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An online change detection test for parametric
discrete-time stochastic processes

Fanni K. Ned�enyi

MTA-SZTE Analysis and Stochastics Research Group, Bolyai Intitute, University of Szeged, Szeged, Hungary

ABSTRACT
Detecting a change as fast as possible in an observed stochastic
process is an important task. In this article, an online procedure
is presented to detect changes in the parameter of general discrete-
time parametric stochastic processes. As examples, regression
models, autoregressive processes, and Galton–Watson processes are
investigated. The test is called cumulative sum (CUSUM) type
because it is based on the cumulated sums of the estimates of
certain martingale difference sequences belonging to the process. In
case of a single change alternative hypothesis, the procedure is
examined in terms of consistency. Due to the online manner, the
time of change can also be estimated.
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1. Introduction

In the literature on statistics, offline and online procedures have both been introduced
to detect changes in stochastic systems. We call a procedure offline if the whole sample
is given at the time of the testing and online if the testing is performed in a sequential
manner, taking observations one by one. The aim of this article is to perform online
change-point detection on the parameter of a certain vector-valued parametric process
X1;X2; :::

The online procedure is considered the following way. Throughout the article, we
assume that the so-called noncontamination assumption holds for some positive integer
m, meaning that the parameter is unchanged until time m. This assumption is regular
in the context of online procedures and allows us to estimate the default value of the
parameter in question. For the sake of generality we fix a constant T> 0 and define the
test based on the observations X1; :::;Xm;Xmþ1; :::;XmþbTmc. If T ¼ 1, then the test is
called open-ended; otherwise, it is called closed-ended. The goal is to test the null
hypothesis that there is no change in the parameter on the entire given time horizon.
In the online case, test statistics of the form sm;k ¼ sm;kðX1; :::;XmþkÞ; k ¼ 1; 2; :::,
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are considered, and a rejection is made if sup1�k�bTmc sm;k > xa; where xa is the critical

value corresponding to the significance level a 2 ð0; 1Þ. The value j is called a rejection
time if sm;j > xa. The theoretical background of the procedure is that under the null
hypothesis and certain regularity conditions sup1�k�bTmc sm;k! DsT; m!1, for

some random variable sT that depends on the model and the constant T. Then an
approximation of the critical value xa can be derived from the distribution of sT by
solving PðsT > xaÞ ¼ a for xa. Indeed, if xa is a continuity point of the distribution
function of the limit variable sT, then

P sup
1�k�bTmc

sm;k > xa
� �! a; m!1;

meaning that xa is an asymptotically correct critical value corresponding to the
significance level a.
Online change-point detection has been an investigated area in the last decades. The

above-discussed noncontamination assumption was first introduced in Chu et al. (1996).
In Chu et al. (1996) and Horv�ath et al. (2004), a statistical methodology was developed
that supplies a limit theorem establishing an online procedure. The statistics in these
papers are special cases of ours, having the form sm;k ¼ jjSm;kjj, where Sm;k is defined in
(2.2). In Horv�ath et al. (2004, 2007) and Aue et al. (2006), this general methodology is
applied to linear regression models in an open-ended manner. Under a single change
alternative hypothesis, their tests are shown to be consistent and they investigate the
distribution of the rejection times as well. In Kirch and Tadjuidje Kamgaing (2011),
open-ended and closed-ended procedures are given to test for a change in special
functional autoregressive models. Our aim is to generalize these results to discrete-time
stochastic processes satisfying certain general regularity conditions. Our article and the
above-mentioned references contain statistics based on the cumulative sums (CUSUMs)
of suitable estimators of certain martingale difference sequences of the process. Such
statistics are called CUSUM-type. Note that another CUSUM-type statistic is also
frequently applied in online change-point detection that is based on the cumulated sums
of likelihood quotients.
The main results of the article are presented in Section 2, with the proofs given in

Section 3. Subsection 2.3 contains a discussion of some examples of processes that fit
into our model.

2. Main results

2.1. Model and test statistics

In our model, the observations are Rq �Rr-valued random pairs ðXn;YnÞ; n ¼ 1; 2; :::,
with some positive integers q and r. Let F n�1 stand for the r-algebra generated by the
random vectors fXk;Yk�1 : k � ng. Throughout the article we will assume that

E½Yn j F n�1� ¼ E½Yn jXn� ¼ f ðXn; hnÞ; n ¼ 1; 2; :::; (2.1)

where f : Rq �H! Rr is a known measurable function with components f1; :::; fr, H is
a measurable subset of a finite dimensional Euclidean space, and hn 2 H is a parameter
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of the joint distribution of Xn and Yn. Note that here and throughout the article, the
equations concerning the conditional expectations are understood in an almost sure sense.
For any fixed, known positive integer m, by the noncontamination assumption it is a

priori known that hn ¼ h0 for n ¼ 1; :::;m with a fixed but unknown h0 2 H. The aim
of online change detection is to test whether hmþ1 ¼ � � � ¼ hmþbTmc ¼ h0 with a given
T 2 ð0;1�. For this goal, we will test the null hypothesis

H0 : E½Yn jXn� ¼ f ðXn; h0Þ; n ¼ mþ 1; :::;mþ bTmc:
Note that this null hypothesis is weaker than the equality of the parameters. It is easy

to see that without further assumptions, the dynamics of the underlying model could be
unchanged with different parameters; for example, if the function f does not depend on
all of the components of its second argument. However, in case of many applications
the two are equivalent; see, for example, the one discussed in Subsection 2.3.2.
We would like to obtain asymptotical results, namely, when m, the size of the training

sample, and therefore the number of observations goes to infinity. One could define a
triangular array with rows ðXn;YnÞ; n ¼ 1; :::;mþ bTmc, where m ¼ 1; 2; ::: Then for
every m ¼ 1; 2; :::, the m th row is the input for the corresponding testing, where the first
m pairs serve as the training sample, and we test the above-introduced H0 corresponding
to the given m. Therefore, for the asymptotical results we assume that every row satisfies
the noncontamination assumption and the related null hypothesis. Then the variables
Un :¼ Yn � f ðXn; h0Þ; n ¼ 1; 2; :::, form a martingale difference sequence with respect
to the filtration F 0;F 1; ::: For a given positive integer m, we consider an estimator ĥm
of the true parameter h0 based on the training sample ðX1;Y1Þ; :::; ðXm;YmÞ, and
we define an estimator of the martingale difference sequence by
Ûm;n :¼ Yn � f ðXn; ĥmÞ; n ¼ 1; 2; :::, which variables our testing method is based on.
We summarize our regularity conditions and some additional notations in the

following assumption. Throughout the article, the vector norm is the Euclidean norm,
and 1A is the indicator of the event A. The notations Zþ; Zþþ and BðRqÞ stand for
the set of nonnegative integers, positive integers, and the Borel r-algebra of the space
Rq, respectively.

