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SURJECTIVE KUIPER ISOMETRIES

GYÖRGY PÁL GEHÉR

Communicated by David Blecher

Abstract. Characterisations of surjective isometries with respect to the

Kuiper distance on three classes of Borel probability measures on the real

line (or equivalently, probability distribution functions) are presented here.

These classes are the set of continuous, absolute continuous and general

measures.

1. Intorduction and statements of the results

The famous Banach–Stone theorem characterises surjective linear isometries

between Banach spaces of continuous complex-valued functions on compact Haus-

dorff spaces equipped with the supremum norm. Motivated by this theorem, G.

Dolinar and L. Molnár described surjective isometries of probability distribution

functions with respect to the Kolmogorov–Smirnov distance in their joint paper

[4]. It is important to note that the space of probability distribution functions

is not a linear space, therefore there is no point in considering linearity of these

maps. Though, this space is a convex subset of a linear space, i.e. the space of all

real-valued measures on R, therefore invariance of convex combinations could be

considered. But on the contrary, in [4] the authors considered general surjective

isometries, and the invariance of convex combinations under these transformations

was not an assumption but a conclusion.
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Later, L. Molnár continued this project in three further publications [7, 8, 9].

The present paper is a contribution to this line of research. Namely, we will con-

sider the so-called Kuiper distance and describe the structure of general surjective

isometries on three classes of probability distribution functions. However, unlike

in the before mentioned papers, we will prefer the language of Borel probability

measures instead of distribution functions. We point out that as in the papers

[4, 7, 8, 9], the invariance of convex combinations under these transformations

will be a conclusion.

The space of all Borel probability measures will be denoted by P (R). We call

a µ ∈ P (R) continuous if we have µ({x}) = 0 for every x ∈ R, and absolute

continuous if it is absolutely continuous with respect to the Gaussian measure

(or equivalently with respect to the usual length measure m on R, though, we

have to keep in mind that m /∈ P (R)). The class of all continuous and absolutely

continuous Borel probability measures on R will be denoted by Pc(R) and Pac(R),

respectively. The symbol BR will stand for the set of all Borel subsets of R.

The distribution function of µ ∈ P (R) is usually defined by fµ(t) := µ((−∞, t])
(t ∈ R). It is well-known that fµ is monotone increasing, continuous from the

right, and satisfies limt→∞ fµ(t) = 1 and limt→−∞ fµ(t) = 0. The Kolmogorov–

Smirnov distance on P (R) is given by

dKS(µ, ν) = sup
t∈R
|fµ(t)− fν(t)| = sup

t∈R

∣∣µ((−∞, t])− ν((−∞, t])
∣∣,

and the so-called total variation distance or statistical distance is

dTV (µ, ν) = sup
{∣∣µ(B)− ν(B)

∣∣ : B ∈ BR} .
Let I denote the set of all non-degenerate intervals of R, i.e.

I = {I ⊆ R : #I > 1 and I is connected}.

The set of all (possibly degenerate) intervals of R will be denoted by I0, i.e.

I0 = I ∪
{
{x} : x ∈ R

}
= {I ⊆ R : I is connected and I 6= ∅}.

The Kuiper metric is given by the following formula, where the second and third

equations are easy to see:

(1)
dKu(µ, ν) := sup

t∈R
(fµ(t)− fν(t)) + sup

t∈R
(fν(t)− fµ(t))

= sup{|µ(I)− ν(I)| : I ∈ I} = sup{|µ(I)− ν(I)| : I ∈ I, I is bounded}.

This metric is a natural modified version of the above mentioned two distances.

Obviously, we have dKu(µ, ν) ≤ 1 (µ, ν ∈ P (R)). We will show in the next section

that instead of supremum we can take maximum, if I runs through I0 instead of
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I. This metric was defined by N.H. Kuiper in [6], and it seems that it is more

useful in statistics than the Kolmogorov–Smirnov distance ([1, pp. 39]). It is also

important because of the Kuiper density problem ([2]).

The goal of this paper is to present a characterisation of surjective isometries

of Pc(R), Pac(R) and P (R) with respect to the Kuiper distance. We remark that

this question was posed by Molnár in a personal conversation. Let A ∈ BR and

g : A → R be an injective function which transforms Borel sets into Borel sets,

i.e. g(B) = g(B ∩ A) ∈ BR (B ∈ BR). If µ ∈ P (R), then by µ ◦ g we mean the

(not necessarily probability) Borel measure defined by

(µ ◦ g)(B) = µ(g(B)) (B ∈ BR).

Clearly, in the special case when g : A → R is surjective, we have µ ◦ g ∈ P (R).

We also point out that if µ ∈ Pc(R) and #(R \ g(A)) = 1, then µ ◦ g ∈ Pc(R).

For every x ∈ R let us define the function

rx : R \ {x} → R, rx(t) =
1

t− x
;

and let r∞ : R→ R be the identity function.

Now, we formulate our main results on surjective Kuiper isometries.

Theorem 1.1. Let φ : Pc(R)→ Pc(R) be a surjective transformation which is an

isometry with respect to dKu, i.e. we have

dKu(µ, ν) = dKu(φ(µ), φ(ν)) (µ, ν ∈ Pc(R)).

Then there exists a homeomorphism g : R→ R and an x ∈ R ∪ {∞} such that φ

has the following form:

(2) φ(µ) = µ ◦ (g ◦ rx) (µ ∈ Pc(R)).

Moreover, transformations of the above form are all surjective isometries with

respect to the Kuiper metric.

Theorem 1.2. Let φ : Pac(R)→ Pac(R) be a surjective map which is an isometry

with respect to the Kuiper metric, i.e. we have

dKu(µ, ν) = dKu(φ(µ), φ(ν)) (µ, ν ∈ Pac(R)).

