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ABSTRACT
Detecting a change as fast as possible in an observed stochastic
process is an important task. In this article, an online procedure
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is presented to detect changes in the parameter of general discrete-  Accepted 13 April 2018

time parametric stochastic processes. As examples, regression
models, autoregressive processes, and Galton-Watson processes are
investigated. The test is called cumulative sum (CUSUM) type
because it is based on the cumulated sums of the estimates of
certain martingale difference sequences belonging to the process. In
case of a single change alternative hypothesis, the procedure is
examined in terms of consistency. Due to the online manner, the
time of change can also be estimated.
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1. Introduction

In the literature on statistics, offline and online procedures have both been introduced
to detect changes in stochastic systems. We call a procedure offline if the whole sample
is given at the time of the testing and online if the testing is performed in a sequential
manner, taking observations one by one. The aim of this article is to perform online
change-point detection on the parameter of a certain vector-valued parametric process
X1, X, ...

The online procedure is considered the following way. Throughout the article, we
assume that the so-called noncontamination assumption holds for some positive integer
m, meaning that the parameter is unchanged until time m. This assumption is regular
in the context of online procedures and allows us to estimate the default value of the
parameter in question. For the sake of generality we fix a constant T >0 and define the
test based on the observations Xi, ..., Xy, Xint 1, s Xipns | m). If T = 00, then the test is
called open-ended; otherwise, it is called closed-ended. The goal is to test the null
hypothesis that there is no change in the parameter on the entire given time horizon.
In the online case, test statistics of the form 1, = Tui(X1, ..., Xmik), k=1,2, ..,
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are considered, and a rejection is made if SUP; < T | Tk > X, where x, is the critical
value corresponding to the significance level o € (0,1). The value « is called a rejection
time if 7,,, >x,. The theoretical background of the procedure is that under the null
hypothesis and certain regularity conditions sup,; g, Tmk — pTr, m — oo, for
some random variable 7 that depends on the model and the constant T. Then an
approximation of the critical value x, can be derived from the distribution of 7, by
solving P(tr >x,) = o for x,. Indeed, if x, is a continuity point of the distribution
function of the limit variable 71, then
P( Sup Tk >xa) — a, m — 00,
1<k<|Tm]

meaning that x, is an asymptotically correct critical value corresponding to the
significance level o.

Online change-point detection has been an investigated area in the last decades. The
above-discussed noncontamination assumption was first introduced in Chu et al. (1996).
In Chu et al. (1996) and Horvath et al. (2004), a statistical methodology was developed
that supplies a limit theorem establishing an online procedure. The statistics in these
papers are special cases of ours, having the form 7,k = ||Syk||, where S, x is defined in
(2.2). In Horvath et al. (2004, 2007) and Aue et al. (2006), this general methodology is
applied to linear regression models in an open-ended manner. Under a single change
alternative hypothesis, their tests are shown to be consistent and they investigate the
distribution of the rejection times as well. In Kirch and Tadjuidje Kamgaing (2011),
open-ended and closed-ended procedures are given to test for a change in special
functional autoregressive models. Our aim is to generalize these results to discrete-time
stochastic processes satisfying certain general regularity conditions. Our article and the
above-mentioned references contain statistics based on the cumulative sums (CUSUMs)
of suitable estimators of certain martingale difference sequences of the process. Such
statistics are called CUSUM-type. Note that another CUSUM-type statistic is also
frequently applied in online change-point detection that is based on the cumulated sums
of likelihood quotients.

The main results of the article are presented in Section 2, with the proofs given in
Section 3. Subsection 2.3 contains a discussion of some examples of processes that fit
into our model.

2. Main results
2.1. Model and test statistics

In our model, the observations are R? x R"-valued random pairs (X, Y,), n=1,2,..,
with some positive integers g and r. Let F,_; stand for the o-algebra generated by the
random vectors { X, Yi_; : kK < n}. Throughout the article we will assume that

E[Yy | Fuoa] = E[Y5 | Xy] = f(Xy, 00), n=12,.., (2.1)

where f : R? x ® — R" is a known measurable function with components fi, ..., f,, ® is
a measurable subset of a finite dimensional Euclidean space, and 0, € © is a parameter
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of the joint distribution of X, and Y,. Note that here and throughout the article, the
equations concerning the conditional expectations are understood in an almost sure sense.

For any fixed, known positive integer m, by the noncontamination assumption it is a
priori known that 0, = 6y for n = 1,...,m with a fixed but unknown 6, € ®. The aim
of online change detection is to test whether 0,1 = -+ = 0,y |Tm) = 0o With a given
T € (0, 00]. For this goal, we will test the null hypothesis

Ho:  E[Y,|X,] =Xy, 00), n=m+1,..m+ |Tm]|.

Note that this null hypothesis is weaker than the equality of the parameters. It is easy
to see that without further assumptions, the dynamics of the underlying model could be
unchanged with different parameters; for example, if the function f does not depend on
all of the components of its second argument. However, in case of many applications
the two are equivalent; see, for example, the one discussed in Subsection 2.3.2.

We would like to obtain asymptotical results, namely, when m, the size of the training
sample, and therefore the number of observations goes to infinity. One could define a
triangular array with rows (X, Y,),n=1,...,m+ |Tm], where m = 1,2,... Then for
every m = 1,2, ..., the m th row is the input for the corresponding testing, where the first
m pairs serve as the training sample, and we test the above-introduced H, corresponding
to the given m. Therefore, for the asymptotical results we assume that every row satisfies
the noncontamination assumption and the related null hypothesis. Then the variables
U, =Y, —f(X,,60),n=1,2,.., form a martingale difference sequence with respect
to the filtration Fy, Fy,... For a given positive integer m, we consider an estimator @)m
of the true parameter 6, based on the training sample (X, Y,),...,(X,, Y,,), and
we define an estimator of the martingale difference sequence by
@mm =Y, —f(X,, 9m), n = 1,2, ..., which variables our testing method is based on.

We summarize our regularity conditions and some additional notations in the
following assumption. Throughout the article, the vector norm is the Euclidean norm,
and 1, is the indicator of the event A. The notations Z., Z,, and B(RY) stand for
the set of nonnegative integers, positive integers, and the Borel g-algebra of the space
R, respectively.