Assumption 2.1.
i. The process Xn; n 2 Zþþ, is strictly stationary and ergodic or it is an aperiodic

positive Harris recurrent Markov chain. The notation ~X0 stands for an arbitrary
random vector whose distribution is the same as the unique stationary
distribution of this process.

ii. Suppose that E½Yn jXn� ¼ f ðXn; h0Þ for every n 2 Zþþ.
iii. There exists an open neighborhood H0 � H of h0 such that the functions

fiðx; hÞ; i ¼ 1; :::; r, are continuously differentiable with respect to the variable h

at every point ðx; hÞ 2 Rq �H0. Let rhfiðx; hÞ stand for the vector of partial
derivatives.

iv. There exists a real number a> 0 and a measurable function h : Rq ! ½0;1Þ
such that

krhfiðx; hÞ � rhfiðx; h0Þk � jjh�h0jjahðxÞ; x 2 Rq; h 2 H0;
for i ¼ 1; :::; r.

v. The expectations Ehð ~X0Þ and Erhfið ~X0; h0Þ; i ¼ 1; :::; r, are finite.
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vi. We have an estimator ĥm of h0 based on the training sample
ðX1;Y1Þ; :::; ðXm;YmÞ such that m1=2ðĥm � h0Þ ¼ OPð1Þ.

vii. There exists an e> 0 such that supn�1 EjjUnjj2þe is finite. Note that if this holds
for any e> 0, then the constant v0 :¼ supn�1 EjjUnjj2 is finite as well.

viii. There exists a nonsingular matrix C0 2 Rr�r such that one of the
following convergences holds as m!1:

1
m

Xm

n¼1 UnU>n!
P
C0;

1
m

Xm

n¼1 E ½UnU>n j F n�1�!P C0:

ix. The matrix C0 has a weakly consistent positive semidefinite estimator Ĉm 2
Rr�r based on the sample ðX1;Y1Þ; :::; ðXm;YmÞ.

We note that the estimators ĥm and Ĉm do not need to be well defined with probability 1
for every m; it is enough if they exist with asymptotic probability 1 as m!1.
The following statements on Ĉm hold in the same sense, with asymptotic probability 1 as
m!1. Based on Assumption 2.1, the matrices C0 and Ĉm are positive semidefinite,
which implies that they have unique square roots C1=2

0 and Ĉ
1=2
m among positive semide-

finite matrices. Also, assumption (viii) ensures that the estimator Ĉm is nonsingular with
asymptotic probability 1, meaning that Ĉ

1=2
m is invertible in the same sense.

In Subsection 2.3 we show examples of the considered model along with some
remarks on how to check the introduced assumptions.
Similar to Horv�ath et al. (2004, 2007), Aue et al. (2006), and Kirch and Tadjuidje

Kamgaing (2011), we consider the weight function

gcðm; kÞ ¼ m1=2 1þ k
m

� �
k

mþ k

� �c

; m; k 2 Zþþ;

where c 2 ½0; 1=2Þ is an arbitrary tuning parameter, and introduce the random vectors

Sm;k :¼ Ĉ
�1=2
m

Xmþk
n¼mþ1 Ûm;n � k

m

Xm

n¼1 Ûm;n

gcðm; kÞ ; m; k 2 Zþþ: (2.2)

Our main result is stated in the following theorem, where WðtÞ ¼ ½W1ðtÞ; :::;
WrðtÞ�>; t � 0, is an r-dimensional standard Wiener process. Here and throughout the
article we use the convention 0=0 :¼ 0, and for T ¼ 1 let T=ðT þ 1Þ :¼ 1.

Theorem 2.1. Suppose that the sequence ðXn;YnÞ; n ¼ 1; 2; :::, satisfies (2.1) and the
noncontamination assumption. If Assumption 2.1 holds, implying that H0 is true for every
m 2 Zþþ, then for any continuous function w : Rr ! R and for any T 2 ð0;1� we
have the convergence

sup
1�k�bTmc

wðSm;kÞ!D sup
0�t�T=ðTþ1Þ

wðWðtÞ=tcÞ; m!1:

Let us note that by the law of the iterated logarithm, the process WðtÞ=tc is sample
continuous on the interval ½0; 1�. This implies that the limit in Theorem 2.1 is a finite
random variable. As a result, the null hypothesis H0 can be tested as described in
Section 1 by using the statistics sm;k ¼ wðSm;kÞ. In the next theorem, we present three
examples for such statistics, which can be obtained by using the scaling property of the
Wiener process with the norm-like functions
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w1ðyÞ ¼ jjyjj; w2ðyÞ ¼ max
1�i�r

jyij; w3ðyÞ ¼ jc>yj; (2.3)

where y ¼ ½y1; :::; yr�>; c 2 Rr. The variables Sm;k;1; :::; Sm;k;r stand for the components of
the random vector Sm;k.
Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold. Then for arbitrary
constants T 2 ð0;1� and c 2 Rr we have that

sup
1�k�bTmc

jjSm;kjj!D T
1þ T

� �1=2�c
sup
0�t�1

jjWðtÞjj
tc

;

sup
1�k�bTmc

max
1�i�r

jSm;k;ij!D T
1þ T

� �1=2�c
max
1�i�r

sup
0�t�1

jWiðtÞj
tc

;

sup
1�k�bTmc

jc>Sm;kj!D T
1þ T

� �1=2�c
jjcjj sup

0�t�1

jW1ðtÞj
tc

;

as m!1.

We omit the proof of this simple theorem. The main advantage of the three tests
based on the functions in (2.3) is that the critical values corresponding to the closed-
ended case can be easily calculated from the critical value xa of the open-ended test in
the form ðT=ð1þ TÞÞ1=2�cxa. Also note that the limit variables are continuous, which
implies that there exist asymptotically correct critical values for any significance level
a 2 ð0; 1Þ. The test based on the function w1 is the classical one introduced by Chu
et al. (1996) and investigated by several authors in the last two decades. Horv�ath et al.
(2004) published a table of the critical values in the case r¼ 1 based on computer
simulation. However, the quantiles of the limit variable sup0�t�1 jjWðtÞjj=tc are not
available for every positive integer r. This fact motivates the second test based on the
function w2, having critical values that can be determined by using only the quantiles of
the one-dimensional case. Indeed, let xb be the critical value of the one-dimensional
limit process corresponding to the significance level b ¼ 1� ð1� aÞ1=r. Then,

P max
i¼1;:::;r

sup
0�t�1

jWi tð Þj
tc

� xb

 !
¼ P sup

0�t�1

jW1 tð Þj
tc

� xb

 !r

¼ 1� bð Þr ¼ 1� a;

meaning that xb is the critical value corresponding to the r-dimensional limit process
and significance level a. We note that in several applications the components of the
statistics Sm;k have different sensitivities for the model change, and a suitable linear
combination of them can improve the power of the method. This is the concept of the
test corresponding to the function w3.

2.2. Results under the alternative hypothesis

In this subsection, we investigate the test statistics under the alternative hypothesis that
there is a single change in the dynamics of the system. To ensure that the noncontami-
nation assumption holds, we consider a sequence of nonnegative integers k	m; m 2 Zþþ,
and assume that for any m the change happens at the time point mþ k	m. For simplicity,
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we investigate only the open-ended case, and we assume that the dynamics before and
after the change do not depend on the values m and k	m. The goal is to show the
consistency of the test under some suitable conditions of the model and to investigate
the time of rejection as a function of m.
To formalize the model, consider a sequence of Rq �Rr-valued observations
ðXn;YnÞ; n 2 Zþþ, satisfying Assumption 2.1, and additionally Rq �Rr-valued ran-
dom pairs ðXm;mþk	mþn;Ym;mþk	mþnÞ; m; n 2 Zþþ. For a given m we will perform the test
based on the sample ðXm;1;Ym;1Þ; ðXm;2;Ym;2Þ; :::, where ðXm;n;Ym;nÞ :¼ ðXn;YnÞ for
n � mþ k	m. As a consequence of this construction, for every m the dynamics of the
system does not change before the ðmþ k	mÞ th step, and some additional regularity
conditions summarized in the next assumption will ensure that after this time point the
system follows another dynamics starting from the initial value ðXm;mþk	m ;Ym;mþk	mÞ. To
perform the test, we introduce the random vectors

Um;n :¼ Ym;n � E½Ym;n jXm;n�; Ûm;n :¼ Ym;n � f ðXm;n; ĥmÞ m; n 2 Zþþ;

and we define Sm;k by formula (2.2).

