1/2
0 X

)
= sup

0≤t≤T/(1+T )

ψ
(
W(t)/tγ

)
,

for any finite T as m→∞. Unfortunately, this argument does not work for T =∞,

because in case of an arbitrary continuous ψ the function Ψ∞ is not continuous

on Cr[0,∞). In the remaining of the proof we show that the statement is true for

T =∞ by using a different method.

Since the random vectors U1,U2, . . . have bounded second moments, the martin-

gale law of large numbers (see e.g. Theorem 3 in Section VII.9 in Feller [5]) implies

the almost sure convergence

(8) Xm
( k
m

)
= m1/2

(
1 +

m

k

)γ[
1

m+ k

m+k∑
n=1

Un −
1

m

m∑
n=1

Un

]
→ − 1

m1/2

m∑
n=1

Un,

k → ∞. In the next step we show that this convergence is uniform in m. Let X ∗m
denote the process Xm with fixed parameter γ = 0. From (8) it follows for any

T ∈ (0,∞) and k ≥ Tm that

X ∗m
( k
m

)
−X ∗m(T ) =

m1/2

m+ k

m+k∑
m=m+bTmc+1

Un −
m1/2(k − bTmc)

(m+ k)(m+ bTmc)

m+bTmc∑
n=1

Un.

By using again the Hájek–Rényi type inequality (6) we get that

P

(
sup
k≥Tm

∥∥∑m+k
m=m+bTmc+1Un

∥∥
m−1/2(m+ k)

≥ ε

)
≤

r∑
j=1

P

(
sup
k≥Tm

(∑m+k
m=m+bTmc+1 Un,j

)2

m−1(m+ k)2
≥ ε2

r

)

≤
p∑
j=1

r

ε2

∞∑
k=bTmc+1

EU2
m+k,j

m(1 + k/m)2
≤ rv0

ε2

∫ ∞
T−1

1

(1 + t)2
dt =

rv0

ε2T
→ 0, T →∞.

Also, the tightness of the variables Um(1), m ∈ Z++, implies that

sup
k≥Tm

m1/2(k − bTmc)
(m+ k)(m+ bTmc)

∥∥∥∥m+bTmc∑
n=1

Un

∥∥∥∥
= sup

k≥Tm

(
m

m+ bTmc

)1/2
(k − bTmc)
m+ k

∥∥∥∑m+bTmc
n=1 Un

∥∥∥√
m+ bTmc

≤
‖Um+bTmc(1)‖

T 1/2

P−→ 0
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holds uniformly in m as T →∞. As a result, we get the convergence

sup
t≥T

∥∥X ∗m(t)−X ∗m(T )
∥∥ = sup

k≥Tm

∥∥X ∗m(k/m)−X ∗m(T )
∥∥ P−→ 0, T →∞,

uniformly in m. Since for any fixed T ≥ 0 the variables X ∗m(T ), m ∈ Z++, are tight,

it also follows that supt≥T ‖X ∗m(t)‖ = OP (1). We already proved that the statement

is true for any finite T . Using this result with function ψ(x) = ‖x‖, x ∈ Rr, we get

that sup0≤t≤T ‖X ∗m(t)‖ = OP (1), resulting the rate supt≥0 ‖X ∗m(t)‖ = OP (1).

Let γ ∈ [0, 1/2) be an arbitrary value, and note that Xm(t) = (1 +

m/btmc)γX ∗m(t), where the function (1 + m/btmc)γ, t ≥ T , is decreasing and it

has finite limit at infinity. Then, for any T > 1, by using the triangular inequality

we get the convergence

sup
t≥T

∥∥Xm(t)−Xm(T )
∥∥ ≤ (1 +

m

bTmc

)γ
sup
t≥T

∥∥X ∗m(t)−X ∗m(T )
∥∥

+ sup
t≥T

[(
1 +

m

bTmc

)γ
−
(

1 +
m

btmc

)γ]
sup
t≥T
‖X ∗m(t)‖

≤ 2γ sup
t≥T

∥∥X ∗m(t)−X ∗m(T )
∥∥+

(
1 +

1

T − 1

)γ
sup
t≥0
‖X ∗m(t)‖ P−→ 0,

(9)

uniformly in m as T → ∞. From this one can prove that supt≥0 ‖Xm(t)‖ = OP (1)

similarly as we obtained the related rate for the process X ∗m.