Assumption 2.1.

i. The process X, n € 7.1, is strictly stationary and ergodic or it is an aperiodic
positive Harris recurrent Markov chain. The notation X, stands for an arbitrary
random vector whose distribution is the same as the unique stationary
distribution of this process.

ii. Suppose that E[Y , | X,| = f(X,,0) for everyne 7 ..

ili. There exists an open neighborhood ®y C ® of 0y such that the functions
fi(x,0),1i=1,...,r, are continuously differentiable with respect to the variable 0
at every point (x,0) € R x ©,. Let Vgfi(x,0) stand for the vector of partial
derivatives.

iv. There exists a real number a>0 and a measurable function h: R? — [0, 00)
such that

|Vafi(x,0) — Vofi(x,00)]| < ||0—0o|[*h(x), x € R, 0 € Oy,
fori=1,..,r.

v. The expectations Eh(Xo) and EVgfi(Xo,0,), i = 1, ..., r, are finite.
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vi. We have an estimator 0, of 0, based on the training sample
(X1, Y1), ey (X, V) such that m'/2(8,, — o) = Op(1).
vii. There exists an ¢>0 such that sup,., E||U,|| 2 s fznzte Note that if this holds
for any &> 0, then the constant vy := sup,., E||U, ||? is finite as well.
viii. There exists a nonsingular matrix Co € R™" such that one of the
following convergences holds as m — oc:

mz U UT—>C0, _Zn 1 U UT|-7:n 1]_>C0

ix. The matrix C has a weakly consistent positive semidefinite estimator C,, €
R™" based on the sample (X1, Y1), ..., (X, Vo).

We note that the estimators 6, and C,, do not need to be well defined with probability 1
for every mj; it is enough if they exist with asymptotic probability 1 as m — oo.
The following statements on C,, hold in the same sense, with asymptotic probability 1 as
m — oo. Based on Assumption 2.1, the matrices CO and C,,f are positive semidefinite,
which implies that they have unique square roots C ? and C,, among positive semide-
finite matrices. Also, assumption (viii) ensures that the estimator C,, is nonsingular with
asymptotic probability 1, meaning that C is invertible in the same sense.

In Subsection 2.3 we show examples of the considered model along with some
remarks on how to check the introduced assumptions.

Similar to Horvath et al. (2004, 2007), Aue et al. (2006), and Kirch and Tadjuidje
Kamgaing (2011), we consider the weight function

g’/(ma k) = m1/2 (1 + %) <L) ) m7k € Z—H—a

m—+k

where y € [0,1/2) is an arbitrary tuning parameter, and introduce the random vectors

m-+k ~ k m o~
S L= Zn=m+l Unn =5 2 yy Uma
e g(m.k) ’

Our main result is stated in the following theorem, where W(t) = [W,(t), ...,
W,(t)]", t >0, is an r-dimensional standard Wiener process. Here and throughout the
article we use the convention 0/0 := 0, and for T= oo let T/(T + 1) := 1.

mk €7y (2.2)

Theorem 2.1. Suppose that the sequence (X,,Y,), n=1,2, ..., satisfies (2.1) and the
noncontamination assumption. If Assumption 2.1 holds, implying that H, is true for every
m € L, then for any continuous function  : R" — R and for any T € (0,00] we
have the convergence

sup Y(Sp) > sup  yOV(H/E),  m— oo
1<k<|Tm) 0<t<T/(T+1)

Let us note that by the law of the iterated logarithm, the process W(¢)/t" is sample
continuous on the interval [0,1]. This implies that the limit in Theorem 2.1 is a finite
random variable. As a result, the null hypothesis H, can be tested as described in
Section 1 by using the statistics T,k = Y/(S;k). In the next theorem, we present three
examples for such statistics, which can be obtained by using the scaling property of the
Wiener process with the norm-like functions
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Ui (y) = llyll, ¥, (y) = max |y,], Us(y) = |c'yl, (2.3)

1<i<r
where y = [y, ...,yr]T,c € R". The variables Sy 1, ..., Smk, stand for the components of
the random vector S, .

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold. Then for arbitrary

constants T € (0,00] and ¢ € R" we have that

1/2—y
D T WI(t
sup ||Sm,k|re( ) sup [VOIL

1<k<| T 1+T o<t<1 B

o (T \"7 Wit

sup  max [Syki|— max sup —-—-,
1<k<|Tm| 1SiST ’ 1+T 1<i<rocp< 1)

1/2—y

T Wi(t

sup 15l (115) el sup AL,
1<k<| Tm) 1+T o<zt 1

as m — OQ.

We omit the proof of this simple theorem. The main advantage of the three tests
based on the functions in (2.3) is that the critical values corresponding to the closed-
ended case can be easily calculated from the critical value x, of the open-ended test in
the form (T/(1+ T))l/ >7'x,. Also note that the limit variables are continuous, which
implies that there exist asymptotically correct critical values for any significance level

€ (0,1). The test based on the function s, is the classical one introduced by Chu
et al. (1996) and investigated by several authors in the last two decades. Horvath et al.
(2004) published a table of the critical values in the case r=1 based on computer
simulation. However, the quantiles of the limit variable sup,.,., [|[W(t)||/t are not
available for every positive integer r. This fact motivates the second test based on the
function /,, having critical values that can be determined by using only the quantiles of
the one-dimensional case. Indeed, let xz be the critical value of the one-dimensional
limit process corresponding to the significance level f =1 — (1 — oc)l/ ". Then,

Wit Wi (t ' .
P| max supﬂgx/; =P supﬂgxﬁ =1-p=1-aq,
i o<t<1 t

i=1,...,r g<t<1 t7

meaning that xz is the critical value corresponding to the r-dimensional limit process
and significance level . We note that in several applications the components of the
statistics S, have different sensitivities for the model change, and a suitable linear
combination of them can improve the power of the method. This is the concept of the
test corresponding to the function .

2.2. Results under the alternative hypothesis

In this subsection, we investigate the test statistics under the alternative hypothesis that
there is a single change in the dynamics of the system. To ensure that the noncontami-
nation assumption holds, we consider a sequence of nonnegative integers k},, m € Z. .,
and assume that for any m the change happens at the time point m + k,. For simplicity,
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we investigate only the open-ended case, and we assume that the dynamics before and
after the change do not depend on the values m and kj,. The goal is to show the
consistency of the test under some suitable conditions of the model and to investigate
the time of rejection as a function of m.

