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COSET RELATION ALGEBRAS

HAJNAL ANDRÉKA AND STEVEN GIVANT

Abstract. A measurable relation algebra is a relation algebra in which the
identity element is a sum of atoms that can be measured in the sense that the
“size” of each such atom can be defined in an intuitive and reasonable way
(within the framework of the first-order theory of relation algebras). A large
class of concrete measurable set relation algebras, using systems of groups
and coordinated systems of isomorphisms between quotients of the groups, is
constructed in [4]. This class of group relation algebras is not large enough to
prove that every measurable relation algebra is isomorphic to a group relation
algebra and hence is representable.

In the present article, the class of examples of measurable relation algebras
is considerably extended by adding one more ingredient to the mix: systems
of cosets that are used to “shift” the operation of relative multiplication. It is
shown that, under certain additional hypotheses on the system of cosets, each
such coset relation algebra with a shifted operation of relative multiplication
is an example of a measurable relation algebra. We also show that the class of
coset relation algebras does contain examples of measurable relation algebras
that are not representable as set relation algebras. In later articles, it will
be shown that the class of coset relation algebras is adequate to the task
of describing all measurable relation algebras in the sense that every atomic
measurable relation algebra is essentially isomorphic to a coset relation algebra
(see [6]), and the class of group relation algebras is similarly adequate to the
task of representing all measurable relation algebras in which the associated
groups are finite and cyclic (see [1]). An extended abstract for this series of
papers is [5].

1. Introduction

In [4], a subidentity element x—that is to say, an element below the identity
element—of a relation algebra is defined to be measurable if it is an atom and if the
square x; 1;x is a sum of functional elements, that is to say, the sum of elements
that satisfy a characteristic property of relations that are functions, namely, that
the composition of the converse of the relation with the relation itself is included in
the identity relation. The number of non-zero functional elements below the square
x; 1;x gives the measure, or the size, of the atom x. A relation algebra is said to
be measurable if the identity element is the sum of measurable atoms. The group
relation algebras constructed in [4] are examples of measurable relation algebras.
It turns out, however, that they are not the only examples of measurable relation
algebras.

In this paper, a more general class of examples of measurable relation algebras
is constructed. The algebras are obtained from group relation algebras by “shift-
ing” the relational composition operation by means of coset multiplication, using
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2 HAJNAL ANDRÉKA AND STEVEN GIVANT

an auxiliary system of cosets. For that reason, we have called them coset relation

algebras. By using this new construction, we show that not all measurable relation
algebras are representable. In fact, as hinted in the proof, the class of coset relation
algebras includes infinitely many mutually non-isomorphic, non-representable rela-
tion algebras. These are new examples of non-representable relation algebras, with
a completely different underlying motivation than the examples that have appeared
so far in the literature.

These non-representable examples show that it was necessary to broaden the
class of group relation algebras, all of which are representable, in order to get a
representation theorem for all measurable relation algebras. Indeed, the new class
is broad enough for representing all measurable relation algebras, as is shown in [6].
It will be shown in [1] that if the groups Gx constructed in an atomic, measurable
relation algebra A are all finite and cyclic, then A is essentially isomorphic to a full
group relation algebra. These theorems together provide far-reaching generaliza-
tions of the atomic case of Maddux’s representation theorem for pair-dense relation
algebras in [8]. An extended abstract describing these results and their intercon-
nections was published by the authors in [5]. The reader might find it helpful to
consult that article in order to get a overview of the program and its motivation.

In the next section of this paper, the principal results concerning group relation
algebras are reviewed. In the third section, a system of shifting cosets is introduced,
and a new operation of multiplication is defined with the help of these cosets.
Characterizations are given in the fourth section of when the resulting algebra is
a measurable relation algebra. A concrete example of such a measurable coset
relation algebra that, as it turns out, is not representable, is given in the fifth
section. The final section of the paper contains a decomposition theorem for coset
relation algebras that is similar to the decomposition theorem for group relation
algebras proved in [4]. Except for basic facts about groups, this article is intended
to be largely self-contained. Readers who wish to learn more about the subject
of relation algebras are recommended to look at one or more of the books Hirsch-
Hodkinson [7], Maddux [9], or Givant [2], [3].