Consider arbitrary values ε, δ, δ′ > 0. By the uniform stochastic boundedness

there exists a constant K such that P (supt≥0 ‖Xm‖ ≤ K) ≥ 1−ε holds for m ∈ Z++.

By using this bound, Proposition 3.2, the uniform convergence in (9), and the weak

consistency of the estimator Îm imply that there exist positive values T0,m0 ≥ 0

depending only on ε, δ′, and K, such that

(10) P

(
sup
t≥0
‖X̂m(t)‖ ≤ 2K, sup

t≥T

∥∥Î−1/2
m X̂m(t)− Î−1/2

m X̂m(T )
∥∥ ≤ δ′

)
≥ 1− 2ε

holds for every T ≥ T0 and m ≥ m0. Since the function ψ is continuous, it is

uniformly continuous on the r-dimensional closed sphere having radius 2K and

having center at the origin. This means that the δ′ can be chosen such that ‖ψ(x)−
ψ(y)‖ ≤ δ for every elements x and y of the sphere satisfying ‖x − y‖ ≤ δ′. By

using this property along with (10) we get that

pT,m(δ) := P

(
Ψ∞
(
Î−1/2
m X̂m

)
−ΨT

(
Î−1/2
m X̂m

)
> δ

)
≤ P

(
sup
t≥T

ψ
(
Î−1/2
m X̂m(t)

)
− ψ

(
Î−1/2
m X̂m(T )

)
> δ

)
≤ 2ε
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for every T ≥ T0 and m ≥ m0. Since ε is an arbitrary positive value, if follows that

lim
m→∞

lim sup
T→∞

pT,m(δ) = 0

holds for every δ > 0. Note that ΨT (X )→ Ψ∞(X ) almost surely as T →∞. Then,

the convergence in (7) proved for any finite T and Theorem 3.2 of Billingsley [2]

imply that the result in (7) is true for T =∞ as well. This argument completes the

proof of the theorem.

Proof of Theorem 2.5. Consider an arbitrary integer valued sequence km ≥ k∗m + 1,

m ∈ Z++. Let us note that Xm,n = Xn and Um,n = Un hold for any positive integers

m and n ≤ m+ k∗m, and we have Ûm,n−Um,n = f(Xm,n, θA)− f(Xm,n, θ̂m) for every

m and n > m+ k∗m. Then it follows that

m+km∑
n=m+1

Ûm,n −
km
m

m∑
n=1

Ûm,n =

[ m+k∗m∑
n=m+1

Ûm,n −
k∗m
m

m∑
n=1

Ûm,n

]
+

m+km∑
n=m+k∗m+1

Um,n

+
m+km∑

n=m+k∗m+1

[
f(Xm,n, θA)− f(Xm,n, θ0)

]
+

m+km∑
n=m+k∗m+1

[
f(Xm,n, θ0)− f(Xm,n, θ̂m)

]

− km − k∗m
m

m∑
n=1

Un −
km − k∗m

m

m∑
n=1

[
Ûm,n − Un

]
.

First, consider the case r = 1. Since gγ(m, k) is an increasing function of k, Corollary

2.3 implies that∣∣∑m+k∗m
n=m+1 Ûm,n − k∗m

m

∑m
n=1 Ûm,n

∣∣
gγ(m, km)

≤
∣∣X̂m(k∗m/m)

∣∣ ≤ sup
t≥0

∣∣X̂m(t)
∣∣ = OP (1).