To formalize the model, consider a sequence of RY x R"-valued observations
(X, Yy), n € Z ., satisfying Assumption 2.1, and additionally R? x R"-valued ran-
dom pairs (X mik: 41y Ymmsk 4+n), m,n € Z . For a given m we will perform the test
based on the sample (X1, Y1), (X2, Yi2), ..., where (Xpp, Yiu) = (X, Y,) for
n<m+k’. As a consequence of this construction, for every m the dynamics of the
system does not change before the (m + k},) th step, and some additional regularity
conditions summarized in the next assumption will ensure that after this time point the
system follows another dynamics starting from the initial value (Xmm%% N — ). To
perform the test, we introduce the random vectors

Umm = an,n - E[Ymm | Xm,n]a Um,n = Ym,n _f(Xrn,na ém) m,n c Z’-H—a
and we define S, x by formula (2.2).

Assumption 2.2.

i. The processes {Xpmik:yn,n € Zyy}, m € L, are strictly stationary with the
same finite dimensional distributions, or they are positive Harris recurrent
Markov chains with the same transition probability kernel. Let X4 be an arbi-
trary R-valued random vector whose distribution is the same as the unique sta-
tionary distribution of the processes.

ii. We have E[Y,,|Xpmul =f(Xpn,04) for every integer m>1 and n>
m+k;, +1 with some 0p € ®, and with the function f introduced in
Assumption 2.1. ~ ~ ~ ~

iii. The expectations Eh(Xy), Ef(Xa4,00), Ef(X4,04), and EVgfi(X4,00),
i=1,...,1, are finite, where h is the function defined in (iv) of Assumption 2.1.

iv. There exists a positive integer mu such that

vai=sup sup E||U,,l<occ.

m=my n>m-+k;,+1
In this subsection, we work under the alternative hypothesis
Hy : A = Ef(X4,04) — Ef (X4, 00) # 0.

We will test whether the dynamics of the process (X, Yyun), # € Z4 4, are unchanged
over time under this single change alternative hypothesis by using the test statistics
Tmk := Y(Smk) introduced in Section 1, where ¥y : R" — R is an arbitrary continuous
function. With a given critical value, x, corresponding to a significance level o the time
of the first rejection after the (m + /) th step is defined by ¢ := min{k > ¢ : 1, > x,}.
In particular, for every m, the variables o and i, stand for the first time of rejection
after the last element of the training sample and after the time of the actual model
change, respectively. The following result is motivated by the similar theorems of
Horvath et al. (2004) and Aue et al. (2006) stated for their linear regression models.
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Theorem 2.3. Assume that Assumptions 2.1 and 2.2 and the alternative hypothesis H4
are satisfied, and lim|jy| . Y/(x) = oo.

i. For any sequence k;, of nonnegative integers we have kp . — ky = op(m +k;,) as
m — oo. It is a direct consequence that the related test is consistent.
ii. If ki, = |cm®| for every m with some constants b,c >0, then Kk, — Ky, =

Op(m"), where (1-29)/2—-2y), 0<b<(1-2y)/(2-2y),

p=4q1/2=71-b), (1-29)/2-2y)<b<1,
b—1/2, 1<b.

Let us note that the functions ¥, and ¥, defined by (2.3) satisfy the conditions of the
theorem, which means that the results of statements (i) and (ii) are valid for the related
tests. Although the limit limjy—, ¥3(x) does not exist, we show in Remark 3.1 after
the proof of the latter theorem that with some minor changes in the calculations one
can obtain the same rates for the function ;3 under the additional assumption
that cTCSI/ZA # 0.

In Theorem 2.3, we examined the first time of rejection after the model change.
However, in the applications we may meet false alarms, when the test detects the change
of the model too early, before the actual time of the change, m + k},. Using our
notations, the false alarm is the event {x,,o < k,}. In our last result, we examine the
asymptotic probability of this event.

Theorem 2.4. Assume that Assumption 2.1 is satisfied and consider any of the three test-
ing methods of Theorem 2.2. If ki, = |cm®| for every m with some constants b > 0 and
c> 0, then

0, b<1,
P(kmo <k,)— < o, b=1,
o, b>1,

where o* € (0, ).

2.3. Some general remarks and examples

Let us present some ideas how to check the conditions of Assumption 2.1 in applica-
tions. In most cases, condition (i) has to be verified based on a priori information on
the model. Positive Harris recurrence is already proved for many discrete-time Markov
chains, which can be shown along with (v) by using the Foster-Lyapunov criteria (14.3)
in chapter 14 of Meyn and Tweedie (2009). In the simple case when the process
Xy, n € Z1, has countable state space, (i) of Assumption 2.1 holds if the process has
exactly one positive recurrent class and it is aperiodic and reached within finitely many
steps starting from any initial distribution with probability 1.

Assumptions (iii) and (iv) are analytical conditions, which must be checked by
standard calculations. We note that these conditions are satisfied with a=1 and h(x) =

respect to @ on R? x @,. In many applications, we find models where the function is
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linear in the form f(x,A) = Ax, x € R, with coefficient and parameter A € R™1.
Although this model is not parameterized by vectors, is has a natural reparameterization
by using 0 = 0(A) € R™ defined as the the vector of the columns of A. The partial
derivatives of the function Ax are linear and do not depend on A, which implies that
(iv) holds with h=0. As a consequence of these, in this linear case (v) is satisfied if the
variable XO has finite mean.

Note that (viii) of Assumption 2.1 is required because we would like to use the
martingale central limit theorem. By theorem 3.33 in chapter VIII of Jacod and Shiryaev
(2003), under (vii) of Assumption 2.1 the conditions of (viii) of Assumption 2.1
are equivalent. In many applications, the martingale differences U,, n€ Z,, are
independent and identically distributed (i.i.d.), then (viii) of Assumption 2.1 is satisfied
with Co := E(U, U] ) by the law of large numbers.

For certain models, the matrix C is singular. The matrix C, is the limit of covariance
matrices. Therefore, the singularity of this matrix indicates that asymptotically the
components of U, are linearly dependent, meaning that some components can be
expressed as the linear combinations of others. In such cases, it can help to remove
the corresponding components of the process Y,, n € Z . Then, the matrix Co related
to this modified process possibly becomes non singular.

The method to estimate the parameter 6 depends on the concrete model. Possible
estimations are the least squares, conditional least squares (CLS), weighted conditional
least squares (WCLS), maximum likelihood, or Yule-Walker. Note that if we apply the
CLS estimation for 6, and for every 1 <i <r the function Vf;(x,0) has a constant,
non-zero component, then the statistic S,, x reduces to

m+k ~
0
~—1/2 nem m,n
Sx =€, Zg(#, mkeZ,..

In some cases, Cy = Co(0) is a continuous function of 0. Then, C,, := Cy(0,,) is a
weakly consistent estimator of C,.