2. Group relation algebras

For the convenience of the reader, here is a summary of the essential notions and
results from [4] that will be needed in this paper. Fix a system

G = 〈Gx : x ∈ I 〉

of groups 〈Gx , ◦ ,−1 , ex〉 that are pairwise disjoint, and an associated system

ϕ = 〈ϕxy : (x, y) ∈ E 〉

of quotient isomorphisms. Specifically, we require that E be an equivalence relation
on the index set I, and for each pair (x, y) in E , the function ϕxy be an isomorphism
from a quotient group of Gx to a quotient group of Gy . Call

F = (G,ϕ)

a group pair. The set I is the group index set, and the equivalence relation E is the
(quotient) isomorphism index set, of F . The normal subgroups of Gx and Gy from
which the quotient groups are constructed are uniquely determined by ϕxy, and will
be denoted by Hxy and Kxy respectively, so that ϕxy maps Gx/Hxy isomorphically
onto Gy/Kxy.
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The elements of the quotient group Gx/Hxy are cosets, and hence complexes
(sets) of group elements. As such they obey the standard laws of group theory.
Multiplication of cosets and unions of cosets is an associative operation for which
the normal subgroup Hxy is the identity element that commutes with every other
coset (and every union of cosets). Every coset has an inverse, and the operation of
forming inverses of cosets satisfies the first and second involution laws: the inverse
of the inverse of a coset is the original coset, and the inverse of the composition of
two cosets is the composition of the inverses, in the reverse order.

For a fixed enumeration 〈Hxy,γ : γ < κxy〉 (without repetitions) of the cosets
of Hxy in Gx, the isomorphism ϕxy induces a corresponding, or associated, coset
system of Kxy in Gy, determined by the rule

Kxy,γ = ϕxy(Hxy,γ)

for each γ < κxy. In what follows, it is always assumed that the given coset systems
for Hxy in Gx and for Kxy in Gy are associated in this manner. Furthermore,
it is assumed that the first elements of the coset systems are always the normal
subgroups themselves, so that

Hxy,0 = Hxy and Kxy,0 = Kxy.

Definition 2.1. For each pair (x, y) in E and each α < κxy, define a binary relation
Rxy,α by

Rxy,α =
⋃

γ<κxy
Hxy,γ × ϕxy[Hxy,γ

◦Hxy,α] =
⋃

γ<κxy
Hxy,γ × (Kxy,γ

◦Kxy,α).

�

Lemma 2.2 (Partition Lemma). The relations Rxy,α, for α < κxy, are non-empty

and partition the set Gx ×Gy .

Let U be the union of the disjoint system of groups, and E the equivalence
relation on U induced by the isomorphism index set E ,

U =
⋃

{Gx : x ∈ I} and E =
⋃

{Gx ×Gy : (x, y) ∈ E}.

Take A to be the collection of unions of all possible sets of the relations of the form
Rxy,α for (x, y) in E and α < κxy. It turns out that A is always the universe of a
complete and atomic Boolean set algebra.

Theorem 2.3 (Boolean Algebra Theorem). The set A is the universe of a complete,
atomic Boolean algebra of subsets of E . The atoms in A are the distinct relations

Rxy,α for (x, y) in E and α < κxy, and the distinct elements in A are the unions of

distinct sets of atoms .

The set A does not automatically contain the identity relation idU , so it is
important to characterize when idU does belong to A.

Theorem 2.4 (Identity Theorem). For each element x in I, the following condi-

tions are equivalent .

(i) The identity relation idGx
on Gx is in A.

(ii) Rxx,0 = idGx
.

(iii) ϕxx is the identity automorphism of Gx/{ex}.

Consequently, the set A contains the identity relation idU on the base set U if and

only if (iii) holds for each x in I.
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Similarly, the set A is not automatically closed under the operation of converse.

Theorem 2.5 (Converse Theorem). For each pair (x, y) in E , the following con-

ditions are equivalent .

(i) There are an α < κxy and a β < κyx such that R−1
xy,α = Ryx,β .

(ii) For every α < κxy there is a β < κyx such that R−1
xy,α = Ryx,β .

(iii) ϕ−1
xy = ϕyx.

Moreover, if one of these conditions holds, then we may assume that κyx = κxy,
and the index β in (i) and (ii) is uniquely determined by H−1

xy,α = Hxy,β . The set

A is closed under converse if and only if (iii) holds for all (x, y) in E .

Convention 2.6. Suppose A is closed under converse. If a pair (x, y) is in E , then
Hyx = Kxy, and therefore any coset system for Hyx is also a coset system for Kxy .
Since the enumeration 〈Hyx,γ : γ < κyx〉 of the cosets of Hyx can be freely chosen,
we can and always shall choose it so that κyx = κxy and Hyx,γ = Kxy,γ for γ < κxy .
It then follows from the Converse Theorem that Kyx,γ = Hxy,γ for γ < κxy .