Let us note that supk≥1 k/gγ(m, k) = O(m1/2). Using this rate and the weak con-

vergence of the process Um, which was shown in the proof of Proposition 3.3, we

obtain that
km−k∗m
m

∣∣∑m
n=1 Un

∣∣
gγ(m, km)

≤ sup
k≥1

k|Um(1)|
m1/2gγ(m, k)

= OP (1),

Also, from equation (5) it follows that

km−k∗m
m

∣∣∑m
n=1(Ûm,n − Un)

∣∣
gγ(m, km)

≤ sup
k≥1

kOP (m−1/2)

gγ(m, k)
+ oP (1) = OP (1), m→∞.

Since the random variables Um,1,Um,2, . . . form a martingale difference sequence,

they are pairwise uncorrelated. Then, for any m ≥ mA by using (iv) of Assumption

2.4 we get that

Var

(∑m+km
n=m+k∗m+1 Um,n

gγ(m, km)

)
≤ (km − k∗m)vA

g2
γ(m, km)

≤
(

km
m+ km

)1−2γ

vA ≤ vA.
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From this the Chebyshev inequality implies that the variable on the left side is of

rate OP (1) as m→∞.

Consider the constant ∆ defined by the alternative hypothesis HA, and assume

that km − k∗m → ∞ as m → ∞. By the assumptions we can apply Proposition

3.1 to the array of variables {Xm,m+k∗m+`, ` ∈ Z+}, m ∈ Z++, with the function

φ(x) = f(x, θA)− f(x, θ0), and we obtain the equation

m+km∑
n=m+k∗m+1

[
f(Xm,n, θA)− f(Xm,n, θ0)

]
= (km − k∗m)

[
∆ + oP (1)

]
, m→∞.

Similar arguments result that

m+km∑
n=m+k∗m+1

[
f(Xm,n, θ0)− f(Xm,n, θ̂m)

]
= oP (km − k∗m), m→∞.

By summarizing the results of the current proof the weak consistency of the estima-

tor Îm implies that

(11)

Sm,km = Î−1/2
m

∑m+km
n=m+1 Ûm,n − km

m

∑m
n=1 Ûm,n

gγ(m, km)
=

km − k∗m
gγ(m, km)

[
I
−1/2
0 ∆ + oP (1)

]
+OP (1)

as m→∞ in the case r = 1. From this it follows that (11) holds for an arbitrary r

as well, since in the general case the equation is understood componentwise.

(i) Consider the sequence km = k∗m + bε(m + k∗m)c, m ∈ Z++, with an arbitrary

ε > 0. If m is large enough then we obtain the inequality

km − k∗m
gγ(m, km)

≥
√
mbε(m+ k∗m)c

m+ k∗m + bε(m+ k∗m)c
≥
√
mbε(m+ k∗m)c

(1 + ε)(m+ k∗m)
,

and the right side converges to infinity as m→∞. Since I0 is nonsingular and ∆ 6= 0

by the alternative hypothesis, we have I
−1/2
0 ∆ 6= 0. This means that ‖Sm,km‖ →P ∞,

implying the convergence ψ(Sm,km)→P ∞. Let xα stand for the critical value of the

test corresponding to an arbitrary significance level α ∈ (0, 1). Then we have the

convergence

P
(
κm,k∗m − k

∗
m ≤ ε(m+ k∗m)

)
≥ P

(
ψ(Sm,km) > xα

)
→ 1, m→∞,

proving the first statement.

(ii) To prove the second statement consider the values km = k∗m + bCmβc, m ∈
Z++, with an arbitrary C > 0 and with the β defined by the theorem. The conditions

on the function ψ implies that there exists a real value K > 0 such that ψ(x) > xα
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if ‖x‖ > K. By standard calculations one can verify that

lim
m→∞

km − k∗m
gγ(m, km)

= H(C) :=


C
(
C + a1{b= 1−2γ

2−2γ}
)−γ

, 0 ≤ b ≤ 1−2γ
2−2γ

,

Ca−γ
(
1 + a1{b=1}

)γ−1
, 1−2γ

2−2γ
< b ≤ 1,

Ca−1, 1 < b.