2.3.1. Regression and autoregressive models

Consider the model &, = ¢(¢,,0) +n,, n € Z,, where ¢ : R1 x ® — R and ¢;,{5, ...
is a sequence of R7-valued input variables. Furthermore, 7,,1,, ... are error terms with
mean 0 and variance o2, independent of the previous sequence. In this model, we
can test the change of the parameter 6 by using Theorem 2.1 with the setup
Xn=2C Yu=2¢&,, f(x,0) = ¢(x,0), and U, =1, =&, — ¢((,,0). Also, we can test
the change of both 8 and o with X,, = ¢,, Y, = [&,,7%] T,

R U R R AT

Although in the applications the exact values of the error terms are not available, the
test can be performed without this information. Because U, can be represented as a
function of the parameters and the known pair ({,,¢,), the variables U, , can be
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written up by using some estimators 0, and &, based on the real observations
<CI7 51)7 ey (Cma ém)

If ¢, = [én_l,...,én_q]T for every n € Z,. with some g € Z,, and initial vector
[0y s E1—g]> then &, n € 7y, is an autoregressive process that behaves similar to the
regression model in terms of the above-described method.

One can consider, for example, the least squares, conditional least squares, or
Yule-Walker method to obtain applicable estimators.

2.3.2. Homogeneity of independent observations

Consider independent random variables ¢y, ¢;,... coming from a parametric family
parameterized by 6. We can test the change of this parameter with the setup X, = ¢&, |,

Yn == [(ﬁl(in)a ceey d)r(én)]—r’

E0¢1(51) ¢1(fn) - Ea(f’l(fl)
: ) Un = : y

o) — EodrlE)

where ¢, ..., ¢, : R — R are arbitrary such that f(0) exists. Choose functions ¢y, ..., ¢,
that characterize the parameter 0 by a resulting bijective f(0) function. Then, a change
of f(0) is equivalent to a change in the parameter 0 itself.

Now assume that &y, ¢y, ... are independent but not necessarily from a parametric
family. Again, consider the same setup for X,, Y,, and some functions ¢,,...,¢, :
R — R. Then we can test for a change in the parameter

E¢, (&)
f(x,0):=0:=
E¢.(¢1)

fx0) =fO)= |
E0¢r(€l)

For example, one can test for a change in the first »r moments of the variables by
choosing the functions ¢, (x) = x, ..., ¢,(x) = x".

2.3.3. Multitype Galton-Watson processes

Consider a positive integer p and a random or deterministic, 7% -valued vector &,. The
77, -valued process &, = [Entsoens fn_rp]T, n € 7, is a multitype Galton-Watson process
if it can be represented in the form

g‘,n_“ én—l.p
&= Gk + 4 ) k) +nn),  neZ.y,
k=1 k=1

where

507 Ci(nak)v 'l(n)v kvn € Z++7 i= 17 "'7p7
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are 7/ -valued random vectors being independent of each other, and the offspring
variables {;(n,k), k € Z ., are identically distributed for every i and n.

Our goal is to test whether the distributions of the offsprings and the innovations are
unchanged over time. For this goal, we consider two tests. With the first one, we test
whether the means of the distributions are unchanged. With the second one, we test
whether both the means and variances are unchanged. Under the null hypothesis,
we refer to the offspring and innovation distributions by {;,...,{,,n, because their
distributions do not depend on the parameters #n and k. Also, we introduce the matrix

M := [EL,, ..., EL,, Ey) € RP*PHY

and we define the first test by setting

Xn = |:§n1—1:| = [énfl,ly ey énfl,‘m 1]T7 YH = én? ne Z++’

resulting in f(x,M) = Mx and U, = & —M[&] 1] .

n—1
For the second test, under the null hypothesis we consider the matrix

V= [D%, ..., DL, D’y € RP*PHY,

where the variance of a vector is understood componentwise. Then, by the results of
Nedényi (2015), one can test the change of (M, V) by the setup

X,= %1, Y= f_fﬁxnz], f(x,M,V):R,‘]x.
R [P+

Then, U, = [(&, - MX,)", ((&, — MX,,)* = VX,)']". We suggest applying the CLS
and WCLS methods to achieve the necessary parameter estimators in both cases. The
estimators are detailed in Nedényi (2015).

3. Proofs

Lemma 3.1. Consider a measurable set S C R? and an array of S-valued random vectors
with rows {M,,0, M1, ...}, m € 7, that satisfies any of the following assumptions:

i. The rows of the array are strictly stationary ergodic processes with the same finite
dimensional distributions.

ii. The rows are positive Harris recurrent Markov chains with the same probability
transition kernel. Furthermore, the process of the initial values {M,,o : m € 7.}
is strictly stationary or it is an aperiodic positive Harris recurrent Markov chain.

In both cases, let n denote the unique stationary distribution of the rows. Consider a

measurable function ¢ : S — R such that J [|¢(x)||7(dx)<o0, and introduce
S
1k
A = D2 60M) = | 0R(de),  mik e Zo
n=1

Then, for any real sequence a,, tending to infinity, we have sup., |[An || = op(1)
and supy., || Akl = Op(1) as m — oc.
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Proof. If the array satisfies condition (i), then for any m we have

1< b1
R M) S5 ¢(M) — [ poman. k-

where the convergence holds with probability 1, proving both statements. In the remain-
ing of the proof we show that the statements are true under assumption (ii) as well.

Let 7' stand for the unique stationary distribution of the process M, o, m € Z, ,,
and let p,, denote the distribution of the random vector M, o. If the initial values form
an aperiodic positive Harris recurrent Markov chain, then by theorem 13.0.1 of Meyn
and Tweedie (2009) the transition probabilities of the chain converge to the stationary
distribution in the total variation metric. From this we obtain that

sup [pn(B) —7'(B)[ < J sup [P(My0 € B| M0 =x) —7'(B)|p1(dx) =0,  (3.1)
BeB(S) SBeB(S)

as m — oo. Note that the convergence in (3.1) is obvious if the process M, o, m e Z .,
is strictly stationary. Also, theorem 17.0.1 of Meyn and Tweedie (2009) implies the “law
of large numbers” A, — 0,k — oo, in case of any distribution p;, where the conver-
gence is understood in an almost sure sense. Hence, we have sup,., A;x—p0 as m — o0
on the event {IM[; o =x} in case of an arbitrary x € S. This implies the convergence

Pm(x,0) :=P(sup ||A1x]| >0 Mip=x)—0, m— o0,

k>ap,
for any fixed value 6> 0. Note that by the Markov property
P(sup ||[Ay k|| >0 Mo =x) =P(sup || Apil||>| My o=x), meZ,y,

k>a,, k>a,,

for every x € S. By using this consequence of the Markov property and the dominated
convergence it follows that

P(supllnall>0) = | pulx.0)p(a)

< \kjp (x.0)(pn =) ()| + [ o) (e

< supp,,(x,0) sup |p(B) —7'(B)| +J P (x,0)7 (dx) — 0,
x€S$ BeB(S) s

as m — oo.