Finally, the set A is not in general closed under relational composition, except
when the composition is empty.

Lemma 2.7. If (x, y) and (w, z) are in E , and if y 6= w, then

Rxy,α |Rwz,β = ∅

for all α < κxy and β < κwz.

The most important case regarding the composition of two atomic relations is
when y = w.

Theorem 2.8 (Composition Theorem). For all pairs (x, y) and (y, z) in E , the
following conditions are equivalent .

(i) The relation Rxy,0 |Ryz,0 is in A.
(ii) For each α < κxy and each β < κyz, the relation Rxy,α |Ryz,β is in A.
(iii) For each α < κxy and each β < κyz,

Rxy,α |Ryz,β =
⋃

{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β ]}.

(iv) Hxz ⊆ ϕ−1
xy [Kxy

◦Hyz] and ϕ̂xy | ϕ̂yz = ϕ̂xz, where ϕ̂xy and ϕ̂xz are the

mappings induced by ϕxy and ϕxz on the quotient of Gx modulo the normal

subgroup ϕ−1
xy [Kxy

◦Hyz], while ϕ̂yz is the isomorphism induced by ϕyz on

the quotient of Gy modulo the normal subgroup Kxy
◦Hyz .

Consequently, the set A is closed under relational composition if and only if (iv)
holds for all pairs (x, y) and (y, z) in E .

Corollary 2.9. If the set A contains the identity relation, then for any pairs (x, y)
and (y, z) in E , the following conditions are equivalent .

(i) Rxy,α |Ryz,β is in A for some α < κxy and some β < κyz .
(ii) Rxy,α |Ryz,β is in A for all α < κxy and all β < κyz .

Putting together the preceding theorems yields a characterization, purely in
terms of the quotient isomorphisms, of when a group pair gives rise to a complete
and atomic set relation algebra.
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Definition 2.10. A group frame is a group pair

F = (〈Gx : x ∈ I 〉 , 〈ϕxy : (x, y) ∈ E 〉)

satisfying the following frame conditions for all pairs (x, y) and (y, z) in E .

(i) ϕxx is the identity automorphism of Gx/{ex} for all x.
(ii) ϕyx = ϕ−1

xy .
(iii) ϕxy[Hxy

◦Hxz] = Kxy
◦Hyz and ϕyz[Kxy

◦Hyz] = Kxz
◦Kyz .

(iv) ϕ̂xy | ϕ̂yz = ϕ̂xz.

�

Given a group frame F , let A be the collection of all possible unions of relations
of the form Rxy,α for (x, y) in E and α < κxy. Call A the set of frame relations

constructed from F .

Theorem 2.11 (Group Frame Theorem). If F is a group frame, then the set of

frame relations constructed from F is the universe of a complete, atomic, measurable

set relation algebra with base set and unit

U =
⋃

{Gx : x ∈ I} and E =
⋃

{Gx ×Gy : (x, y) ∈ E}

respectively . The atoms in this algebra are the relations of the form Rxy,α, and the

subidentity atoms are the relations of the form Rxx,0 . The measure of Rxx,0 is just

the cardinality of the group Gx .

The theorem justifies the following definition.

Definition 2.12. Suppose that F is a group frame. The set relation algebra con-
structed from F in Group Frame Theorem 2.11 is called the (full) group relation

algebra on F and is denoted by G[F ] (and its universe by G[F ]). A general group

relation algebra is defined to be an algebra that is embeddable into a full group
relation algebra. �

3. Coset Systems

Group relation algebras by themselves are not sufficient to represent all measur-
able relation algebras as will be seen in Section 5. However, it is shown in [6] that
if the operation of composition in a group relation algebra is changed slightly, then
the resulting class of new algebras is sufficient to represent all measurable relation
algebras. We call these new algebras coset relation algebras.