Then there exists a bijective function g : R → R such that g and g−1 are locally

(i.e. on every compact interval) absolutely continuous, and an x ∈ R∪ {∞} such

that we have

φ(µ) = µ ◦ (g ◦ rx) (µ ∈ Pac(R)).

Moreover, every transformation with this form is a surjective Kuiper isometry on

Pac(R).
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As a consequence of the above two theorems we have that every surjective

Kuiper isometry on Pac(R) can be extended to a surjective Kuiper isometry on

Pc(R). But on the contrary, as we shall see from the next theorem, a similar

conclusion does not hold for the classes P (R) and Pc(R). The reason is the

following: unlike on Pc(R), all surjective Kuiper isometries on P (R) transform

measures with compact support to measures of the same type.

Theorem 1.3. Let φ : P (R) → P (R) be a surjective Kuiper isometry, i.e. we

have

dKu(µ, ν) = dKu(φ(µ), φ(ν)) (µ, ν ∈ P (R)).

Then there exists a homeomorphism g : R→ R such that

φ(µ) = µ ◦ g (µ ∈ P (R)).

Moreover, every transformation of this form is a surjective Kuiper isometry on

P (R).

The first two theorems will be proven in Section 2. Our method will be to

transform our problem to another one which considers Borel probability measures

on the unit circle T of R2. This will help us to avoid some technical difficulties.

The last result will be verified in Section 3. In order to give that characterisation,

our first step will be to establish a metric characterisation of Dirac measures in a

similar way as it was done in [4] and [8]. After that we shall utilise Theorem 1.1.

2. Proofs of the continuous cases

We begin with proving that in (1) we can take maximum if I runs through I0.

Lemma 1. For every µ, ν ∈ P (R) we have the following equation:

(3) dKu(µ, ν) = max{|µ(I)− ν(I)| : I ∈ I0}.

Proof. The dKu(µ, ν) = 0 case is obvious, so we may assume throughout the

proof that dKu(µ, ν) > 0 holds. First, let us assume that fµ ≤ fν (the fµ ≥ fν
case is similar). Then we clearly have

dKu(µ, ν) = sup
t∈R

(fν(t)− fµ(t)).

Since the limits of the distribution functions at −∞ and ∞ are finite and they

coincide, we can find a bounded sequence {tn}∞n=1 ⊂ R such that we have

limn→∞ fν(tn) − fµ(tn) = dKu(µ, ν). Since every bounded sequence has a con-

vergent subsequence, we may assume that our sequence was convergent. Let
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t0 := limn→∞ tn. We can also suppose that we have either tn ≥ t0 (n ∈ N) or

tn < t0 (n ∈ N). If the first possibility occurs, then we obtain

dKu(µ, ν) = lim
n→∞

fν(tn)− fµ(tn)

= fν(t0)− fµ(t0) = ν((−∞, t0])− µ((−∞, t0]).

For the second one, we infer

dKu(µ, ν) = lim
n→∞

fν(tn)− fµ(tn)

= fν(t0−)− fµ(t0−) = ν((−∞, t0))− µ((−∞, t0)).

Second, we assume that neither fµ ≤ fν nor fµ ≥ fν holds. In this case there

exist bounded sequences {tn}∞n=1 and {sn}∞n=1 such that

dKu(µ, ν) = lim
n→∞

(fµ(tn)− fν(tn)) + lim
n→∞

(fν(sn)− fµ(sn)).

Like in the previous case, we may assume that these sequences are convergent.

Let s0 := limn→∞ sn and t0 := limn→∞ tn. We can also suppose that we have

either tn ≥ t0 (n ∈ N) or tn < t0 (n ∈ N); and a similar assumption can be made

on {sn}∞n=1. Let us assume that we have sn < s0 and t0 ≤ tn (n ∈ N). Then we

deduce the following:

dKu(µ, ν) = fµ(t0)− fν(t0) + fν(s0−)− fµ(s0−)

=

{
µ([s0, t0])− ν([s0, t0]) if s0 ≤ t0
ν((t0, s0))− µ((t0, s0)) if t0 < s0

.

The other cases can be handled similarly. �

Let us set ξt = (cos t, sin t) ∈ R2 for every t ∈ R, and consider the unit circle

T = {ξt : t ∈ [−π, π)} and the following continuous map:

τ : R→ T, τ(t) = ξ2 arctan t.

The set of all (possibly degenerate) arcs of T is denoted by A0. The sets of

all non-degenerate arcs, closed (possibly degenerate) arcs, and open arcs will

be denoted by the symbols A, Acl and Aop, respectively. (Note that none of

A, A0, Acl or Aop contains the empty set). The spaces of all continuous and

absolutely continuous (with respect to the normalised arc-length measure λ on

T) Borel probability measures will be denoted by Pc(T) and Pac(T), respectively.

We define the following function:

(4) d : Pc(T)× Pc(T)→ R, d(µ, ν) = max{|µ(A)− ν(A)| : A ∈ A0}.
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Clearly, the map τ is a homeomorphism between R and T \ {ξπ}. We observe the

following:

d(µ, ν) = dKu(µ ◦ τ, ν ◦ τ) (µ, ν ∈ Pc(T)),

where µ ◦ τ ∈ Pc(R) is defined by (µ ◦ τ)(B) = µ(τ(B)) (B ∈ BR). In order to

verify this, we observe two properties. First, that we have

dKu(µ, ν) = max{|µ(R \ I)− ν(R \ I)| : I ∈ I0}.