For the second statement, let us recall that A, — 0, k — oo, almost surely, which
implies that the sequence Ay, k € Z,,, is bounded stochastically. From this we get
the convergence

p(x,¢) := P(sup || Ay k]| >c| M9 =x) — 0, ¢ — 00,
k>1

for any x € S. Because p(x,c) is a measurable function of the variable x in case of any
fixed ¢ >0, the sets

S(c) ={x€S:px,c) <e/3}, c>0,
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form an increasing system of measurable subsets of S with limit set U.~(S(c) = S for
every ¢>0. This implies that there exists ¢y >0 such that 7/(S(co)) > 1—¢/3 and
SUPyes(,) P(X; €o) < &/3. By using the Markov property, we obtain the inequalities

P(supllnal]> o) = | plxcolpuci

k>1

<

me, o) (P — ') (%)
< supp(x,co) sup |pm(B) — 7'(B)| +¢/3 +¢/3.

+ J p(x, co)m (dx) + J p(x, co)m' (dx)
S(co) S\S(co)

x€$ BeB(S)

Because the first term converges to 0 by (3.1), it follows that P(sup,, [|Ank|l > o) <
¢ if m is large enough, completing the proof of the second statement. O

For every positive integer m, consider the processes

m+|tm| ~ Ltm) m A
~ Um.n T m Um.n w L
Xo(t) == ZH:WH—I : i i X(t) = C(l)/Z (tH—;) : t>0,
& (m, [tm]) ()

and let X, be the theoretical counterpart of X, which is obtained by replacing the
vectors Uy, , by U,, respectively. The processes X, and X,, are random elements of
the Skorokhod space D'[0,00) of R"-valued cadlag functions defined on [0, 00). (For
the topology of D[0, c0), see chapter VI of Jacod and Shiryaev [2003] or see section 16
of Billingsley [1999] for the case r=1.) Additionally, the law of the iterated logarithm
implies that X’ is a random element of the space C'[0,00) C D'[0,00) of continu-
ous functions.

The theoretical base of our main results is the fact that the process X, converges in
distribution to X in D[0, 0c0) if Assumption 2.1 is satisfied. This convergence is a direct
consequence of Lemmas 3.2 and 3.3 stated below. We note that under some additional
regularity conditions one can also construct copies X", X?) ... of the process X such
that sup, || X (t) — X (£)]| — p0 as m — oo. This stronger tool was used by Horvath
et al. (2004), Aue et al. (2006), and Kirch and Tadjuidje Kamgaing (2011) to prove

results similar to those of our Theorems 2.1 and 2.3. O
Lemma 3.2. If (i)-(vi) of Assumption 2.1 hold, then sup||X,,(t) — X(t)||—p0
as m — oo. £20

Proof. Consider @y, an open sphere with center 6,. Because ém is a weakly consistent
estimator of @y by (vi) of Assumption 2.1, we have P(ém € ©y) — 1 as m — oo. Our
goal is to prove a stochastic convergence, which means that we can condition on the
event {0, € ©y} for every m. We will often use the inequalities

k ko’ cm 27K k<m
. k) = 1/2 1 i > Y 5 =~ )
g (m, k) =m + m)\mrk) = cym_l/zk, k> m,
where ¢, is a suitable positive constant not depending on m and k.
Because the lemma follows from the stochastic convergence of the suprema of
the norms of the components of the process X,,(t) — X(t), t > 0, it is enough to prove

the statement for r=1. Because X', and X,, are step functions defined on the same
partition, we must show that
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m+k o~ mo mtk Y
(Zntrﬂd Um,n - %ZnZI Um’") B (Zn+m+l U” - %Zl Un) ‘
sup

= 1 3.2
k>1 g,(m, k) or(l) (3.2

as m — oo. From (iii) of Assumption 2.1, it follows that for each m and #n there exists a
parameter 0, , € © such that ||0y,, — 60| < [0, — 0y]| and

U = Un = F(Xar, 00) = f(X, 0) = (80 = 0) " Viof (X1, 00 )
= (00 = ) " [ + $(Xs) + EVaf (X, 00)),

where

Do = Vof (X, Omn) — Vaf (X, 00), P (x) = Vof (x,00) — EVef (Xo,0y), x€S.

Because ém € 0y, we Aalso have 0,,, € ®9, and (iv) of Assumption 2.1 implies the
inequality ||D|| < [0 — 00]|"h(X,,). By (i) of Assumption 2.1, we can apply Lemma
3.1 to the array of random vectors {X,,, X,41,...},m € Z ., and we get that

m+k m+k
1D .0 . 1= h(X,)
sup Zn:m—H | | S ||0m _ 0O||a sup (ﬁ) Zn—m-Hl 2(
k>1 & /(m,k) 1<k<m \M cym' 2k
) ST K aml2 S R(K,) »
0m _ 0 a n=m < Om _ 0 a n=m — ,
+| ol S Tk S G | ol Sup = op(m/?)
as m — oo. Similarly, from ergodicity it follows that
S IDul 1y
2 Pmall TR B
sup < |0, — 0o]|* sup (— 7
k>1 g(m, k) 1<k<m c,m!/
' Yo b)) oml2 Yo h(K)
_ a n=1 _ a n=1 — 1/2
+(10m — 65| kS;lIr)n c,m'/? < Cy 110 — ol m op(m''*),

as m — oo. Using (v) of Assumption 2.1 and the same steps as in the last formula, one
can also show that

sup 1Dy SO _ 2t ”Z% PO

U g (m k) S Op(ml/Z)’ m — 00.
> PANLLS) Y
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Finally, from Lemma 3.1 with a,, = m'/2, it follows that

m+k 1— m+k
HZ}’[ WlJrl < vzn Wl+1
k = sup 1/2k
k>1 g (m, ) 1<k<m!/2 m
_ m+k m+k
. <k>1 > le(X )I+ anmﬂw(xm
su — su
m1/2<£)§m m c,m~1/2k k>€1 c,m~1/2k
m+k m+k
"2 [P(Xa)l 2m!/2 (X))
<= sup Z"ZMH + sup Z”:’”“ = op(m'/?).
& 1<k<mi k & k>mi2 k

By summarizing the last four formulae, we obtain the approximations

m-+k ~ N ~
> (Ui = Un) = k(00 — 0,) EVof (Ko, 00)
su
o & (m.k)

=[]0 — OolJop(m'/?) = 0p(1),

and

k Upn— U, — k(0 — EVof(Xo, 0, .
IZn (U, ) — k(0o — 0,,) "EVgf( )|:||0m—00||op(m1/2):op<1),

sup
k>1 & /(m k)

(3.3)

as m — oo. From these (3.2) follows, and the proof is complete. O

Lemma 3.3. If (ii), (vii), and (viii) of Assumption 2.1 hold, then X, —pX as m — oo in
the space D'[0, 00).