The operation of relative multiplication in a coset relation algebra is a kind of
“shifted” relational composition. To accomplish this shifting, it is necessary to add
one more ingredient to a group pair F = (G,ϕ), namely a system of cosets

〈Cxyz : (x, y, z) ∈ E3〉,

where E3 is the set of all triples (x, y, z) such that the pairs (x, y) and (y, z) are in
E , and for each such triple, the set Cxyz is a coset of the normal subgroup Hxy

◦Hxz

in Gx. Call the resulting triple

F = (G,ϕ,C)

a group triple.
Define a new binary multiplication operation ⊗ on the pairs of atomic relations

in the Boolean algebra A of Theorem 2.3 as follows.
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Definition 3.1. For pairs (x, y) and (y, z) in E , put

Rxy,α ⊗Ryz,β =
⋃

{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz}

for all α < κxy and all β < κyz, and for all other pairs (x, y) and (w, z) in E with
y 6= w, put

Rxy,α ⊗Rwz,β = ∅

for all α < κxy and β < κwz . Extend ⊗ to all of A by requiring it to distribute
over arbitrary unions. This means that for all subsets X and Y of the set of atoms
in A

(
⋃

X)⊗ (
⋃

Y ) =
⋃

{Rxy,α ⊗Rwz,β : Rxy,α ∈ X and Rwz,β ∈ Y }.

�

Comparing the formula defining Rxy,α ⊗ Ryz,β in Definition 3.1 with the value
of the relational composition Rxy,α |Ryz,β given in Composition Theorem 2.8(iii),
it is clear that they are very similar in form. In the first case, however, the coset
ϕ−1
xy [Kxy,α

◦Hyz,β] of the composite groupHxy
◦Hxz has been shifted, through coset

multiplication by Cxyz, to another coset of Hxy
◦Hxz, so that in general the value

of the ⊗ -product and the value of relational composition on a given pair of atomic
relations will be different, except in certain cases, for example, the case in which
the value is the empty set.

Observe that the product Rxy,α ⊗ Rwz,β is, by definition, a union of atomic
relations in A and is therefore itself a member of A. Since ⊗ is extended to all
of A so as to be completely distributive over unions, and since A is closed under
arbitrary unions, it follows that A is automatically closed under the operation ⊗ .
It is not necessary to impose any special conditions on the quotient isomorphisms
to ensure this closure, as was the case for relative multiplication in group relation
algebras. However, to ensure that A contains the identity relation and is closed
under converse, it is still necessary to require conditions (i) and (ii) from Defini-
tion 2.10. Conditions (iii) and (iv) in Definition 2.10 ensure that A is closed under
relational composition. In order to get a class of algebras large enough to repre-
sent all measurable relation algebras, it is necessary to weaken condition (iv), but
condition (iii) can be retained. In fact, condition (iv) of Definition 2.10 has to be
changed only slightly, as can be seen in Definition 3.2 below.

Every element of a group induces an inner automorphism of the group. In
particular, the coset Cxyz, which is an element of the quotient group

Gx/(Hxy
◦Hxz),

induces an inner automorphism τxyz of the quotient group that is defined by

τxyz(D) = C−1

xyz
◦D ◦Cxyz

for every coset D of Hxy
◦Hxz . This automorphism coincides with the identity

automorphism of the quotient group just in case the coset Cxyz is in the center of
the quotient group, that is to say, just in case

Cxyz
◦D = D ◦Cxyz

for every coset D of Hxy
◦Hxz .

Definition 3.2. A group triple

F = (G,ϕ,C)
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is a pre-semi-frame if the following three conditions are satisfied.

(i) ϕxx is the identity automorphism of Gx/{ex} for all x in I .
(ii) ϕyx = ϕ−1

xy whenever (x, y) is in E .
(iii) ϕxy[Hxy

◦Hxz] = Kxy
◦Hyz whenever (x, y, z) is in E3 .

It is a semi-frame if, in addition, the following fourth condition is also satisfied.

(iv) ϕ̂xy | ϕ̂yz = τxyz | ϕ̂xz whenever (x, y, z) is in E3 .

Conditions (i)–(iv) are called the semi-frame conditions . �

In condition (iv) of this definition, it is understood that ϕ̂xy, ϕ̂yz, and ϕ̂xz are
the induced isomorphisms described in Composition Theorem 2.8. They are well
defined by semi-frame condition (iii).

If the group triple F is a pre-semi-frame, then the Boolean set algebra A con-
tains the identity relation on its base set (by Identity Theorem 2.4), and is closed
under converse (by Converse Theorem 2.5) and under ⊗ (by Definition 3.1). Con-
sequently, it is permissible to form the algebra

C[F ] = 〈A ,∪ ,∼ ,⊗ ,−1 , idU 〉.

Of course, C[F ] need not be a relation algebra, that is to say, an abstract algebra
of the form

A = (A ,+ ,− , ; , ` , 1’)

in which the following axioms are valid.