Assumption 2.2.
i. The processes fXm;mþk	mþn; n 2 Zþþg; m 2 Zþþ, are strictly stationary with the

same finite dimensional distributions, or they are positive Harris recurrent
Markov chains with the same transition probability kernel. Let ~XA be an arbi-
trary Rq-valued random vector whose distribution is the same as the unique sta-
tionary distribution of the processes.

ii. We have E½Ym;n jXm;n� ¼ f ðXm;n; hAÞ for every integer m � 1 and n �
mþ k	m þ 1 with some hA 2 H0 and with the function f introduced in
Assumption 2.1.

iii. The expectations Ehð ~XAÞ; Ef ð ~XA; h0Þ; Ef ð ~XA; hAÞ, and Erhfið ~XA; h0Þ;
i ¼ 1; :::; r, are finite, where h is the function defined in (iv) of Assumption 2.1.

iv. There exists a positive integer mA such that

vA :¼ sup
m�mA

sup
n�mþk	mþ1

EjjUm;njj2<1:

In this subsection, we work under the alternative hypothesis

HA : D :¼ Ef ð ~XA; hAÞ � Ef ð ~XA; h0Þ 6¼ 0:

We will test whether the dynamics of the process ðXm;n;Ym;nÞ; n 2 Zþþ, are unchanged
over time under this single change alternative hypothesis by using the test statistics
sm;k :¼ wðSm;kÞ introduced in Section 1, where w : Rr ! R is an arbitrary continuous
function. With a given critical value, xa corresponding to a significance level a the time
of the first rejection after the ðmþ ‘Þ th step is defined by jm;‘ :¼ minfk>‘ : sm;k > xag.
In particular, for every m, the variables jm;0 and jm;k	m stand for the first time of rejection
after the last element of the training sample and after the time of the actual model
change, respectively. The following result is motivated by the similar theorems of
Horv�ath et al. (2004) and Aue et al. (2006) stated for their linear regression models.
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Theorem 2.3. Assume that Assumptions 2.1 and 2.2 and the alternative hypothesis HA

are satisfied, and limjjxjj!1 wðxÞ ¼ 1.

i. For any sequence k	m of nonnegative integers we have jm;k	m � k	m ¼ oPðmþ k	mÞ as
m!1. It is a direct consequence that the related test is consistent.

ii. If k	m ¼ bcmbc for every m with some constants b; c � 0, then jm;k	m � k	m ¼
OPðmbÞ, where

b ¼
ð1� 2cÞ=ð2� 2cÞ; 0 � b � ð1� 2cÞ=ð2� 2cÞ;
1=2� cð1� bÞ; ð1� 2cÞ=ð2� 2cÞ<b � 1;
b� 1=2; 1<b:

8<
:

Let us note that the functions w1 and w2 defined by (2.3) satisfy the conditions of the
theorem, which means that the results of statements (i) and (ii) are valid for the related
tests. Although the limit limjjxjj!1 w3ðxÞ does not exist, we show in Remark 3.1 after
the proof of the latter theorem that with some minor changes in the calculations one
can obtain the same rates for the function w3 under the additional assumption
that c>C�1=20 D 6¼ 0.
In Theorem 2.3, we examined the first time of rejection after the model change.

However, in the applications we may meet false alarms, when the test detects the change
of the model too early, before the actual time of the change, mþ k	m. Using our
notations, the false alarm is the event fjm;0 � k	mg. In our last result, we examine the
asymptotic probability of this event.

Theorem 2.4. Assume that Assumption 2.1 is satisfied and consider any of the three test-
ing methods of Theorem 2.2. If k	m ¼ bcmbc for every m with some constants b � 0 and
c> 0, then

Pðjm;0 � k	mÞ !
0; b<1;
a	; b ¼ 1;
a; b> 1;

8<
:

where a	 2 ð0; aÞ.

2.3. Some general remarks and examples

Let us present some ideas how to check the conditions of Assumption 2.1 in applica-
tions. In most cases, condition (i) has to be verified based on a priori information on
the model. Positive Harris recurrence is already proved for many discrete-time Markov
chains, which can be shown along with (v) by using the Foster–Lyapunov criteria (14.3)
in chapter 14 of Meyn and Tweedie (2009). In the simple case when the process
Xn; n 2 Zþþ, has countable state space, (i) of Assumption 2.1 holds if the process has
exactly one positive recurrent class and it is aperiodic and reached within finitely many
steps starting from any initial distribution with probability 1.
Assumptions (iii) and (iv) are analytical conditions, which must be checked by

standard calculations. We note that these conditions are satisfied with a¼ 1 and hðxÞ ¼
maxi¼1;:::;rsuph2Hjjr2

hfiðx; hÞjj if the function f is twice continuously differentiable with
respect to h on Rq �H0. In many applications, we find models where the function is
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linear in the form f ðx;AÞ ¼ Ax; x 2 Rq, with coefficient and parameter A 2 Rr�q.
Although this model is not parameterized by vectors, is has a natural reparameterization
by using h ¼ hðAÞ 2 Rrq defined as the the vector of the columns of A. The partial
derivatives of the function Ax are linear and do not depend on A, which implies that
(iv) holds with h¼ 0. As a consequence of these, in this linear case (v) is satisfied if the
variable ~X0 has finite mean.
Note that (viii) of Assumption 2.1 is required because we would like to use the

martingale central limit theorem. By theorem 3.33 in chapter VIII of Jacod and Shiryaev
(2003), under (vii) of Assumption 2.1 the conditions of (viii) of Assumption 2.1
are equivalent. In many applications, the martingale differences Un; n 2 Zþþ, are
independent and identically distributed (i.i.d.), then (viii) of Assumption 2.1 is satisfied
with C0 :¼ EðU1U>1 Þ by the law of large numbers.
For certain models, the matrix C0 is singular. The matrix C0 is the limit of covariance

matrices. Therefore, the singularity of this matrix indicates that asymptotically the
components of Un are linearly dependent, meaning that some components can be
expressed as the linear combinations of others. In such cases, it can help to remove
the corresponding components of the process Yn; n 2 Zþþ. Then, the matrix C0 related
to this modified process possibly becomes non singular.
The method to estimate the parameter h depends on the concrete model. Possible

estimations are the least squares, conditional least squares (CLS), weighted conditional
least squares (WCLS), maximum likelihood, or Yule-Walker. Note that if we apply the
CLS estimation for h, and for every 1 � i � r the function rhfiðx; hÞ has a constant,
non-zero component, then the statistic Sm;k reduces to

Sm;k ¼ Ĉ
�1=2
m

Xmþk
n¼mþ1 Ûm;n

gcðm; kÞ ; m; k 2 Zþþ:

In some cases, C0 ¼ C0ðhÞ is a continuous function of h. Then, Ĉm :¼ C0ðĥmÞ is a
weakly consistent estimator of C0.

2.3.1. Regression and autoregressive models

Consider the model nn ¼ /ðfn; hÞ þ gn; n 2 Zþþ, where / : Rq �H! R and f1; f2; :::

is a sequence of Rq-valued input variables. Furthermore, g1; g2; ::: are error terms with
mean 0 and variance r2, independent of the previous sequence. In this model, we
can test the change of the parameter h by using Theorem 2.1 with the setup
Xn ¼ fn; Yn ¼ nn; f ðx; hÞ ¼ /ðx; hÞ, and Un ¼ gn ¼ nn � /ðfn; hÞ. Also, we can test
the change of both h and r with Xn ¼ fn; Yn ¼ ½nn; g2n�>,

f ðx; h; rÞ ¼ /ðx; hÞ
r2

� �
; Un ¼ gn

g2n � r2

� �
¼ nn � /ðfn; hÞ
½nn � /ðfn; hÞ�2 � r2

� �
:

Although in the applications the exact values of the error terms are not available, the
test can be performed without this information. Because Un can be represented as a
function of the parameters and the known pair ðfn; nnÞ, the variables Ûm;n can be
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written up by using some estimators ĥm and r̂m based on the real observations
ðf1; n1Þ; :::; ðfm; nmÞ.
If fn ¼ ½nn�1; :::; nn�q�> for every n 2 Zþþ with some q 2 Zþþ and initial vector
½n0; :::; n1�q�, then nn, n 2 Zþþ, is an autoregressive process that behaves similar to the
regression model in terms of the above-described method.
One can consider, for example, the least squares, conditional least squares, or

Yule-Walker method to obtain applicable estimators.