Proof. Our goal is to apply the multivariate martingale central limit theorem (theorem
3.33 in chapter VIII of Jacod and Shiryaev [2003]) to the martingale difference
sequences {U,/m'/? U,/m'/? ..}, m € 7. Note that for any values ¢, >0 we have
the convergence

1 [mt] 1 [mt] e
—ZEHU I Lgu,>omizy | Fao] < <5 1+‘O/ZZ:EHU [

as m — 00, because by (vii) of Assumption 2.1 the variable on the right side converges
to zero in an L; sense. This means that the conditional Lindeberg condition is satisfied,
and one can show similarly that (viii) of Assumption 2.1 implies that at least one of
conditions [y¢'—D] and [j¢'—D] to the same theorem holds as well. As a result, the
martingale central limit theorem can be applied, and it implies the weak convergence of

[mt]
t):=m?Y U, t>0,

to Cé/ZW(t), t >0, in D'[0,00) as m — oo. (Let us recall that VW is an r-dimensional
standard Wiener process.) Introduce the processes
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m+|mt]

1 | & ¢
ym(t) = m1/2 ;1 U” - U:/l—JZl Ufl 9 y<t> = C(l)/z(t + 1)W<H—1)’

defined for ¢t > 0. From the convergence of U,,, we obtain that

[m(t+1)]

um(1)] LA [Cé/ZW(t +1) - (t+ 1)C}/2W(1)}

t>0

Ym = [le(t—l-l) —

>0’

as m — o0. Because the limit is a Gaussian process with the same mean and covariance
function as ), we get that ,,—p) holds in D0, c0).
For every positive integer v, introduce the function

@, : D'[0,00) x D[1/v,00) — D'[0, 00), D, (y, w)(t) = y(O)w(t) L1/

By the results in chapter VI of Jacod and Shiryaev (2003), the Borel o¢-algebra
generated by the Skorokhod topology on the space D'[0, 00) is identical to the g-algebra
generated by the finite dimensional projections, and the convergence to a continuous
function in the Skorokhod sense is equivalent to the local uniform convergence. These
facts imply that the function @, is measurable, and it is continuous at the elements
of the set C'[0,00) x C[1/v,00). For the shorter notations, introduce the processes
Xy (t) = Xp(t) sy and X, (t) := X(t) 1{4>1/,, along with the functions

-1 1/2
t o, m Lmtj)
£) = | (14 t)(—) 0 P —— e F S Y
[ R B G N R

Because ), —p) and w,, converges to w uniformly on the interval [1/v,00), we
get that (Y, w,)—p(Y,w), and using the continuous mapping theorem we get the
convergence

Xm,l/ = q)u(ymvwm)gq)u(yy W) = XO,V? m — O0.

Let us recall that by the law of the iterated logarithm we have lim; o ||X(¢)|| =0
almost surely. This implies that the process X, converges to X in the supremum
distance with probability 1 as v — oo, resulting in convergence of the distributions
as well.

To finish the proof of the statement, we only need to show that the processes X, ,
are uniformly close to X,,. Let U,,,...,U,, stand for the components of the random
vector U, and note that U, U,j,... is a martingale difference sequence for every j.
Theorem 1 of Chow (1960) states that for a non increasing sequence of positive
numbers, ¢i, ¢z, ..., @ submartingale sequence of random variables, Z;,Z,, ..., and ¢ >0, it
holds for every ¢ € 7, that

~

1
eP(max)<k<pciZi > ¢) < (ck — Ck+1)E(ZZr) + CgE(er)
1

{—1
= ClE(ZIL> + ch{E(Z]j> - E(lefl)],
k=2

»
II

where Z* :=max(Z,0) for any random variable Z. For a fixed me€ Z,,; and
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. . . L 2 L m-+k ')2
j€{l,...,r}, identify the sequences as cx:=1/g}(m,k) and Zj := (Zn:mH Unj) ,
k € Z, . Because Uy, Uy, ... is a martingale difference sequence, the sequence Z, k €

Z 4. is a submartingale. Note that

mtk r m-+k ‘)2
mﬂnzwwwgggu N (> w, N

= ax > (3.4)
1<k<|m/v] g (m, k) =1 | 1<k<|m/v] g (m, k)? r

Then applying Chow’s inequality, we get that

m+k
||Zn=m+1 U]
P| max ——FF——>¢
1<k<im/v) g (m,k)

m+k

a (w(k/m) PR
< ZP max Zn:m-H nj > 8_
=1 \Iskslm/v] m "
5 r g lm WZ(k/m)EUiJrkJ B - Jl/y 1 t o )
2 - 5 — N
- j=1 & k=1 m - ), 2(1 = 292

as v — o0o. Also, the convergence of the process U, implies that the variables ||I,,(1)]|
are stochastically bounded, which results in the convergence

L3 U LWL S
_é;ﬂ———mwm|mu-ﬂwaswwmly*“

1<k2imil g (m.K) 1<k<|m/vim - m V!
uniformly in m as v — oco. From these we get that

P
sup [ Xn(t) = X (B)[| = _max |[X,(k/m)[| =0, v — 00,

0<t<1/v 1<k<|m/v|
uniformly in m. Note that X, — X almost surely as v — oo. Then, theorem 3.2 of
Billingsley (1999) implies that the process X', converges in distribution to X as m — oo
in the space D'[0, 00). O

Proof of Theorem 2.1. By the properties of the Skorokhod topology, Lemmas 3.2 and
/2

3.3 imply the convergence X,, — pX in the space D'[0,00) as m — co. Because C;l

_ ~—1/2 2 -
is a weakly consistent estimator of C, Y2 we also get that C,, / Xm—pCy Y2y

as m — oo.