Second, that for every I ∈ I0 the sets τ(I) and {−1} ∪ τ(R \ I) are arcs of T,

and that for every arc A ⊂ T the set τ−1(A) (inverse image) is either an interval

or the complement of an interval. Therefore we conclude that d is a metric on

Pc(T). We note that µ is absolutely continuous exactly when µ◦τ is. In fact, this

is a consequence of the fact that the derivatives of the tangent and arctangent

functions are bounded from below and above by some positive numbers on every

compact interval of (−π2 ,
π
2 ) and R, respectively.

In order to prove Theorems 1.1 and 1.2 first, we investigate surjective isometries

on Pc(T) and Pac(T) with respect to the metric d. For any µ ∈ Pc(T) we will use

the following notation:

{µ}c := {ν ∈ Pc(T) : d(µ, ν) = 1}.

If µ ∈ Pac(T), then we define

{µ}ac := {ν ∈ Pac(T) : d(µ, ν) = 1}.

The closed support of µ ∈ Pc(T) (or µ ∈ P (R), respectively) is the smallest

closed set Sµ of T (or R, resp.) such that we have µ(Sµ) = 1, or equivalently,

the complement of the union of all open arcs (or intervals, resp.) which have zero

µ-measure. It is an elementary fact that every non-empty (relatively) open subset

U of T (or R, resp.) can be written as a countable disjoint union of open arcs

(or intervals, resp.): U = ∪nj=1Uj , where n ∈ N ∪ {∞} and Uj ’s are exactly the

connected components of U . Now, we give a characterisation of the set {µ}c for

every µ ∈ Pc(T).

Lemma 2. Let µ ∈ Pc(T) and T \Sµ = ∪nj=1Uj where n ∈ N∪{∞} and Uj’s are

the connected components of T \ Sµ. Then we have

(5) {µ}c =

n⋃
j=1

{ν ∈ Pc(T) : ν(Uj) = 1}.
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In case when µ ∈ Pac(T), then we have

(6) {µ}ac =

n⋃
j=1

{ν ∈ Pac(T) : ν(Uj) = 1}.

Moreover, the terms in the unions of (5) and (6) are exactly the connected com-

ponents, i.e. the sets {µ}c and {µ}ac have exactly n connected components. In

particular, {µ}c (or {µ}ac) is non-empty and connected if and only if Sµ 6= T and

Sµ is connected; and {µ}c = ∅ (or {µ}ac = ∅) exactly when Sµ = T holds.

Proof. We have

{µ}c = {ν ∈ Pc(T) : ∃ A ∈ A0 such that

either µ(A) = 0 and ν(A) = 1, or µ(T \A) = 0 and ν(T \A) = 1}.

Since we have T \A ∈ A0 for every A ∈ A0, and the measure of a closed arc and

its interior are the same for continuous measures, we infer

{µ}c = {ν ∈ Pc(T) : ∃ A ∈ Aop such that µ(A) = 0, ν(A) = 1}.

But µ(A) = 0 holds if and only if A ∩ Sµ = ∅, therefore we conclude (5). The

equation (6) can be obtained in a similar way.

For the other statement we have to make two observations. On one hand, if

ν1, ν2 ∈ {µ}c, ν1(Uj1) = ν2(Uj2) = 1 and j1 6= j2, then we easily conclude

1 ≥ d(ν1, ν2) ≥ |ν1(Uj1)− ν2(Uj1)| = 1,

and thus d(ν1, ν2) = 1. This readily implies that the number of connected com-

ponents of {µ}c is at least n. On the other hand, if ν1, ν2 ∈ {µ}c such that

ν1(Uj0) = ν2(Uj0) = 1, then we consider

γ : [0, 1]→ Pc(T), γ(t) = (1− t) · ν1 + t · ν2.

Since we have

d(γ(s), γ(t))

= max{|(1− t) · ν1(A) + t · ν2(A)− (1− s) · ν1(A)− s · ν2(A)| : A ⊂ T is an arc}

= |s− t| ·max{|ν1(A)− ν2(A)| : A ⊂ T is an arc} = |s− t| · d(ν1, ν2) ≤ |s− t|,

the curve γ connects ν1 with ν2 in {ν ∈ Pc(T) : ν(Uj0) = 1}, whence the con-

nectedness of {ν ∈ Pc(T) : ν(Uj0) = 1} is yielded. Finally, the proof for {µ}ac is

almost the same. �
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Next, we set

P csc (T) :=
{
µ ∈ Pc(T) : {µ}c = ∅ or {µ}c is connected

}
= {µ ∈ Pc(T) : Sµ ∈ Acl}

and

P csac (T) :=
{
µ ∈ Pac(T) : {µ}ac = ∅ or {µ}ac is connected

}
= {µ ∈ Pac(T) : Sµ ∈ Acl}.

Let ψ : Pc(T) → Pc(T) be an arbitrary surjective isometry with respect to the

metric d. Since ψ is also a homeomorphism, we infer that

{µ}c = ∅ ⇐⇒ ψ ({µ}c) = {ψ(µ)}c = ∅

and

{µ}c is conncected ⇐⇒ {ψ(µ)}c is conncected,

whence

ψ(P csc (T)) = P csc (T)

is yielded. By (5) the following equivalences are straightforward:

(7)
Sµ ⊆ Sν ⇐⇒ {ν}c ⊆ {µ}c ⇐⇒ {ψ(ν)}c ⊆ {ψ(µ)}c

⇐⇒ Sψ(µ) ⊆ Sψ(ν) (µ, ν ∈ Pc(T))

and

(8)
Sµ = Sν ⇐⇒ {ν}c = {µ}c ⇐⇒ {ψ(ν)}c = {ψ(µ)}c

⇐⇒ Sψ(µ) = Sψ(ν) (µ, ν ∈ Pc(T)).

Because of the above observations the following map can be defined:

ηψ : Acl → Acl, ηψ(Sµ) = Sψ(µ) (µ ∈ P csc (T)).