(R1) r + s = s+ r.
(R2) r + (s+ t) = (r + s) + t.
(R3) −(−r + s) +−(−r +−s) = s.
(R4) r; (s; t) = (r; s); t.
(R5) r; 1’ = r.
(R6) r`` = r.
(R7) (r; s)` = s`; r` .
(R8) (r + s); t = r; t+ s; t.
(R9) (r + s)` = r` + s` .

(R11) (r; s) · t = 0 implies (r`; t) · s = 0.

(On the basis of the other axioms, (R11) is equivalent to the original law (R10)
that Tarski used as the tenth axiom—see, for example, Definition 2.1 in Givant [2].
Consequently, we will not refer to (R10) again.)

Certain relation algebraic axioms are, however, automatically valid in C[F ]. For
example, the Boolean axioms (R1)–(R3) are all valid, because the Boolean part
of C[F ] is a complete and atomic Boolean set algebra. The first involution law

(R6) involves only the operation of converse, so it is valid in C[F ]. The operation
⊗ is distributive over arbitrary unions, as is the operation of converse, so the
distributive axioms for relative multiplication and converse over addition, (R8) and
(R9) respectively, are valid in C[F ].

Each of the remaining four axioms, the associative law for relative multiplication

(R4), the identity law (R5), the second involution law (R7), and the cycle law

(R11) may fail in C[F ]. It is therefore important to impose conditions on the coset
system of a pre-semi-frame that characterize when each of these axioms does hold
in C[F ]. This task is simplified by certain observations. Three of the axioms,
namely (R4), (R5), and (R7), are equations, and one of them, namely (R11), is
an implication between two equations of the form σ = 0. Each of the equations
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involved is positive in the sense that its terms are constructed from variables and
constant symbols using only the operation symbols for addition, multiplication,
relative multiplication, and converse. In particular, there is no occurrence of the
operation symbol for complement. Each of the axioms is also regular in the sense
that no variable occurs more than once on either side of an equation. It is a well-
known result that positive, regular equations, and implications between positive,
regular equations of the form σ = 0, hold in an atomic relation algebra (or in any
Boolean algebra with completely distributive operators) just in case they hold for
all atoms (see, for example, Corollaries 19.26 and 19.28 in Givant [3]). Thus, to
verify that any one of these axioms holds in C[F ] under certain hypotheses on the
coset system, it suffices to verify that it holds for all atomic relations.

We begin with a lemma that says equalities between unions of atomic relations
are equivalent to the corresponding coset equalities.

Lemma 3.3. Let F be a pre-semi-frame, and (x, y, z) a triple in E3 . If D0 and D1

are each unions of cosets of Hxy
◦Hxz, then the following conditions are equivalent .

(i) D0 = D1 .
(ii)

⋃

{Rxz,γ : Hxz,γ ⊆ D0} =
⋃

{Rxz,ξ : Hxz,ξ ⊆ D1}.

Proof. Condition (i) obviously implies (ii). To establish the reverse implication,
assume D0 6= D1 . There must then be a coset M of the subgroup Hxy

◦Hxz that
is included in one of the unions, say D0, but not the other, D1 . It follows that M
must be disjoint from each of the cosets in D1, since two cosets of a subgroup are
either equal or disjoint. In particular, each coset Hxz,γ of Hxz that is included in
M must be disjoint from D1, so the corresponding relation Rxz,γ , which is included
in the left-hand side of (ii), by assumption, must be disjoint from the right-hand
side of (ii), by Partition Lemma 2.2. �

Turn now to the task of finding necessary and sufficient conditions for various
relation algebraic laws to hold in the algebra C[F ], and begin with the identity law
(R5). This law is positive and regular, so it suffices to characterize when it holds
for all atomic relations in C[F ].

Theorem 3.4 (Identity Law Theorem). Let F be a pre-semi-frame, and (x, y) a

pair in E . The following conditions are equivalent .

(i) Rxy,α ⊗ idU = Rxy,α for some α < κxy .
(ii) Rxy,α ⊗ idU = Rxy,α for all α < κxy .
(iii) Rxy,α ⊗Ryy,0 = Rxy,α for some α < κxy .
(iv) Rxy,α ⊗Ryy,0 = Rxy,α for all α < κxy .
(v) Cxyy = Hxy .

Consequently, the identity law holds in the algebra C[F ] if and only if (v) holds for
all pairs (x, y) in E .