2.3.2. Homogeneity of independent observations

Consider independent random variables n0; n1; ::: coming from a parametric family
parameterized by h. We can test the change of this parameter with the setup Xn ¼ nn�1;
Yn ¼ ½/1ðnnÞ; :::;/rðnnÞ�>,

f ðx; hÞ ¼ fðhÞ ¼
Eh/1ðn1Þ

..

.

Eh/rðn1Þ

2
64

3
75; Un ¼

/1ðnnÞ � Eh/1ðn1Þ
..
.

/rðnnÞ � Eh/rðn1Þ

2
64

3
75;

where /1; :::;/r : R! R are arbitrary such that f ðhÞ exists. Choose functions /1; :::;/r

that characterize the parameter h by a resulting bijective f ðhÞ function. Then, a change
of f ðhÞ is equivalent to a change in the parameter h itself.
Now assume that n0; n1; ::: are independent but not necessarily from a parametric

family. Again, consider the same setup for Xn; Yn, and some functions /1; :::;/r :
R! R. Then we can test for a change in the parameter

f ðx; hÞ :¼ h :¼
E/1ðn1Þ

..

.

E/rðn1Þ

2
64

3
75:

For example, one can test for a change in the first r moments of the variables by
choosing the functions /1ðxÞ ¼ x; :::;/rðxÞ ¼ xr.

2.3.3. Multitype Galton–Watson processes

Consider a positive integer p and a random or deterministic, Zp
þ-valued vector n0. The

Zp
þ-valued process nn ¼ ½nn;1; :::; nn;p�>; n 2 Zþ, is a multitype Galton–Watson process

if it can be represented in the form

nn ¼
Xnn�1;1
k¼1

f1ðn; kÞ þ � � � þ
Xnn�1;p
k¼1

fpðn; kÞ þ gðnÞ; n 2 Zþþ;

where

n0; fiðn; kÞ; gðnÞ; k;n 2 Zþþ; i ¼ 1; :::; p;
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are Zp
þ-valued random vectors being independent of each other, and the offspring

variables fiðn; kÞ; k 2 Zþþ, are identically distributed for every i and n.
Our goal is to test whether the distributions of the offsprings and the innovations are

unchanged over time. For this goal, we consider two tests. With the first one, we test
whether the means of the distributions are unchanged. With the second one, we test
whether both the means and variances are unchanged. Under the null hypothesis,
we refer to the offspring and innovation distributions by f1; :::; fp; g, because their
distributions do not depend on the parameters n and k. Also, we introduce the matrix

M :¼ ½Ef1; :::; Efp; Eg� 2 Rp�ðpþ1Þ

and we define the first test by setting

Xn :¼ nn�1
1

� �
¼ ½nn�1;1; :::; nn�1;p; 1�>; Yn :¼ nn; n 2 Zþþ;

resulting in f ðx;MÞ ¼ Mx and Un ¼ nn �M½n>n�1; 1�>.
For the second test, under the null hypothesis we consider the matrix

V :¼ ½D2f1; :::;D
2fp;D

2g� 2 Rp�ðpþ1Þ;

where the variance of a vector is understood componentwise. Then, by the results of
Ned�enyi (2015), one can test the change of ðM;VÞ by the setup

Xn ¼ nn�1
1

� �
; Yn ¼ nn

ðnn �MXnÞ2
� �

; f ðx;M;VÞ ¼ M
V

� �
x:

Then, Un ¼ ½ðnn �MXnÞ>; ððnn �MXnÞ2 � VXnÞ>�>. We suggest applying the CLS
and WCLS methods to achieve the necessary parameter estimators in both cases. The
estimators are detailed in Ned�enyi (2015).

3. Proofs

Lemma 3.1. Consider a measurable set S � Rq and an array of S-valued random vectors
with rows fMm;0;Mm;1; :::g; m 2 Zþþ, that satisfies any of the following assumptions:

i. The rows of the array are strictly stationary ergodic processes with the same finite
dimensional distributions.

ii. The rows are positive Harris recurrent Markov chains with the same probability
transition kernel. Furthermore, the process of the initial values fMm;0 : m 2 Zþþg
is strictly stationary or it is an aperiodic positive Harris recurrent Markov chain.

In both cases, let p denote the unique stationary distribution of the rows. Consider a

measurable function / : S! Rr such that
ð
S
jj/ðxÞjjpðdxÞ<1, and introduce

Am;k :¼ 1
k

Xk
n¼1

/ðMm;nÞ �
ð
S
/ðxÞpðdxÞ; m; k 2 Zþþ:

Then, for any real sequence am tending to infinity, we have supk�am jjAm;kjj ¼ oPð1Þ
and supk�1 jjAm;kjj ¼ OPð1Þ as m!1.
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Proof. If the array satisfies condition (i), then for any m we have

1
k

Xk
n¼1

/ðMm;nÞ¼D 1
k

Xk
n¼1

/ðM1;nÞ !
ð
S
/ðxÞpðdxÞ; k!1;

where the convergence holds with probability 1, proving both statements. In the remain-
ing of the proof we show that the statements are true under assumption (ii) as well.
Let p0 stand for the unique stationary distribution of the process Mm;0; m 2 Zþþ,

and let pm denote the distribution of the random vector Mm;0. If the initial values form
an aperiodic positive Harris recurrent Markov chain, then by theorem 13.0.1 of Meyn
and Tweedie (2009) the transition probabilities of the chain converge to the stationary
distribution in the total variation metric. From this we obtain that

sup
B2BðSÞ

jpmðBÞ�p0ðBÞj �
ð
S
sup

B2BðSÞ
jPðMm;0 2 B jM1;0 ¼ xÞ�p0ðBÞjp1ðdxÞ! 0; (3.1)

as m!1. Note that the convergence in (3.1) is obvious if the process Mm;0;m2Zþþ,
is strictly stationary. Also, theorem 17.0.1 of Meyn and Tweedie (2009) implies the “law
of large numbers” A1;k! 0; k!1, in case of any distribution p1, where the conver-
gence is understood in an almost sure sense. Hence, we have supk�am A1;k!P0 as m!1
on the event fM1;0 ¼ xg in case of an arbitrary x2 S. This implies the convergence

qmðx;dÞ :¼ Pð sup
k�am
jjA1;kjj>d jM1;0 ¼ xÞ! 0; m!1;

for any fixed value d>0. Note that by the Markov property

Pð sup
k�am
jjA1;kjj>d jM1;0 ¼ xÞ ¼ Pð sup

k�am
jjAm;kjj>d jMm;0 ¼ xÞ; m2Zþþ;

for every x2 S. By using this consequence of the Markov property and the dominated
convergence it follows that

P
�
sup
k�am
jjAm;kjj>d

�
¼
ð
S
qmðx;dÞpmðdxÞ

�
����
ð
S
qmðx;dÞðpm�p0ÞðdxÞ

����þ
ð
S
qmðx;dÞp0ðdxÞ

� sup
x2S

qmðx;dÞ sup
B2BðSÞ

jpmðBÞ�p0ðBÞjþ
ð
S
qmðx;dÞp0ðdxÞ! 0;

as m!1.
For the second statement, let us recall that A1;k ! 0; k!1, almost surely, which

implies that the sequence A1;k; k 2 Zþþ, is bounded stochastically. From this we get
the convergence

qðx; cÞ :¼ Pðsup
k�1
jjA1;kjj> c jM1;0 ¼ xÞ ! 0; c!1;

for any x 2 S. Because qðx; cÞ is a measurable function of the variable x in case of any
fixed c> 0, the sets