From this and from equation (11) it follows that for any fixed C > 0, if m is large

enough, then

(12) ‖Sm,km‖ ≥
H(C)

2

[
‖I−1/2

0 ∆‖+ oP (1)
]

+OP (1),

where the terms oP (1) and OP (1) are the same as in (11) and do not depend on

C. Fix an arbitrary real number δ > 0. Since limC→∞H(C) = ∞, the right side

of (12) converges to infinity as C → ∞ with probability 1. This implies that the

value C can be chosen such a way that the right side of (12) is greater that K with

a probability at least 1− δ. Using this C we obtain the inequalities

P
(
κm,k∗m − k

∗
m ≤ Cmβ

)
≥ P

(
ψ(Sm,km) > xα

)
≥ P

(
‖Sm,km‖ > K

)
≥ 1− δ

for every large enough m. Since δ is an arbitrary positive number, the probability

on the left side converges to 1 as m → ∞, proving the second statement of the

theorem.

Remark 1. Since the functions ψ1 and ψ2 of (2) satisfy the assumptions of Theorem

2.5, the results are valid for the related test statistics. Unfortunately, we can not

apply the theorem for the test statistics corresponding to the third convergence,

because the limit lim‖x‖→∞ ψ3(x) does not exist. However, with some modifica-

tions in the proof one can show that the results of Theorem 2.5 are valid for ψ3, if

c>I
−1/2
0 ∆ 6= 0. For this goal note that the base idea of the proof is formula (11),

which ensures that the vector Sm,km is ”large” in some sense. From this equation

we get that

(13) ψ3(Sm,km) =
∣∣c>Sm,km∣∣ =

km − k∗m
gγ(m, km)

[
|c>I−1/2

0 ∆|+ oP (1)
]

+OP (1),

implying that ψ3(Sm,km) is ”large” as well, if c>I
−1/2
0 ∆ 6= 0. Then the results of

Theorem 2.5 can be obtained for the function ψ3 by using (13) in parts (i) and (ii)

of the proof.

Proof of Proposition 2.6. Let us note that in the open-end case all of the three

convergences in Corollary 2.3 can be written in the form supk≥1 ψ(Sm,k) →D Z,
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m → ∞, where ψ : Rr → R is one of the functions in (2), and Z is a nonnegative

valued absolute continuous random variable with unbounded support. Let FZ stand

for the distribution function of Z and let xα be the critical value of the open-end

test corresponding to the significance level α.

If b < 1 then consider an arbitrary value ε > 0. Since k∗m < εm if m is large

enough, we get that

P
(
κm,0 ≤ k∗m

)
≤ P

(
sup

1≤k≤bεmc
ψ(Sm,k) > xα

)
→ 1− FZ

((
1 + ε

ε

)1/2−γ

xα

)
,

as m → ∞. Since the limit can be arbitrary small by choosing a sufficiently small

ε, the left side converges to 0 as m→∞.

If b = 1 then the identity FZ(xα) = 1− α implies the convergence

P
(
κm,0 ≤ k∗m

)
= P

(
sup

1≤k≤bcmc
ψ(Sm,k) > xα

)
→ 1−FZ

((
1 + c

c

)1/2−γ

xα

)
∈ (0, α),

as m→∞.

If b > 1 then consider an arbitrary T > 0, and note that for every large enough

m we have the inequality and the convergence

1− FZ

((
1 + T

T

)1/2−γ

xα

)
← P

(
sup

1≤k≤bTmc
ψ(Sm,k) > xα

)
≤ P

(
κm,0 ≤ k∗m

)
≤ P

(
sup
k≥1

ψ(Sm,k) > xα

)
→ 1− FZ (xα) = α,

as m → ∞. Since by increasing T the left side can be arbitrary close to α, the

probability in question goes to α as m→∞. This argument completes the proof of

the proposition.
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