Proof. Identity Theorem 2.4 and semi-frame condition (i) imply that

idU =
⋃

w∈I

Rww,0 .

Therefore,

(1) Rxy,α ⊗ idU =
⋃

w∈I

Rxy,α ⊗Rww,0 = Rxy,α ⊗Ryy,0,
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by the distributivity of ⊗ over arbitrary unions, and the fact that

Rxy,α ⊗Rww,0 = ∅

whenever w 6= y. The equivalences of (i) with (iii), and of (ii) with (iv), are
immediate consequences of (1).

We show the equivalence of (iii) and (v), from which it follows trivially that
conditions (iii), (iv), and (v) are all equivalent. We have by Definition 3.1, the
convention thatHyy,0 = {ey}, and semi-frame condition (ii) and the convention that
Kxy,α = ϕxy(Hxy,α). Now, (iii) holds, by Lemma 3.3 just in case Hxy,α

◦Cxyy =
Hxy,α, and this last equality holds just in case Cxyy = Hxy, which is just condition
(v). This establishes the equivalence of conditions (iii)–(v), and hence of all five
conditions, in the statement of the theorem.

The identity law holds in C[F ] just in case it holds for all atoms Rxy,α . Apply
the equivalence of (ii) and (v) in the the statement of the theorem to conclude that
the identity law holds in C[F ] just in case Cxyy = Hxy for all pairs (x, y) in E . �

Take up now the task of characterizing when the cycle law (R11) holds. It suffices
to characterize when this implication holds for atoms, and for atoms r, s, and t,
the implication is equivalent to the following atomic form of the cycle law :

s ≤ r`; t implies t ≤ r; s.

Theorem 3.5 (Cycle Law Theorem). Let F be a pre-semi-frame, and (x, y, z) a

triple in E3. The following conditions are equivalent .

(i) If Ryz,β ⊆ R−1
xy,α ⊗ Rxz,γ , then Rxz,γ ⊆ Rxy,α ⊗ Ryz,β, for some α < κxy,

β < κyz, and γ < κxz .
(ii) If Ryz,β ⊆ R−1

xy,α ⊗ Rxz,γ , then Rxz,γ ⊆ Rxy,α ⊗ Ryz,β, for all α < κxy,
β < κyz, and γ < κxz .

(iii) ϕxy[Cxyz] = C−1
yxz .

Consequently, the cycle law holds in the algebra C[F ] just in case (iii) holds for all

triples (x, y, z) in E3 .

Proof. Fix indices α < κxy, β < κyz, and γ < κxz, with the goal of establishing the
equivalence of conditions (i) and (iii). Choose δ < κxy so that

H−1

xy,α = Hxy,δ,(1)

and observe that

R−1

xy,α = Ryx,δ,(2)

by semi-frame condition (ii) and Converse Theorem 2.5. Semi-frame condition (ii)
and Convention 2.6 imply that

ϕ−1

xy = ϕyx(3)

and

Kyx,δ = Hxy,δ .(4)
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Combine (1)–(4), and use the definition of ⊗ , to arrive at

R−1

xy,α ⊗Rxz,γ = Ryx,δ ⊗Rxz,γ

=
⋃

{Ryz,ξ : Hyz,ξ ⊆ ϕ−1
yx [Kyx,δ

◦Hxz,γ ] ◦Cyxz}

=
⋃

{Ryz,ξ : Hyz,ξ ⊆ ϕ−1
yx [Hxy,δ

◦Hxz,γ ] ◦Cyxz}

=
⋃

{Ryz,ξ : Hyz,ξ ⊆ ϕxy[H
−1
xy,α

◦Hxz,γ ] ◦Cyxz}.

It follows from this string of equalities and Partition Lemma 2.2 that the inclusion

(5) Ryz,β ⊆ R−1

xy,α ⊗Rxz,γ

is equivalent to the inclusion

(6) Hyz,β ⊆ ϕxy[H
−1

xy,α
◦Hxz,γ ] ◦Cyxz .

A completely analogous argument shows that the inclusion

(7) Rxz,γ ⊆ Rxy,α ⊗Ryz,β

is equivalent to the inclusion

(8) Hxz,γ ⊆ ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz .

We now transform (6) in a series of steps. Multiply each side of (6) on the left
by the coset Kxy,α to obtain the equivalent inclusion

(9) Kxy,α
◦Hyz,β ⊆ Kxy,α

◦ϕxy[H
−1

xy,α
◦Hxz,γ ] ◦Cyxz .