SðcÞ ¼ fx 2 S : qðx; cÞ � e=3g; c> 0 ;
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form an increasing system of measurable subsets of S with limit set [c> 0SðcÞ ¼ S for
every e> 0. This implies that there exists c0 > 0 such that p0ðSðc0ÞÞ � 1� e=3 and
supx2Sðc0Þ qðx; c0Þ � e=3. By using the Markov property, we obtain the inequalities

P
�
sup
k�1
jjAm;kjj> c0

�
¼
ð
S
qðx; c0ÞpmðdxÞ

�
����
ð
S
qðx; c0Þðpm � p0ÞðdxÞ

����þ
ð
Sðc0Þ

qðx; c0Þp0ðdxÞ þ
ð
SnSðc0Þ

qðx; c0Þp0ðdxÞ
� sup

x2S
qðx; c0Þ sup

B2BðSÞ
jpmðBÞ � p0ðBÞj þ e=3þ e=3:

Because the first term converges to 0 by (3.1), it follows that Pðsupk�1 jjAm;kjj> c0Þ �
e if m is large enough, completing the proof of the second statement. w

For every positive integer m, consider the processes

X̂mðtÞ :¼
Xmþbtmc

n¼mþ1 Ûm;n � btmcm

Xm

n¼1 Ûm;n

gcðm; btmcÞ ; XðtÞ :¼ C1=2
0

Wð t
1þtÞ

ð t
1þtÞc

; t � 0;

and let Xm be the theoretical counterpart of X̂m, which is obtained by replacing the
vectors Ûm;n by Un, respectively. The processes Xm and X̂m are random elements of
the Skorokhod space Dr½0;1Þ of Rr-valued c�adl�ag functions defined on ½0;1Þ. (For
the topology of Dr½0;1Þ, see chapter VI of Jacod and Shiryaev [2003] or see section 16
of Billingsley [1999] for the case r¼ 1.) Additionally, the law of the iterated logarithm
implies that X is a random element of the space Cr½0;1Þ � Dr½0;1Þ of continu-
ous functions.
The theoretical base of our main results is the fact that the process X̂m converges in

distribution to X in Dr½0;1Þ if Assumption 2.1 is satisfied. This convergence is a direct
consequence of Lemmas 3.2 and 3.3 stated below. We note that under some additional
regularity conditions one can also construct copies Xð1Þ;Xð2Þ; ::: of the process X such
that supt�0 jjX̂mðtÞ � XðmÞðtÞjj! P0 as m!1. This stronger tool was used by Horv�ath
et al. (2004), Aue et al. (2006), and Kirch and Tadjuidje Kamgaing (2011) to prove
results similar to those of our Theorems 2.1 and 2.3. w

Lemma 3.2. If (i)–(vi) of Assumption 2.1 hold, then sup
t�0
jjX̂mðtÞ � XmðtÞjj!P0

as m!1.
Proof. Consider H0, an open sphere with center h0. Because ĥm is a weakly consistent

estimator of h0 by (vi) of Assumption 2.1, we have Pðĥm 2 H0Þ ! 1 as m!1. Our
goal is to prove a stochastic convergence, which means that we can condition on the
event fĥm 2 H0g for every m. We will often use the inequalities

gcðm; kÞ ¼ m1=2 1þ k
m

� �
k

mþ k

� �c

� ccm1=2�ckc; k � m;
ccm�1=2k; k>m;

	

where cc is a suitable positive constant not depending on m and k.
Because the lemma follows from the stochastic convergence of the suprema of

the norms of the components of the process X̂mðtÞ � XðtÞ; t � 0, it is enough to prove
the statement for r¼ 1. Because X̂m and Xm are step functions defined on the same
partition, we must show that
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sup
k�1

�����
 Xmþk

n¼mþ1 Ûm;n � k
m

Xm

n¼1 Ûm;n

!
�
 Xmþk

n¼mþ1 Un � k
m

Xm
n¼1

Un

!�����
gcðm; kÞ ¼ oPð1Þ (3.2)

as m!1. From (iii) of Assumption 2.1, it follows that for each m and n there exists a
parameter hm;n 2 H such that jjhm;n � h0jj � jjĥm � h0jj and

Ûm;n �Un ¼ f ðXn; h0Þ � f ðXn; ĥmÞ ¼ ðh0 � ĥmÞ>rhf ðXn; hm;nÞ
¼ ðh0 � ĥmÞ>½Dm;n þ /ðXnÞ þ Erhf ð ~X0; h0Þ�;

where

Dm;n ¼ rhf ðXn; hm;nÞ � rhf ðXn; h0Þ; /ðxÞ ¼ rhf ðx; h0Þ � Erhf ð ~X0; h0Þ; x 2 S:

Because ĥm 2 H0, we also have hm;n 2 H0, and (iv) of Assumption 2.1 implies the
inequality jjDm;njj � jjĥm � h0jjahðXnÞ. By (i) of Assumption 2.1, we can apply Lemma
3.1 to the array of random vectors fXm;Xmþ1; :::g;m 2 Zþþ, and we get that

sup
k�1

Xmþk
n¼mþ1 jjDm;njj
gcðm; kÞ � jjĥm � h0jja sup

1�k�m

k
m

� �1�cXmþk
n¼mþ1 hðXnÞ
ccm�1=2k

þjjĥm � h0jja sup
k>m

Xmþk
n¼mþ1 hðXnÞ
ccm�1=2k

� 2m1=2

cc
jjĥm � h0jja sup

k�1

Xmþk
n¼mþ1 hðXnÞ

k
¼ oPðm1=2Þ;

as m!1. Similarly, from ergodicity it follows that

sup
k�1

k
m

Xm

n¼1 jjDm;njj
gcðm; kÞ � jjĥm � h0jja sup

1�k�m

k
m

� �1�cXm

n¼1 hðXnÞ
ccm1=2

þjjĥm � h0jja sup
k>m

Xm

n¼1 hðXnÞ
ccm1=2

� 2m1=2

cc
jjĥm � h0jja

Xm

n¼1 hðXnÞ
m

¼ oPðm1=2Þ;

as m!1. Using (v) of Assumption 2.1 and the same steps as in the last formula, one
can also show that

sup
k�1

k
m jj
Xm

n¼1 /ðXnÞjj
gcðm; kÞ � 2m1=2

cc

jj
Xm

n¼1 /ðXnÞjj
m

¼ oPðm1=2Þ; m!1:
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Finally, from Lemma 3.1 with am ¼ m1=2, it follows that

sup
k�1

jj
Xmþk

n¼mþ1 /ðXnÞjj
gcðm; kÞ � sup

1�k�m1=2

k
m

� �1�cXmþk
n¼mþ1 j/ðXnÞj
ccm�1=2k

þ sup
m1=2<k�m

k
m

� �1�cXmþk
n¼mþ1 j/ðXnÞj
ccm�1=2k

þ sup
k>m

Xmþk
n¼mþ1 j/ðXnÞj
ccm�1=2k

� mc=2

cc
sup

1�k�m1=2

Xmþk
n¼mþ1 j/ðXnÞj

k
þ 2m1=2

cc
sup

k>m1=2

Xmþk
n¼mþ1 j/ðXnÞj

k
¼ oPðm1=2Þ:

By summarizing the last four formulae, we obtain the approximations

sup
k�1

j
Xmþk

n¼mþ1ðÛm;n �UnÞ � kðh0 � ĥmÞ>Erhf ð ~X0; h0Þj
gcðm; kÞ ¼ jjĥm � h0jjoPðm1=2Þ ¼ oPð1Þ;

and

sup
k�1

j km
Xm

n¼1ðÛm;n �UnÞ � kðh0 � ĥmÞ>Erhf ð ~X0; h0Þj
gcðm; kÞ ¼ jjĥm � h0jjoPðm1=2Þ ¼ oPð1Þ;

(3.3)

as m!1. From these (3.2) follows, and the proof is complete. w

Lemma 3.3. If (ii), (vii), and (viii) of Assumption 2.1 hold, then Xm!DX as m!1 in
the space Dr½0;1Þ.
Proof. Our goal is to apply the multivariate martingale central limit theorem (theorem

3.33 in chapter VIII of Jacod and Shiryaev [2003]) to the martingale difference
sequences fU1=m1=2;U2=m1=2; :::g;m 2 Zþþ. Note that for any values t; d> 0 we have
the convergence

1
m

Xbmtc

n¼1
E½jjUnjj2 1fjjUnjj> dm1=2g j F n�1� � 1

dem1þe=2
Xbmtc

n¼1
E½jjUnjj2þe j F n�1�!P 0;

as m!1, because by (vii) of Assumption 2.1 the variable on the right side converges
to zero in an L1 sense. This means that the conditional Lindeberg condition is satisfied,
and one can show similarly that (viii) of Assumption 2.1 implies that at least one of
conditions ½c60�D� and ½ĉ60�D� to the same theorem holds as well. As a result, the
martingale central limit theorem can be applied, and it implies the weak convergence of

UmðtÞ :¼ m�1=2
Xbmtc

n¼1
Un; t � 0;

to C1=2
0 WðtÞ; t � 0, in Dr½0;1Þ as m!1. (Let us recall that W is an r-dimensional

standard Wiener process.) Introduce the processes
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YmðtÞ :¼ 1
m1=2

Xmþbmtc

n¼mþ1
Un � bmtc

m

Xm
n¼1

Un

0
@

1
A; YðtÞ :¼ C1=2

0 ðt þ 1ÞW t
t þ 1

� �
;

defined for t � 0. From the convergence of Um, we obtain that

Ym ¼ Umðt þ 1Þ � bmðt þ 1Þc
m

Umð1Þ
� �

t�0
!D C1=2

0 Wðt þ 1Þ � ðt þ 1ÞC1=2
0 Wð1Þ

h i
t�0;

as m!1. Because the limit is a Gaussian process with the same mean and covariance
function as Y, we get that Ym!DY holds in Dr½0;1Þ.
For every positive integer �, introduce the function

U� : Dr½0;1Þ �D½1=�;1Þ ! Dr½0;1Þ; U�ðy;wÞðtÞ ¼ yðtÞwðtÞ 1ft�1=�g:
By the results in chapter VI of Jacod and Shiryaev (2003), the Borel r-algebra

generated by the Skorokhod topology on the space Dr½0;1Þ is identical to the r-algebra
generated by the finite dimensional projections, and the convergence to a continuous
function in the Skorokhod sense is equivalent to the local uniform convergence. These
facts imply that the function U� is measurable, and it is continuous at the elements
of the set Cr½0;1Þ� C½1=�;1Þ. For the shorter notations, introduce the processes
Xm;�ðtÞ :¼ XmðtÞ1ft�1=�g and X 0;�ðtÞ :¼ XðtÞ1ft�1=�g, along with the functions

wðtÞ :¼ ð1þ tÞð t
1þ t

Þc
� ��1

; wmðtÞ :¼ m1=2

gcðm; bmtcÞ ¼ w
bmtc
m

� �
; t � 1=�:

Because Ym!DY and wm converges to w uniformly on the interval ½1=�;1Þ, we
get that ðYm;wmÞ!DðY;wÞ, and using the continuous mapping theorem we get the
convergence

Xm;� ¼ U�ðYm;wmÞ!D U�ðY;wÞ ¼ X 0;� ; m!1:

Let us recall that by the law of the iterated logarithm we have limt!0 jjXðtÞjj ¼ 0
almost surely. This implies that the process X 0;� converges to X in the supremum
distance with probability 1 as � !1, resulting in convergence of the distributions
as well.
To finish the proof of the statement, we only need to show that the processes Xm;�

are uniformly close to Xm. Let Un;1; :::;Un;r stand for the components of the random
vector Un and note that U1;j;U2;j; ::: is a martingale difference sequence for every j.
Theorem 1 of Chow (1960) states that for a non increasing sequence of positive
numbers, c1; c2; :::, a submartingale sequence of random variables, Z1;Z2; :::, and e> 0, it
holds for every ‘ 2 Zþþ that

ePðmax1�k�‘ckZk � eÞ �
X‘�1
k¼1
ðck � ckþ1ÞEðZþk Þ þ c‘EðZþ‘ Þ

¼ c1EðZþ1 Þ þ
X‘�1
k¼2

ck½EðZþk Þ � EðZþk�1Þ�;

where Zþ :¼ maxðZ; 0Þ for any random variable Z. For a fixed m 2 Zþþ and
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j 2 f1; :::; rg, identify the sequences as ck :¼ 1=g2c ðm; kÞ and Zk :¼
Xmþk

n¼mþ1Un;j

� �2
;

k 2 Zþþ. Because U1;j;U2;j; ::: is a martingale difference sequence, the sequence Zk, k 2
Zþþ is a submartingale. Note that

max
1�k�bm=�c

k
Xmþk

n¼mþ1 Unk
gcðm; kÞ � e

8<
:

9=
; �[rj¼1 max

1�k�bm=�c

Xmþk
n¼mþ1Un;j

� �2
gcðm; kÞ2 � e2

r

8<
:

9=
;: (3.4)

Then applying Chow’s inequality, we get that

P max
1�k�bm=�c

k
Xmþk

n¼mþ1 Unk
gcðm; kÞ � e

0
@

1
A

�
Xr
j¼1

P max
1�k�bm=�c

ðwðk=mÞ
Xmþk

n¼mþ1 Un;jÞ2
m

� e2

r

0
@

1
A

�
Xr
j¼1

r
e2
Xbm=�c

k¼1

w2ðk=mÞEU2
mþk;j

m
� r2v0

e2

ð1=�
0

1
t2c

dt ¼ r2v0
e2ð1� 2cÞ�1�2c ! 0

as � !1. Also, the convergence of the process Um implies that the variables jjUmð1Þjj
are stochastically bounded, which results in the convergence

max
1�k�bm=�c

k
m k
Xm

n¼1 Unk
gcðm; kÞ ¼ jjUmð1Þjj max

1�k�bm=�c
k
m
wð k

m
Þ � jjUmð1Þjj 1

�1�c
!P 0;

uniformly in m as � !1. From these we get that

sup
0�t�1=�

kXmðtÞ � Xm;�ðtÞk ¼ max
1�k�bm=�c

jjXmðk=mÞjj!P 0; � !1;

uniformly in m. Note that X 0;� ! X almost surely as � !1. Then, theorem 3.2 of
Billingsley (1999) implies that the process Xm converges in distribution to X as m!1
in the space Dr½0;1Þ. w

Proof of Theorem 2.1. By the properties of the Skorokhod topology, Lemmas 3.2 and