Since ψ−1 is also a surjective isometry, we obtain η−1
ψ = ηψ−1 . Clearly, we have

the following property:

(9) L ⊆ K ⇐⇒ ηψ(L) ⊆ ηψ(K) ⇐⇒ η−1
ψ (L) ⊆ η−1

ψ (K) (L,K ∈ Acl).

In fact, more is true, which is proven in the next lemma. Let us point out that

the verification of the analogues of the previous observations for Pac(T) is very

similar. We will denote by λ the normalised arc-length measure on T.
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Lemma 3. Let ψ : Pc(T) → Pc(T) be a surjective isometry with respect to the

metric d. Then there exists a homeomorphism h : T→ T such that we have

(10) Sψ(µ) = ηψ(Sµ) = h(Sµ) (µ ∈ P csc (T)).

Moreover, if ψ : Pac(T) → Pac(T) is a surjective isometry with respect to the

metric d, then

(11) Sψ(µ) = ηψ(Sµ) = h(Sµ) (µ ∈ P csac (T)).

holds with a homeomorphism h : T → T which preserves sets with zero Lebesgue

measure in both directions, i.e. we have

(12) λ(A) = 0 ⇐⇒ λ(h(A)) = 0 (A ∈ BT).

Proof. We begin with the first statement. Let us define a mapping h : T → T
such that for each t ∈ [−π, π) the point h(ξt) is an arbitrary one lying in the

intersection

(13)

∞⋂
j=1

ηψ
(
{ξs : |s− t| ≤ 1/j}

)
.

By (9) and completeness of the metric of T, the above intersection is a non-

empty closed arc, thus h is indeed a function. Let us assume for a moment that

there is a t ∈ [−π, π) such that the intersection in (13) is not a point, but a

non-degenerate closed arc K ∈ Acl. In this case, (9) readily implies the contra-

diction #(η−1
ψ (K)) ≤ 1. Therefore each of the above intersections has exactly one

element, hence the map h is uniquely determined by the above properties.

Next, we observe that for every t ∈ [−π, π) and {αk}∞k=1, {βk}∞k=1 ⊂ [0,∞)

with αk ↘ 0, βk ↘ 0 (k →∞), αk + βk > 0 (k ∈ N) we have

(14)

∞⋂
k=1

ηψ
(
{ξs : s ∈ [t− αk, t+ βk]}

)
= {h(ξt)}.

In order to verify this, we observe that there exists a non-decreasing sequence of

positive integers {jk}∞k=1 such that limk→∞ jk =∞ and

[t− αk, t+ βk] ⊆ [t− 1/jk, t+ 1/jk] (k ∈ N).

Thus, again by (9), the intersection in (14) is a subset of {h(ξt)}. But clearly this

intersection cannot be empty.

The above observations imply h(K) ⊆ ηψ(K) (K ∈ Acl). Let K ∈ Acl be

arbitrary, and let us consider a point χ ∈ ηψ(K). There is a monotone decreasing
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sequence {Kj}∞j=1 ⊂ Acl such that Kj ⊂ ηψ(K) holds for every j ∈ N and

∩∞j=1Kj = {χ}. Clearly,

{ηψ−1(Kj)}∞j=1 = {η−1
ψ (Kj)}∞j=1 ⊂ Acl

is a monotone decreasing sequence of closed arcs such that η−1
ψ (Kj) ⊂ K and

#
(
∩∞j=1η

−1
ψ (Kj)

)
= #

(
∩∞j=1ηψ−1(Kj)

)
= 1 (j ∈ N).

Therefore h(K) = ηψ(K), which verifies (10).

It remains to show that h is a homeomorphism. Let µ, ν ∈ P csc (T) be arbitrary

and set K = Sµ, L = Sν . We have

{µ}c ∩ {ν}c ∩ P csc (T) = {ϑ ∈ P csc (T) : ϑ(T \ (K ∪ L)) = 1}.

On one hand, if K∩L = ∅, then T\(K∪L) has exactly two connected components

U1 and U2, which implies that in this case

{µ}c ∩ {ν}c ∩ P csc (T) = ∪2
j=1{ϑ ∈ P csc (T) : ϑ(Uj) = 1}.

But for any choices ϑj ∈ {ϑ ∈ P csc (T) : ϑ(Uj) = 1} (j = 1, 2), we clearly have

d(ϑ1, ϑ2) = 1, which implies that {µ}c ∩ {ν}c ∩ P csc (T) is not a connected set in

this case. On the other hand, if K ∩L 6= ∅, then T \ (K ∪L) is a connected open

set, moreover, we claim that {µ}c ∩ {ν}c ∩ P csc (T) is connected. In order to see

this let ϑ1, ϑ2 ∈ {µ}c ∩ {ν}c ∩ P csc (T). We choose a ϑ̃ ∈ P csc (T) with

Sϑ1 ∪ Sϑ2 ⊆ Sϑ̃ ⊆
(
T \ (K ∪ L)

)−
,

where ·− means the closure of a given set, and consider the following path

γ : [0, 1]→ Pc(T), γ(t) = (t− t2) · ϑ̃+ (1− t+ t2) ·
[
(1− t) · ϑ1 + t · ϑ2

]
.

Clearly, γ([0, 1]) ⊆ {µ}c ∩ {ν}c ∩ P csc (T), γ(0) = ϑ1, γ(1) = ϑ2, and a straight-

forward computation gives the continuity of γ. Thus, indeed, we obtain the

connectedness of {µ}c ∩ {ν}c ∩ P csc (T).

Applying these observations we get the following:

(15) K ∩ L = ∅ ⇐⇒ h(K) ∩ h(L) = ∅ (K,L ∈ Acl).