Consider the function W7 : D'[0,00) — R defined as Wr(y) := supy,.r ¥ (y(1)). It
can be shown that Wy is measurable for any T € (0,00], and by proposition 2.4 of
Jacod and Shiryaev (2003) it is continuous at the elements of the set C'[0,00) if T is
finite. Because C, 2x is a sample continuous process, it follows from the continuous
mapping theorem (see theorem 2.7 of Billingsley [1999]) that

sup  Y(Smi) = ¥r(C, PX)DWHC X = sup V(D)) (3.5)
1<k<|Trm) 0<t<T/(14T)

for any finite T as m — oo. Unfortunately, this argument does not work for T = oo,

because in case of an arbitrary continuous y the function W, is not continuous on



262 . F. K. NEDENYI

C'[0,00). In the remainder of the proof, we show that the statement is true for T = co
by using a different method.

Because the random vectors U;, U,, ... have bounded second moments, the martin-
gale law of large numbers (see, e.g., theorem 3 in section VIL9 in Feller [1971]) implies
the almost sure convergence

m-+k

k - 1\
X’”(Z) _m1/2<1 _) +kZU ;Un H_W;Um (3.6)

k — oo. In the next step, we show that this convergence is uniform in m. Let X’ denote
the process X, with fixed parameter y=0. From (3.6), it follows for any T € (0, c0)
and k > Tm that

1/2 m+k mV/2(k — m+|Tm|
X;(ﬁ)—x;m— ~ Y U (k — [Tm]) Z U,

m n=m+|Tm|+1 (m + k) m+ LTmJ

By using again the Hédjek-Rényi type inequality (3.4), we get that

2
m—+k m+k
U, ;
Hzn m—+|Tm]+1 ”|> i <an+[TmJ+1 ”-J> >

?
< i
R A e N T L
)4 00 EU 00
SZL Z LI‘JS@ #dt:ﬂ_)() T = 00.
L 2 m(1 +k/m)* — € (1+1)? eT
=17 k=[Tm]+1 -1

Also, the tightness of the variables U,,(1), m € Z ., implies that

l/z(k— LTI’I’I m+|Tm)|
U,
o (m+ k) (m + [Tm]) | Z I

m+|Tm]
m 1/2 (k— I_TWlJ HZn:l U”’” < HumH_ij(l)Hio
m+ [Tm)| m+k  \/m+|[Tm] — TV

holds uniformly in m as T — oo. As a result, we get the convergence

= sup
k>Tm

£3 % &3 £ P
sup || 45, (t) = X, (T)|| = sup || A, (k/m) — X7, (T)||—0, T — oo,
t>T k>Tm

uniformly in m. Because for any fixed T > 0 the variables X (T), m € Z, are tight,
it also follows that sup,.,||X7 (¢)]| = Op(1). We already proved that the statement is
true for any finite T. Using this result with function y(x) = ||x||, x € R’, we get that
supy,<r || X5, ()|| = Op(1), resulting in the rate sup,, || X, (¢)|| = Op(1).

Let 7 €[0,1/2) be an arbitrary value and note that X,,(t) = (14 m/|tm]|)’ X7 (1),
where the function (1 +m/|tm|)’, t > T, is decreasing and it has finite limit at infinity.
Then, for any T > 1, by using the triangular inequality, we get the convergence
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t>T t>T

(1 +LT’“—MJ> - (1 ﬂt—nniN supl -, (1) (3.7)

2

” * * 1 I *
< gl 6 = X+ (1) supll 1150
t>T - t>0

Sup|| X, () — Xy (T)| < (1 +LT—”;J)"’sup||X;<t> — x|

+ sup

t>T

uniformly in m as T — oco. From this one can prove that sup,.||X(t)|| = Op(1)
similar to how we obtained the related rate for the process X7 . -

Consider arbitrary values ¢,J,0 >0. By the uniform stochastic boundedness, there
exists a constant K such that P(sup,., ||X || < K) > 1 — ¢ holds for m € Z . By using
this bound, Lemma 3.2, the uniform convergence in (3.7), and the weak consistency of
the estimator C,, imply that there exist positive values Ty, > 0 depending only on &,
&', and K, such that

Pl sup|[Xn(t)| <2k, sup|C, P At — €,

t>0 t>T

X (T)| < 5’) >1-2 (3.8)

holds for every T > Ty and m > my. Because the function ¥ is continuous, it is
uniformly continuous on the r-dimensional closed sphere having radius 2K and having
center at the origin. This means that the ¢’ can be chosen such that [[y(x) — ¥(y)|| < &
for every element x and y of the sphere satisfying ||x — y|| < &'. By using this property
along with (3.8), we get that

1/2 & A—1/2 &

PT,m( ) = P(\Iloo(ér_n XM) - \PT<Cm XM) > 5)
< P(sup(C,, 22, (1) = W(C, 2 X (T)) > 6) < 2

£>T
for every T > T, and m > my. Because ¢ is an arbitrary positive value, if follows that
lim limsup pr,,(6) =0
m—00 T—00
holds for every ¢ >0. Note that W;(X) — W (X) almost surely as T — oo. Then, the
convergence in (3.5) proved for any finite T and theorem 3.2 of Billingsley (1999)

implies that the result in (3.5) is true for T = oo as well. This argument completes the
proof of the theorem. 0

Proof of Theorem 2.3. Consider an arbitrary integer-valued sequence k,, >k, + 1,
m € 7. Let us note that X,, , = X, and U, , = U, hold for any positive integers m

and n <m+kj, and we have U, , — U, , = f(Xp,04) — f(Xpn,0,,) for every m
and n>m + k},. Then it follows that
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m+kp, . m mo k;fy, m_ m+k,
Z Umn _ZZ Z Um,n _ZZUm,n + Z Um,n
n=m+1 n=1 n=m+1 n=1 n=m+k} +1
Mk, m+ky, R
+ Z [f(Xm.,nv oA) _f(Xm,m 00)] + Z [f(Xm,nv 90) _f(Xm,na om)]
n=m-+kj, +1 n=m+k}, 41

Ky — k) < ko — K xS
- m ;Un - m ;[Um,n - Un]

First, consider the case r=1. Because g,(m,k) is an increasing function of k,
Theorem 2.2 implies that

m+k;, o~ K m o~
|Zn m-+1 m,n B Zanl Um,n|
g"/(ma km)

Let us note that sup., k/g,(m, k) = O(m'/?). Using this rate and the weak conver-
gence of the process U,,, which was shown in the proof of Lemma 3.3, we obtain that

D Unl (1)

< |Xm(ky,/m)| < Stl>11()3|‘j(m(t)| = Op(1).