3.3 imply the convergence X̂m!DX in the space Dr½0;1Þ as m!1. Because Ĉ
�1=2
m

is a weakly consistent estimator of C�1=20 , we also get that Ĉ
�1=2
m X̂m!DC

�1=2
0 X

as m!1.
Consider the function WT : Dr½0;1Þ ! R defined as WTðyÞ :¼ sup0�t�T wðyðtÞÞ. It

can be shown that WT is measurable for any T 2 ð0;1�, and by proposition 2.4 of
Jacod and Shiryaev (2003) it is continuous at the elements of the set Cr½0;1Þ if T is
finite. Because C�1=20 X is a sample continuous process, it follows from the continuous
mapping theorem (see theorem 2.7 of Billingsley [1999]) that

sup
1�k�bTmc

wðSm;kÞ ¼ WTðĈ�1=2m X̂mÞ!D WTðC�1=20 XÞ ¼ sup
0�t�T=ð1þTÞ

wðWðtÞ=tcÞ; (3.5)

for any finite T as m!1. Unfortunately, this argument does not work for T ¼ 1,
because in case of an arbitrary continuous w the function W1 is not continuous on
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Cr½0;1Þ. In the remainder of the proof, we show that the statement is true for T ¼ 1
by using a different method.
Because the random vectors U1;U2; ::: have bounded second moments, the martin-

gale law of large numbers (see, e.g., theorem 3 in section VII.9 in Feller [1971]) implies
the almost sure convergence

Xm
k
m

� �
¼ m1=2 1þm

k

� �c 1
mþ k

Xmþk
n¼1

Un � 1
m

Xm
n¼1

Un

" #
! � 1

m1=2

Xm
n¼1

Un; (3.6)

k!1. In the next step, we show that this convergence is uniform in m. Let X	m denote
the process Xm with fixed parameter c¼ 0. From (3.6), it follows for any T 2 ð0;1Þ
and k � Tm that

X	m
k
m

� �
� X	mðTÞ ¼

m1=2

mþ k

Xmþk
n¼mþbTmcþ1

Un � m1=2ðk� bTmcÞ
ðmþ kÞðmþ bTmcÞ

XmþbTmc
n¼1

Un:

By using again the H�ajek–R�enyi type inequality (3.4), we get that

P sup
k�Tm

k
Xmþk

n¼mþbTmcþ1Unk
m�1=2ðmþ kÞ � e

0
@

1
A �Xr

j¼1
P supk�Tm

Xmþk
n¼mþbTmcþ1 Un;j

� �2

m�1ðmþ kÞ2 � e2

r

0
B@

1
CA

�
Xp
j¼1

r
e2

X1
k¼bTmcþ1

EU2
mþk;j

mð1þ k=mÞ2 �
rv0
e2

ð1
T�1

1

ð1þ tÞ2dt ¼
rv0
e2T
! 0; T !1:

Also, the tightness of the variables Umð1Þ; m 2 Zþþ, implies that

sup
k�Tm

m1=2ðk� bTmcÞ
ðmþ kÞðmþ bTmcÞ k

XmþbTmc
n¼1

Unk

¼ sup
k�Tm

m
mþ bTmc
� �1=2 ðk� bTmcÞ

mþ k

k
XmþbTmc

n¼1 Unkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ bTmcp � jjUmþbTmcð1Þjj

T1=2
!P 0

holds uniformly in m as T !1. As a result, we get the convergence

sup
t�T
kX	mðtÞ � X	mðTÞk ¼ sup

k�Tm
kX	mðk=mÞ � X	mðTÞk!

P
0; T !1;

uniformly in m. Because for any fixed T � 0 the variables X	mðTÞ; m 2 Zþþ, are tight,
it also follows that supt�T jjX	mðtÞjj ¼ OPð1Þ. We already proved that the statement is
true for any finite T. Using this result with function wðxÞ ¼ jjxjj; x 2 Rr, we get that
sup0�t�T jjX	mðtÞjj ¼ OPð1Þ, resulting in the rate supt�0 jjX	mðtÞjj ¼ OPð1Þ.
Let c 2 ½0; 1=2Þ be an arbitrary value and note that XmðtÞ ¼ ð1þm=btmcÞcX	mðtÞ,

where the function ð1þm=btmcÞc; t � T, is decreasing and it has finite limit at infinity.
Then, for any T> 1, by using the triangular inequality, we get the convergence
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sup
t�T
kXmðtÞ � XmðTÞk � 1þ m

bTmc
� �c

sup
t�T
kX	mðtÞ � X	mðTÞk

þ sup
t�T

1þ m
bTmc

� �c

� 1þ m
btmc

� �c
" #

sup
t�T
jjX	mðtÞjj

� 2csup
t�T
kX	mðtÞ � X	mðTÞk þ 1þ 1

T � 1

� �c

sup
t�0
jjX	mðtÞjj!

P
0;

(3.7)

uniformly in m as T !1. From this one can prove that supt�0 jjXmðtÞjj ¼ OPð1Þ
similar to how we obtained the related rate for the process X	m.
Consider arbitrary values e; d; d0> 0. By the uniform stochastic boundedness, there

exists a constant K such that Pðsupt�0 jjXmjj � KÞ � 1� e holds for m 2 Zþþ. By using
this bound, Lemma 3.2, the uniform convergence in (3.7), and the weak consistency of
the estimator Ĉm imply that there exist positive values T0;m0 � 0 depending only on e,
d0, and K, such that

P sup
t�0
jjX̂mðtÞjj � 2K; sup

t�T
kĈ�1=2m X̂mðtÞ � Ĉ

�1=2
m X̂mðTÞk � d0

!
� 1� 2e

0
@ (3.8)

holds for every T � T0 and m � m0. Because the function w is continuous, it is
uniformly continuous on the r-dimensional closed sphere having radius 2K and having
center at the origin. This means that the d0 can be chosen such that jjwðxÞ � wðyÞjj � d
for every element x and y of the sphere satisfying jjx� yjj � d0. By using this property
along with (3.8), we get that

pT;mðdÞ :¼ PðW1ðĈ�1=2m X̂mÞ �WTðĈ�1=2m X̂mÞ> dÞ
� Pðsup

t�T
wðĈ�1=2m X̂mðtÞÞ � wðĈ�1=2m X̂mðTÞÞ> dÞ � 2e

for every T � T0 and m � m0. Because e is an arbitrary positive value, if follows that

lim
m!1 limsup

T!1
pT;mðdÞ ¼ 0

holds for every d> 0. Note that WTðXÞ ! W1ðXÞ almost surely as T !1. Then, the
convergence in (3.5) proved for any finite T and theorem 3.2 of Billingsley (1999)
implies that the result in (3.5) is true for T ¼ 1 as well. This argument completes the
proof of the theorem. w

Proof of Theorem 2.3. Consider an arbitrary integer-valued sequence km � k	m þ 1;
m 2 Zþþ. Let us note that Xm;n ¼ Xn and Um;n ¼ Un hold for any positive integers m
and n � mþ k	m, and we have Ûm;n �Um;n ¼ f ðXm;n; hAÞ � f ðXm;n; ĥmÞ for every m
and n>mþ k	m. Then it follows that
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Xmþkm
n¼mþ1

Ûm;n � km
m

Xm
n¼1

Ûm;n ¼
Xmþk	m

n¼mþ1
Ûm;n � k	m

m

Xm
n¼1

Ûm;n

2
4

3
5þ Xmþkm

n¼mþk	mþ1
Um;n

þ
Xmþkm

n¼mþk	mþ1
½f ðXm;n; hAÞ � f ðXm;n; h0Þ� þ

Xmþkm
n¼mþk	mþ1

½f ðXm;n; h0Þ � f ðXm;n; ĥmÞ�

� km � k	m
m

Xm
n¼1

Un � km � k	m
m

Xm
n¼1
½Ûm;n �Un�:

First, consider the case r¼ 1. Because gcðm; kÞ is an increasing function of k,
Theorem 2.2 implies that

j
Xmþk	m

n¼mþ1 Ûm;n � k	m
m

Xm

n¼1 Ûm;nj
gcðm; kmÞ � jX̂mðk	m=mÞj � sup

t�0
jX̂mðtÞj ¼ OPð1Þ:

Let us note that supk�1 k=gcðm; kÞ ¼ Oðm1=2Þ. Using this rate and the weak conver-
gence of the process Um, which was shown in the proof of Lemma 3.3, we obtain that

km�k	m
m j

Xm

n¼1Unj
gcðm; kmÞ � sup

k�1

kjUmð1Þj
m1=2gcðm; kÞ ¼ OPð1Þ:

Also, from equation (3.3), it follows that
km�k	m

m j
Xm

n¼1ðÛm;n �UnÞj
gcðm; kmÞ � sup

k�1

kOPðm�1=2Þ
gcðm; kÞ þ oPð1Þ ¼ OPð1Þ; m!1:

Because the random variables Um;1;Um;2; ::: form a martingale difference sequence,
they are pairwise uncorrelated. Then, for any m � mA, by using (iv) of Assumption 2.2
we get that

Var

Xmþkm
n¼mþk	mþ1

Um;n

gcðm; kmÞ

0
@

1
A � ðkm � k	mÞvA

g2c ðm; kmÞ �
km

mþ km

� �1�2c
vA � vA:

From this, the Chebyshev inequality implies that the variable on the left side is of rate
OPð1Þ as m!1.
Consider the constant D defined by the alternative hypothesis HA and assume that

km � k	m !1 as m!1. By the assumptions, we can apply Lemma 3.1 to the array of
variables fXm;mþk	mþ‘; ‘ 2 Zþg; m 2 Zþþ, with the function /ðxÞ ¼ f ðx; hAÞ � f ðx; h0Þ,
and we obtain the equation

Xmþkm
n¼mþk	mþ1

½f ðXm;n; hAÞ � f ðXm;n; h0Þ� ¼ ðkm � k	mÞ½Dþ oPð1Þ�; m!1:
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Similar arguments result in

Xmþkm
n¼mþk	mþ1

½f ðXm;n; h0Þ � f ðXm;n; ĥmÞ� ¼ oPðkm � k	mÞ; m!1:

By summarizing the results of the current proof, the weak consistency of the
estimator Ĉm implies that

Sm;km ¼ Ĉ
�1=2
m

Xmþkm
n¼mþ1 Ûm;n � km

m

Xm

n¼1 Ûm;n

gcðm; kmÞ ¼ km � k	m
gcðm; kmÞ ½C

�1=2
0 Dþ oPð1Þ� þ OPð1Þ

(3.9)

as m!1 in the case r¼ 1. From this it follows that (3.9) holds for an arbitrary r as
well, because in the general case the equation is understood componentwise.
(i). Consider the sequence km ¼ k	m þ beðmþ k	mÞc; m 2 Zþþ, with an arbitrary e> 0.

If m is large enough, we obtain the inequality

km � k	m
gcðm; kmÞ �

ffiffiffiffi
m
p beðmþ k	mÞc

mþ k	m þ beðmþ k	mÞc
�

ffiffiffiffi
m
p beðmþ k	mÞc
ð1þ eÞðmþ k	mÞ

;

and the right side converges to infinity as m!1. Because C0 is nonsingular and D 6¼ 0
by the alternative hypothesis, we have C�1=20 D 6¼ 0. This means that jjSm;km jj!P1, imply-
ing the convergence wðSm;kmÞ!P1. Let xa stand for the critical value of the test corre-
sponding to an arbitrary significance level a 2 ð0; 1Þ. Then we have the convergence

Pðjm;k	m � k	m � eðmþ k	mÞÞ � PðwðSm;kmÞ> xaÞ ! 1; m!1;

proving the first statement.
(ii) To prove the second statement, consider the values km ¼ k	m þ bCmbc; m 2 Zþþ,

with an arbitrary C> 0 and with the b defined by the theorem. The conditions on the
function w imply that there exists a real value K> 0 such that wðxÞ> xa if jjxjj>K. By
standard calculations, one can verify that

lim
m!1

km � k	m
gcðm; kmÞ ¼ HðCÞ :¼

C Cþ a1
b¼

1� 2c
2� 2c

	 �� ��c
; 0 � b � 1� 2c

2� 2c
;

Ca�cð1þ a1fb¼1gÞc�1; 1� 2c
2� 2c

<b � 1;

Ca�1; 1<b:

8>>>><
>>>>:

From this and from equation (3.9) it follows that for any fixed C> 0, if m is large
enough, then

jjSm;km jj �
HðCÞ
2
½jjC�1=20 Djj þ oPð1Þ� þ OPð1Þ; (3.10)

where the terms oPð1Þ and OPð1Þ are the same as in (3.9) and do not depend on C. Fix
an arbitrary real number d> 0. Because limC!1HðCÞ ¼ 1, the right side of (3.10) con-
verges to infinity as C!1 with probability 1. This implies that the value C can be
chosen in such a way that the right side of (3.10) is greater than K with a probability at
least 1� d. Using this C, we obtain the inequalities

Pðjm;k	m � k	m � CmbÞ � PðwðSm;kmÞ> xaÞ � PðjjSm;km jj>KÞ � 1� d
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for every large enough m. Because d is an arbitrary positive number, the probability on
the left side converges to 1 as m!1, proving the second statement of the theorem. w

Remark 3.1. Because the functions w1 and w2 of (2.3) satisfy the assumptions of
Theorem 2.3, the results are valid for the related test statistics. Unfortunately, we cannot
apply the theorem for the test statistics corresponding to the third convergence, because
the limit limjjxjj!1 w3ðxÞ does not exist. However, with some modifications in the proof,
one can show that the results of Theorem 2.3 are valid for w3, if c>C

�1=2
0 D 6¼ 0. For this

goal, note that the base idea of the proof is formula (3.9), which ensures that the vector
Sm;km is “large” in some sense. From this equation, we get that

w3ðSm;kmÞ ¼ jc>Sm;km j ¼
km � k	m
gcðm; kmÞ jc

>C�1=20 Dj þ oPð1Þ
h i

þ OPð1Þ; (3.11)

implying that w3ðSm;kmÞ is “large” as well, if c>C�1=20 D 6¼ 0. Then the results of Theorem
2.3 can be obtained for the function w3 by using (3.11) in parts (i) and (ii) of the proof.

Proof of Theorem 2.4. Let us note that in the open-ended case all of the three conver-
gences in Theorem 2.2 can be written in the form supk�1 wðSm;kÞ!DZ; m!1, where
w : Rr ! R is one of the functions in (2.3), and Z is a non-negative-valued absolute
continuous random variable with unbounded support. Let FZ stand for the distribution
function of Z and let xa be the critical value of the open-ended test corresponding to
the significance level a.
If b< 1, then consider an arbitrary value e> 0. Because k	m<em if m is large enough,

we get that

Pðjm;0 � k	mÞ � P sup
1�k�bemc

wðSm;kÞ> xa
� �

! 1� FZ
1þ e
e

� �1=2�c
xa

 !
;

as m!1. Because the limit can be arbitrarily small by choosing a sufficiently small e,
the left side converges to 0 as m!1.
If b¼ 1, then the identity FZðxaÞ ¼ 1� a implies the convergence

P jm;0 � k	m
� 
 ¼ P sup

1�k�bcmc
w Sm;k
� 


> xa
� �

! 1� FZ
1þ c
c

� �1=2�c
xa

 !
2 ð0; aÞ;

as m!1.
If b> 1, then consider an arbitrary T> 0 and note that for every large enough m we

have the inequality and the convergence

1� FZ
1þ T
T

� �1=2�c
xa

 !
 P sup

1�k�bTmc
w Sm;k
� 


> xa
� �

� Pðjm;0 � k	mÞ

� P sup
k�1

w Sm;k
� 


> xa
� �

! 1� FZðxaÞ ¼ a;

as m!1. Because by increasing T the left side can be arbitrarily close to a, the probability
in question goes to a as m!1. This argument completes the proof of the theorem. w
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