Clearly, h(T) = ηψ(T) = T, thus h is surjective. Let us consider two different

points ξs and ξt (s 6= t, s, t ∈ [−π, π)). Then there are two disjoint closed arcs

Ks,Kt ∈ Acl such that ξs ∈ Ks and ξt ∈ Kt. By (15) we have h(Ks)∩h(Kt) = ∅,
whence we infer the bijectivity of h. Finally, let {tn}∞n=1 ⊂ R be a sequence such

that tn ↘ t or tn ↗ t (n → ∞) and |t1 − t| < π
2 , and let Kn be the shorter

closed arc with endpoints ξt and ξtn . Since we have {h(ξt)} = ∩∞n=1h(Kn) and

h(ξtn) ∈ h(Kn) (n ∈ N), the continuity of h is yielded. But h is a bijective
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continuous map of the compact Hausdorff space T, thus we conclude that h is a

homeomorphism. This completes the proof for the first case.

For the second case, we obtain in a similar way as above that there is a homeo-

morphism h : T→ T such that (11) is satisfied. Let K ⊆ T be a compact set with

λ(K) > 0, and T \K = ∪nj=1Uj (n ∈ N ∪ {∞}) where the union is disjoint and

Uj ∈ Aop for every j. We intend to show that λ(h(K)) > 0 is satisfied. Obviously,

there exists a µ ∈ Pac(T) with Sµ = K. By (7) and (11) we infer

h(K) = h

 n⋂
j=1

(T \ Uj)

 =

n⋂
j=1

h(T \ Uj) =

n⋂
j=1

ηψ(T \ Uj) ⊇ Sψ(µ).

Thus we obtain 0 < λ(Sψ(µ)) ≤ λ(h(K)). Next, if A ∈ BT has positive Lebesgue

measure, then by regurality we infer that there is a compact subset K ⊆ A such

that K has still positive Lebesgue measure. Therefore we conclude

λ(h(A)) = 0 =⇒ λ(A) = 0 (A ∈ BT).

For the reverse direction we only have to observe the following property which we

can conclude from (11):

Sψ−1(µ) = ηψ−1(Sµ) = η−1
ψ (Sµ) = h−1(Sµ) (µ ∈ P csac (T)).

This completes the proof. �

We proceed with the verification of the next lemma where measures on R are

considered.

Lemma 4. Let I ∈ I be a closed (possibly unbounded) interval, and µ ∈ Pc(R).

We have the following equation:

(16) 1− µ(I) = inf{dKu(µ, ϑ) : ϑ ∈ Pc(R), Sϑ ⊆ I}.

Furthermore, if µ ∈ Pac(R), then we have

(17) 1− µ(I) = inf{dKu(µ, ϑ) : ϑ ∈ Pac(R), Sϑ ⊆ I}.

Proof. We will only deal with (16), since (17) can be handled in a similar way.

We have

dKu(µ, ϑ) ≥ |µ(I)− ϑ(I)| = 1− µ(I) (ϑ ∈ Pc(R), Sϑ ⊆ I),

which implies 1−µ(I) ≤ inf{dKu(µ, ϑ) : ϑ ∈ Pc(R), Sϑ ⊆ I}. If µ(I) = 0, then we

immediately obtain (16), thus in the sequel we may assume that we have µ(I) > 0.

Let us define ν ∈ P (R) by

ν(A) =
µ(A ∩ I)

µ(I)
(A ∈ BR).
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Clearly, we have ν ∈ Pc(R) and Sν ⊆ I, moreover

(18) |ν(J)−µ(J)| = ν(J)−µ(J) =
µ(J)

µ(I)
(1−µ(I)) ≤ 1−µ(I) (J ∈ I, J ⊆ I).

Now, we consider an arbitrary interval Ĩ ∈ I. There are two possibilities: either

µ(Ĩ)−ν(Ĩ) ≤ 0, or µ(Ĩ)−ν(Ĩ) > 0. In case of the first one, we have the following

estimation:∣∣∣µ(Ĩ)− ν(Ĩ)
∣∣∣ = ν(Ĩ)− µ(Ĩ) ≤ ν(I ∩ Ĩ)− µ(I ∩ Ĩ) ≤ 1− µ(I),

where we used (18). For the second possibility, Ĩ ⊆ I is impossible, thus, again

by (18), we estimate in the following way:∣∣∣µ(Ĩ)− ν(Ĩ)
∣∣∣ = µ(Ĩ)− ν(Ĩ) = ν(R \ Ĩ)− µ(R \ Ĩ) = ν

(
(R \ Ĩ) ∩ I

)
− µ(R \ Ĩ)

≤ ν
(

(R \ Ĩ) ∩ I
)
− µ

(
(R \ Ĩ) ∩ I

)
≤ 1− µ(I),

where we observed that (R\ Ĩ)∩ I is an interval. Since 1−µ(I) = ν(I)−µ(I), we

conclude dKu(µ, ν) = 1− µ(I). Therefore (16) follows, which ends the proof. �

For an arbitrary µ ∈ Pc(R) we define the measure µ ◦ τ−1 by

(µ ◦ τ−1)(A) = µ(τ−1(A)) (A ∈ BT),

where τ−1(A) is the inverse image of A. It is straightforward that the transfor-

mation µ 7→ µ ◦ τ−1 is a bijection between Pc(R) and Pc(T). Furthermore, µ is

absolutely continuous if and only if µ ◦ τ−1 ∈ Pac(T). We define in a very similar

way the measure µ̃ ◦ h ∈ Pc(T) where µ̃ ∈ Pc(T) and h : T → T is a homeomor-

phism. Let us note that in case when µ̃ ∈ Pac(T), then µ̃ ◦ h is not necessarily

absolutely continuous.

Now, we are in the position to prove our first theorem.