= Op(1).
gy(m ki) k>1 m'/? g}(m k) o)
Also, from equation (3.3), it follows that
K —k mooe
- Um.n - Un 71/2
n |Zﬂ:1( ’ )| SSUPM)—FOP(I) :Op(l), m — OQ.
gv(makm) k>1 g}(mvk)

Because the random variables U,,;, U, ,,... form a martingale difference sequence,
they are pairwise uncorrelated. Then, for any m > my, by using (iv) of Assumption 2.2
we get that

Var

Zm+k1k +1 Ui (km — K )va k =27
nE ) R L VA m <y
g(mke) ) = g2(mkn) (m+km> =

From this, the Chebyshev inequality implies that the variable on the left side is of rate
Op(1) as m — oc.

Consider the constant A defined by the alternative hypothesis 4 and assume that
ky — k), — 00 as m — oco. By the assumptions, we can apply Lemma 3.1 to the array of
variables {X,, k10, € Z 1}, m € Z 4, with the function ¢(x) = f(x,04) — f(x,0),
and we obtain the equation

m+ky,

Z [f (Xonns 0a) = f(Xonny 00)] = (ki — k;,)[A + 0p(1)], m — Q.

n=m-+kj,+1
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Similar arguments result in
m+km

Z [f(Xm,na 00) _f(Xm,n; ém)] = OP(km - k;), m — OQ.

n=m+k} +1

By summarizing the results of the current proof, the weak consistency of the
estimator C,, implies that

~—1/2 Zm+km @m.n — %Z:;l @m’n - km _ ktn

_ n=m+1 — _1/2A 1 1

(3.9)

as m — oo in the case r=1. From this it follows that (3.9) holds for an arbitrary r as
well, because in the general case the equation is understood componentwise.

(i). Consider the sequence k,, = ki, + |e(m + k)|, m € Z, with an arbitrary &> 0.
If m is large enough, we obtain the inequality

kn =k o Vmlelmt k)| Vmlem+k,))
gmky) “m4+ki, + le(m+ ki) — (1+e)(m+k;,)

)

and the right side converges to infinity as m — co. Because Cy is nonsingular and A # 0
by the alternative hypothesis, we have C; Y27 £ 0. This means that [|Smk, ||—poo, imply-
ing the convergence Y/(S,,k,)—poo. Let x, stand for the critical value of the test corre-
sponding to an arbitrary significance level o € (0,1). Then we have the convergence

P(Km,kin — k:; < E(Wl + kfn)) > P(!,D(Sm,km) >x“) — 1, m — 00,

proving the first statement.

(ii) To prove the second statement, consider the values k,, =k, + LCmﬁJ, me7Z.,,
with an arbitrary C>0 and with the f defined by the theorem. The conditions on the
function  imply that there exists a real value K> 0 such that y(x) > x, if ||x|| > K. By
standard calculations, one can verify that

—y 1_2'\
C C—i—aﬂ 1-2y s OSbS /,
) kpy — K, ©) {bZZ*Z:f} 2-2
im ——2 = H(C) := - 1—2y
m—o0 g (m, ky Ca"(1 1 )1 b<1
gr( ) a ( +a {b—l}) ) 2_2y< =4
Ca !, 1<b.

From this and from equation (3.9) it follows that for any fixed C>0, if m is large
enough, then

H(C -

Smiall = (16, 2 Al 4 0p(1)] + 04(1), .10
where the terms 0p(1) and Op(1) are the same as in (3.9) and do not depend on C. Fix
an arbitrary real number ¢ > 0. Because lim¢_.., H(C) = oo, the right side of (3.10) con-
verges to infinity as C — oo with probability 1. This implies that the value C can be
chosen in such a way that the right side of (3.10) is greater than K with a probability at

least 1 — d. Using this C, we obtain the inequalities

P(kimj, =k, < CmP) = P (Smk,) > %2) 2 P(||Sg, || > K) 2 1-6
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for every large enough m. Because J is an arbitrary positive number, the probability on
the left side converges to 1 as m — oo, proving the second statement of the theorem. O

Remark 3.1. Because the functions ¥; and W, of (2.3) satisfy the assumptions of
Theorem 2.3, the results are valid for the related test statistics. Unfortunately, we cannot
apply the theorem for the test statistics corresponding to the third convergence, because
the limit limH,(H_>Oo 5(x) does not exist. However, with some modifications in the proof,
one can show that the results of Theorem 2.3 are valid for s, if ¢'C; V2 # 0. For this
goal, note that the base idea of the proof is formula (3.9), which ensures that the vector
Sk, is “large” in some sense. From this equation, we get that

kn — K _
T _ Mm m T~—1/2
e e e [1€7C3 28] + 0n(1)] + 0p(1), (3.11)

implying that y5(S,.x,) is “large” as well, if ¢' C, '2A = 0. Then the results of Theorem
2.3 can be obtained for the function /3 by using (3.11) in parts (i) and (ii) of the proof.

Proof of Theorem 2.4. Let us note that in the open-ended case all of the three conver-
gences in Theorem 2.2 can be written in the form sup;., Y/(S,x)—pZ, m — oo, where
Y : R" — R is one of the functions in (2.3), and Z is a non-negative-valued absolute
continuous random variable with unbounded support. Let F, stand for the distribution
function of Z and let x, be the critical value of the open-ended test corresponding to
the significance level a.

If b <1, then consider an arbitrary value &> 0. Because k, <em if m is large enough,
we get that

1/2—y
P(kmo < k;,) < P( sup Y (Smi) >x1> —1- FZ<<1 —:P> xﬁ>,

1<k<|em]

as m — 0o. Because the limit can be arbitrarily small by choosing a sufficiently small &,
the left side converges to 0 as m — oo.
If b=1, then the identity Fz(x,) = 1 — o implies the convergence

14\ />
P(kmo < k) = P< sup  Y(Spk) >xa) —1— FZ<< ; ) xg) € (0,a),

1<k<|cm]|

as m — oo.
If b>1, then consider an arbitrary T>0 and note that for every large enough m we
have the inequality and the convergence

1/2—y
1— Fz((#) xm) — P( sup  ¥(Smk) >xa> < P(kmo < k%)

1<k<|Tm|

< P(sup ¥ (Smk) >xa> — 1 —Fy(x,) = o,

k>1

as m — 00. Because by increasing T the left side can be arbitrarily close to a, the probability
in question goes to o as m — o0o. This argument completes the proof of the theorem. O
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