Notice that the right side of (9) is a coset of K/H . (For example, Cyxz is a coset of
Hyx

◦Hyz, which is equal to Kxy
◦Hyz . Also, H

−1
xy,α

◦Hxz,γ is a coset of Hxy
◦Hxz,

and ϕ̂xy maps cosets of Hxy
◦Hxz to cosets of K/H , so ϕxy[H

−1
xy,α

◦Hxz,γ ] is a coset
of Kxy

◦Hyz. Finally, the product of two cosets of K/H with the coset Kxy,α of
Kxy is again a coset of K/H .) The left side of (9) is also a coset of K/H . Since
two cosets of the same group are either equal or disjoint, the inclusion in (9) is
equivalent to the equality

(10) Kxy,α
◦Hyz,β = Kxy,α

◦ϕxy[H
−1

xy,α
◦Hxz,γ ] ◦Cyxz .

Observe that

Kxy,α
◦ϕxy[H

−1

xy,α
◦Hxz,γ ] = ϕxy[Hxy,α] ◦ϕxy[H

−1

xy,α
◦Hxz,γ ]

= ϕxy[Hxy,α
◦H−1

xy,α
◦Hxz,γ ]

= ϕxy[Hxy
◦Hxz,γ ],

by the definition of Kxy,α (which implies that ϕxy[Hxy,α] = Kxy,α), the isomor-
phism properties of ϕxy, and the laws of group theory. Equation (10) can therefore
be rewritten in the form

(11) Kxy,α
◦Hyz,β = ϕxy[Hxy

◦Hxz,γ ] ◦Cyxz .

Apply ϕ−1
xy to both sides of (11), and use the isomorphism properties of ϕ−1

xy , to
obtain

ϕ−1

xy [Kxy,α
◦Hyz,β] = ϕ−1

xy [ϕxy[Hxy
◦Hxz,γ ] ◦Cyxz](12)

= ϕ−1

xy [ϕxy[Hxy
◦Hxz,γ ]] ◦ϕ−1

xy [Cyxz]

= Hxy
◦Hxz,γ

◦ϕ−1

xy [Cyxz].
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Now Cyxz is a coset of Hyx
◦Hyz, which, in turn, is equal to Kxy

◦Hyz, and ϕxy

maps the group Gx/(Hxy
◦Hxz) isomorphically to the group Gy/(Kxy

◦Hyz), so the
inverse image ϕ−1

xy [Cyxz] must be a coset of Hxy
◦Hxz . Consequently,

Hxy
◦ϕ−1

xy [Cyxz] = ϕ−1

xy [Cyxz],

so that (12) reduces to

(13) ϕ−1

xy [Kxy,α
◦Hyz,β] = Hxz,γ

◦ϕ−1

xy [Cyxz].

Summarizing, inclusion (6), and hence also inclusion (5), is equivalent to equation
(13).

We now subject equation (8) to similar, but simpler, transformations. Multiply
each side of (8) on the right by C−1

xyz, and use the laws of group theory, to obtain

(14) Hxz,γ
◦C−1

xyz ⊆ ϕ−1

xy [Kxy,α
◦Hyz,β].

Each side of this inclusion is a coset of Hxy
◦Hxz . Since two cosets of the same

group are equal or disjoint, the inclusion in (14) is equivalent to the equation

(15) Hxz,γ
◦C−1

xyz = ϕ−1

xy [Kxy,α
◦Hyz,β].

Therefore, inclusion (8), and hence also inclusion (7), is equivalent to equation (15).
Combine the results of the last two paragraphs to arrive at the following conclu-

sion: inclusion (5) implies inclusion (7) just in case equation (13) implies equation
(15). Compare (13) with (15): the former implies the latter just in case

Hxz,γ
◦ϕ−1

xy [Cyxz] = Hxz,γ
◦C−1

xyz,

or, equivalently, just in case

(16) ϕ−1

xy [Cyxz] = C−1

xyz .

Form the coset inverse of both sides of (16), and apply the isomorphism properties
of ϕ−1

xy , to rewrite (16) as

(17) ϕ−1

xy [C
−1

yxz] = Cxyz .

Apply ϕxy to both sides of (17) to arrive at the equivalent equation

(18) ϕxy[Cxyz] = C−1

yxz .

It has been shown that the implication from (5) to (7) for fixed α, β, and γ,
is equivalent to (18). This means that conditions (i) and (iii) in the statement of
the theorem are equivalent. Since the formulation of (iii) does not involve any of
the three indices α, β, and γ, it follows that (iii) implies (i) for each such triple of
indices, and hence (iii) implies (ii). The implication from (ii) to (i) is immediate.