Proof of Theorem 1.1. Let

ψ : Pc(T)→ Pc(T), ψ(µ̃) = φ(µ̃ ◦ τ) ◦ τ−1,

It is clear that φ is a surjective isometry with respect to the Kuiper metric if and

only if ψ is a surjective isometry with respect to the metric d.

By Lemma 3, there exists a homeomorphism h : T→ T such that

Sψ(µ̃) = h(Sµ̃) (µ̃ ∈ P csc (T)).

Let us consider the following mapping:

ψ1 : Pc(T)→ Pc(T), ψ1(µ̃) = (ψ(µ̃)) ◦ h.
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It is straightforward to see that ψ1 is a surjective isometry if and only if ψ is, and

that we have

Sψ1(µ̃) = h−1(Sψ(µ̃)) = Sµ̃ (µ̃ ∈ P csc (T)).

We define the transformation

φ1 : Pc(R)→ Pc(R), φ1(µ) = ψ1(µ ◦ τ−1) ◦ τ.

It is apparent that φ1 is a surjective isometry if and only if φ is, and that we have

(19) Sφ1(µ) = Sµ (µ ∈ P csc (R)),

where

P csc (R) = {µ ∈ Pc(R) : Sµ ∈ I or R \ Sµ ∈ I}.
The following equivalence follows easily from the definition of φ1 and the property

(7) for ψ1:

(20) Sµ ⊆ Sν ⇐⇒ Sφ1(µ) ⊆ Sφ1(ν) (µ, ν ∈ Pc(R)).

Now, let µ be an arbitrary continuous Borel probability measure on R. Since

we have ψ1(P csc (T)) = P csc (T), we infer φ1(P csc (R)) = P csc (R). This, (19), (20)

and Lemma 4 implies the following for every closed interval I ∈ I:

φ1(µ)(I) = 1− inf{dKu(φ1(µ), ϑ) : ϑ ∈ Pc(R), Sϑ ⊆ I}

= 1− inf{dKu(µ, φ−1
1 (ϑ)) : ϑ ∈ Pc(R), Sϑ ⊆ I}

= 1− inf{dKu(µ, ϑ) : ϑ ∈ Pc(R), Sϑ ⊆ I} = µ(I).

But this immediately implies φ1(µ) = µ, and thus that φ1 is the identity map. It

is tedious, but straightforward, to check that transforming back to our original

map φ yields (2) where

x =

{
∞ if h(−1) = −1

τ−1(h(−1)) otherwise

and g is the continuous extension of τ−1 ◦ h−1 ◦ τ ◦ r−1
x . Note that the latter

function is not defined in at most two points of R (depending on the actual value

of x and the function h). However, if we consider rx as a bijective function of the

one-point compactification of R (which is topologically equivalent to T), then it

is not hard to see that g (as the continuous extension of τ−1 ◦h−1 ◦τ ◦r−1
x ) makes

sense and that it is indeed a homeomorphism of R. �

The proof of our second result is quite similar to the above one, therefore we

only present its sketch.
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Proof of Theorem 1.2. The definitions of ψ, ψ1 and φ1 are similar to the

above definitions. It is straightforward that each of these transformations is a

surjective Kuiper isometry of Pac(T) if and only if φ is. While transforming back

the identity map (i.e. φ1) to φ we observe that the homeomorphism g from the

statement has the property

m(B) = 0 ⇐⇒ m(g(B)) = 0 (B ∈ BR).

Since every homeomorphism of R is either monotone increasing or decreasing,

we infer that g and g−1 are of bounded variation on every compact interval.

Therefore the famous Banach–Zarecki theorem (see e.g. [3, 5]) implies that they

are both locally absolutely continuous functions. This completes one direction of

the statement. The other direction is a rather easy calculation. �

3. Proof in the general case

In order to prove our last theorem, we need to introduce a new type of support

for Borel probability measures. Let µ ∈ P (R) be an arbitrary measure, and let

us define the following sets

Nµ = ∪{I ∈ I : µ(I) = 0}, Cµ = R \Nµ.

The set Cµ will be called the co-interval support of µ. Clearly, this is the unique

smallest set such that its complement is a union of non-degenerate intervals and

µ is concentrated on it. This is an analogue of the usual closed support Sµ,

however, as we shall see this notion is more useful here. Recall that Sµ is the

complement of the union of open intervals with zero µ-measure. Therefore the

following properties of the co-interval support are straightforward:

Cµ ⊆ Sµ, Cµ = Sµ and #(Sµ \ Cµ) ≤ ℵ0.

If M⊆ P (R), then let

M1 = {ν ∈ P (R) : dKu(µ, ν) = 1 ∀µ ∈M}.

We call a probability measure which is concentrated on a point x ∈ R a Dirac

measure, and we will denote it by δx.

We begin with the following metric characterisation of Dirac measures.

Lemma 5. For an arbitrary µ ∈ P (R) we have #
(
({µ}1)1

)
= 1 if and only if µ

is a Dirac measure.

Proof. Let ν ∈ P (R) be an arbitrary measure which is absolutely continuous

with respect to µ. We show that ν ∈ ({µ}1)1. By Lemma 1, for any ϑ ∈ {µ}1
there exists an I ∈ I0 such that either we have µ(I) = 0 and ϑ(I) = 1, or
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µ(R \ I) = 0 and ϑ(R \ I) = 1. Since ν is absolutely continuous with respect

to µ, we immediately infer either ν(I) = 0 and ϑ(I) = 1, or ν(R \ I) = 0 and

ϑ(R \ I) = 1, which implies dKu(ϑ, ν) = 1. Since this holds for every ϑ ∈ {µ}1,

the relation ν ∈ ({µ}1)1 follows.

Now, if µ is not a Dirac measure, then it is straigthforward that there are

infinitely many ν ∈ P (R) which is abolutely contionus with respect to µ. Hence,

we obtain that #
(
({µ}1)1

)
= 1 implies that µ is a Dirac measure.

Finally, we show that ({δx}1)1 = {δx}. Let δx ∈ P (R) be a Dirac measure

with x ∈ R. By Lemma 1, we have ϑ ∈ {δx}1 if and only if there exists a

possibly degenerate interval I ∈ I0 such that either δx(I) = 0 and ϑ(I) = 1, or

δx(R \ I) = 0 and ϑ(R \ I) = 1. Obviously, in the first case we have x ∈ R \ I,

and in the second one x ∈ I. Therefore we infer the equation

{δx}1 = {ϑ ∈ P (R) : ϑ({x}) = 0}.

Assume that ν ∈ ({δx}1)1, i.e. dKu(ν, ϑ) = 1 for every ϑ ∈ P (R), ϑ({x}) = 0.

Let us suppose for a moment that ν(R \ {x}) > 0, and let ϑ be defined by

ϑ(B) = 1
ν(R\{x}) · ν(B \ {x}) (B ∈ BR).

It is clear that ϑ ∈ {δx}1 and that ϑ is absolutely continuous with respect to ν.

Thus ν(I) = 0 and ϑ(I) = 1 cannot be satisfied simultaneously when I ∈ I0, and

the same holds for ν(R \ I) = 0 and ϑ(R \ I) = 1. This implies dKu(ν, ϑ) < 1,

a contradiction. Hence ν(R \ {x}) = 0 follows, and we obtain ({δx}1)1 = {δx},
which completes the proof. �

We proceed with verifying the following property of surjective Kuiper isome-

tries.

Lemma 6. Let φ : P (R) → P (R) be a surjective isometry with respect to the

Kuiper distance. Then there exists a bijection f : R→ R such that

φ(µ)({f(x)}) = µ({x}) (µ ∈ P (R), x ∈ R).

Proof. Let ∆ denote the set of all Dirac measures of P (R). Since

φ
(
({µ}1)1

)
=
(
φ({µ}1)

)1
=
(
{φ(µ)}1

)1
holds, by Lemma 5 we obtain φ(∆) = ∆, i.e. we have a bijection f : R→ R such

that

φ(δx) = δf(x) (x ∈ R).

Let µ ∈ P (R) be an arbitrary measure. We state that

(21) dKu(µ, δx) = 1− µ({x}) (x ∈ R).
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On one hand, since {x} ∈ I0 and |δx({x}) − µ({x})| = 1 − µ({x}), we obtain

dKu(µ, δx) ≥ 1− µ({x}). On the other hand, let I ∈ I0 be an arbitrary, possibly

degenerate, interval. If x ∈ I, then we have |δx(I)−µ(I)| = 1−µ(I) ≤ 1−µ({x});
and if x /∈ I, then we have |δx(I) − µ(I)| = µ(I) ≤ µ(R \ {x}) = 1 − µ({x}).
Therefore we conclude (21).

Finally, observing the following for every x ∈ R and µ ∈ P (R) completes the

proof:

µ({x}) = 1− dKu(µ, δx) = 1− dKu(φ(µ), φ(δx))

= 1− dKu(φ(µ), δf(x)) = φ(µ)({f(x)}).
�

It is straightforward that for every µ ∈ P (R) \∆ we can write Nµ as a disjoint

union Nµ = (R \ conv(Cµ)) ∪ (∪nj=1Ij) where n ∈ N ∪ {0,∞}, Ij ∈ I for every

j, and conv(·) denotes the convex hull of a given set. In fact, the Ij ’s are the

bounded connected components of Nµ, and in case when there is at least one

unbounded connected component, then the union of these components is exactly

R \ conv(Cµ). We note that the intersection of the closure of two connected

components can be empty or one point.

Now, we are ready to prove an analogue of Lemma 2, where we describe {µ}1\∆
instead of {µ}1. The reason for this is that the presence of Dirac measures would

cause some technical problems.

Lemma 7. Let µ ∈ P (R) \∆ and let us write Nµ = (R \ conv(Cµ)) ∪ (∪nj=1Ij)

where the right-hand side is the above mentioned disjoint union. Then we have

(22)
{µ}1 \∆ =

{ν ∈ P (R) \∆: ν(R \ conv(Cµ)) = 1} ∪
(
∪nj=1{ν ∈ P (R) \∆: ν(Ij) = 1}

)
.

Proof. By Lemma 1 we have

{µ}1 \∆ = {ν ∈ P (R) \∆: ∃ I ∈ I0 ν(I) = 0 and µ(I) = 1}

∪{ν ∈ P (R) \∆: ∃ I ∈ I0 ν(I) = 1 and µ(I) = 0}
= {ν ∈ P (R) \∆: ∃ I ∈ I ν(I) = 0 and µ(I) = 1}
∪{ν ∈ P (R) \∆: ∃ I ∈ I ν(I) = 1 and µ(I) = 0}.

On one hand, if we have ν(I) = 0 and µ(I) = 1 with some I ∈ I, then we infer

conv(Cµ) ⊆ I. Therefore this case is equivalent to ν(R \ conv(Cµ)) = 1. On the

other hand, if we have µ(I) = 0 and ν(I) = 1 with some I ∈ I, then I ⊆ Nµ is

yielded, or equivalently I ⊆ Ij with some j or I ⊆ R \ conv(Cµ). Therefore this
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case is equivalent to either ν(Ij) = 1 for some j, or that the ν-measure of one of

the unbounded components of Nµ is 1. Noting that this latter possibility implies

ν(R \ conv(Cµ)) = 1 ends our proof. �

We continue with the following lemma.

Lemma 8. The function f defined in Lemma 6 is a homeomorphism (i.e. a

monoton bijection).

Proof. First, we show the following property:

(23) Cµ ⊆ Cν ⇐⇒ Cφ(µ) ⊆ Cφ(ν) (µ, ν ∈ P (R)).

If µ, ν /∈ ∆, then by Lemma 7 the following equivalence is yielded:

Cµ ⊆ Cν ⇐⇒
(
{ν}1

)1 \∆ ⊆
(
{µ}1

)1 \∆ (µ, ν ∈ P (R) \∆).

Since we have φ(P (R) \ ∆) = P (R) \ ∆, we get φ(µ), φ(ν) /∈ ∆. Obviously, we

have

φ
((
{µ}1

)1 \∆
)

= φ
((
{µ}1

)1) \∆ =
(
{φ(µ)}1

)1 \∆,

whence we conclude (23) in this case. Next, we suppose that ν = δx holds with

some x ∈ R. Clearly, Cµ ⊆ Cδx is equivalent to µ = δx, which holds if and

only if φ(µ) = φ(δx) = δf(x). This latter equation is valid exactly when we have

Cφ(µ) ⊆ Cφ(δx), which gives us (23) in this case. Finally, let us assume that we

have ν /∈ ∆, µ = δx and Cδx ⊆ Cν with some x ∈ R. We consider a point

y ∈ Cν , x 6= y. Since we have C 1
2 δx+

1
2 δy
⊆ Cν , by the previous cases, we obtain

C
φ
(

1
2 δx+

1
2 δy

) ⊆ Cφ(ν). Moreover, by Lemma 6, we have

φ
(

1
2δx + 1

2δy
)

= 1
2φ(δx) + 1

2φ(δy) = 1
2δf(x) + 1

2δf(y),

thus we obtain Cφ(δx) = Cδf(x)
⊆ C

φ
(

1
2 δx+

1
2 δy

) ⊆ Cφ(ν). This verifies (23) in this

case in one direction. The other direction follows from the fact that φ−1 is also a

surjective Kuiper isometry. Therefore we conclude (23) in general.

Next, by Lemma 6, we have φ(Pc(R)) = Pc(R). Theorem 1.1 gives us a home-

omorphism g : R→ R and an x ∈ R ∪ {∞} such that we have

φ(µ) = µ ◦ (g ◦ rx) (µ ∈ Pc(R)),

and consequently we obtain

Sφ(µ) =


g−1(Sµ) if x =∞

r0 ◦ g−1(Sµ) + x if x ∈ R and Sµ is compact

{x} ∪ (r0 ◦ g−1(Sµ) + x) if x ∈ R and Sµ is not compact
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for every µ ∈ Pc(R). Let us suppose for a moment that we have x ∈ R, and

consider a sequence of continuous measures {µn}∞n=1 with

Cµn =

{(
g
(
− 1
n

)
, g
(

1
n

))
if g is monotone increasing(

g
(

1
n

)
, g
(
− 1
n

))
if g is monotone decreasing

.

Since {g(0)} = Cδg(0) ⊆ Cµn
, we infer

{f(g(0))} = Cφ(δg(0)) ⊆ Cφ(µn) = R \ [−n+ x, n+ x] (n ∈ N),

which gives the contradiction {f(g(0))} ⊆ ∩∞n=1 (R \ [−n+ x, n+ x]) = ∅. There-

fore we conclude that

φ(µ) = µ ◦ g and Sφ(µ) = g−1(Sµ) (µ ∈ Pc(R)),

holds with some homeomorphism g.

Now, we consider a number t ∈ R and a sequence {νn}∞n=1 ⊂ Pc(R) such that

Cνn =

{(
g
(
g−1(t)− 1

n

)
, g
(
g−1(t) + 1

n

))
if g is monotone increasing(

g
(
g−1(t) + 1

n

)
, g
(
g−1(t)− 1

n

))
if g is monotone decreasing

.

Since we have {t} = Cδt ⊆ Cνn (n ∈ N), we obtain

{f(t)} = Cφ(δt) ⊆ ∩
∞
n=1Cφ(νn) = {g−1(t)},

which implies g = f−1. As a consequence we have that f is a homeomorphism,

which makes the proof complete. �

Before we prove Theorem 1.3, we need one further statement.

Lemma 9. The set of all purely atomic probability measures are dense in P (R)

with respect to the Kuiper distance.

Proof. Here it is easier to consider distribution functions instead of measures.

Let us observe that on the space of all distribution functions the Kuiper distance

is equivalent to the Kolmogorov–Smirnov distance, which is obtained from the

supremum norm. Since the statement is quite straightforward to show in the

Kolmogorov–Smirnov distance, we also have it for the Kuiper distance. �

Finally, we are in the position to present the verification of our last result.

Proof of Theorem 1.3. Assume that φ : P (R)→ P (R) is a surjective Kuiper

isometry. Let us consider the function f : R→ R which was defined in Lemma 6

and which is a homeomorphism by Lemma 8. Therefore

φ1 : P (R)→ P (R), φ1(µ) = φ(µ) ◦ f (µ ∈ P (R))
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is also a surjective isometry with respect to the Kuiper distance, and we have

(φ1(µ))({x}) = µ({x}) (x ∈ R, µ ∈ P (R)).

Consequently, we obtain

φ1

 n∑
j=1

αjδxj

 =

n∑
j=1

αjδxj

j ∈ N ∪ {∞}, xj ∈ R, αj > 0,

n∑
j=1

αj = 1

 .

Since isometries are automatically continuous, Lemma 9 implies that φ1 has to

be the identity map. Therefore, we conclude φ(µ) = µ ◦ f−1 (µ ∈ P (R)), which

completes the proof. �
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