The cycle law holds in C[F ] just in case it holds for all atoms. Consider such a
triple of atoms

Rxy,α, Rwz,β, Ruv,γ ,

we want to show

Rwz,β ⊆ R−1

xy,α ⊗Ruv,γ implies Ruv,γ ⊆ Rxy,α ⊗Rwz,β .

If y = w and u = x and v = z, then the atomic form of the cycle law holds for the
triple just in case ϕxy[Cxyz] = C−1

yxz, by the equivalence of conditions (ii) and (iii)
in the first part of the theorem.



12 HAJNAL ANDRÉKA AND STEVEN GIVANT

Assume y 6= w or u 6= x or v 6= z. We show that the law holds trivially, because
the left side of the implication reduces to the empty relation. Choose ξ < κxy such
that

H−1

xy,α = Hxy,ξ,

and observe that

R−1

xy,α = Ryx,ξ,(19)

by Converse Theorem 2.5. Consequently,

R−1

xy,α ⊗Ruv,γ = Ryx,ξ ⊗Ruv,γ ⊆ Gy ×Gv,

by (19), the definition of ⊗ , and Partition Lemma 2.2. On the other hand, the
relation Rwz,β is included in Gw × Gz, by Partition Lemma 2.2. The hypothesis
that w 6= y or z 6= v implies that the two Cartesian products

Gy ×Gv and Gw ×Gz

are disjoint, since distinct groups in the given group system are assumed to be
disjoint. It follows that

Rwz,β ∩ (R−1

xy,α ⊗Ruv,γ) ⊆ (Gw ×Gz) ∩ (Gy ×Gv) = ∅.

Since Rwz,β is non-empty, this argument shows that the antecedent of the implica-
tion does not hold, so the entire implication must be true. If u 6= x, then

R−1

xy,α ⊗Ruv,γ = Ryx,ξ ⊗Ruv,γ = ∅,

by (19) and the definition of ⊗ , so again the antecedent of the asserted implication
is false, which means that the entire implication is true. �

The next two characterization theorems make use of semi-frame condition (iv).
We begin with an auxiliary lemma. Notice that (i) of the lemma coincides with
semi-frame condition (iv) stated for the triple (x, y, z) in E3.

Lemma 3.6. Suppose that F is a pre-semi-frame, and (x, y, z) a triple in E3. The

following are equivalent .

(i) If Q is a union of cosets of the subgroup Hxy
◦Hxz in Gx, then

ϕyz[ϕxy[Q]] = ϕxz [C
−1

xyz
◦Q ◦Cxyz].

(ii) If Q is a union of cosets of the subgroup Kxy
◦Hyz in Gy, then

ϕ−1

xz [ϕyz[Q]] = C−1

xyz
◦ϕ−1

xy [Q] ◦Cxyz .

(iii) If Q is a union of cosets of the subgroup Kxz
◦Kyz in Gz , then

Cxyz
◦ϕ−1

xz [Q] = ϕ−1

xy [ϕ
−1

yz [Q]] ◦Cxyz .

Proof. Assume (i). To prove (ii), let Q be a union of cosets of Kxy
◦Hyz. By semi-

frame condition (iii), which holds by the assumption that F is a pre-semi-frame,
we have that ϕ−1

xy [Q] is a union of cosets of Hxy
◦Hxz. Substitute ϕ−1

xy [Q] in place
of Q in (i) to get

(1) ϕyz[ϕxy[ϕ
−1

xy [Q]]] = ϕxz [C
−1

xyz
◦ϕ−1

xy [Q] ◦Cxyz].

On both sides of (1) there is a union of cosets of Kxz
◦Kyz, again by semi-frame

condition (iii). Apply ϕ−1
xz to both sides of (i) to obtain

(2) ϕ−1

xz [ϕyz[ϕxy[ϕ
−1

xy [Q]]]] = ϕ−1

xz [ϕxz[C
−1

xyz
◦ϕ−1

xy [Q] ◦Cxyz]].



COSET RELATION ALGEBRAS 13

Use the inverse property of functions to obtain (ii) from (2). (Notice that the
symbol −1 is being used two different ways: to denote the inverse functions of the
isomorphisms ϕxy and ϕxz, and to denote the group inverse of the coset Cxyz. The
two different meanings of this particular symbol are standard, and should not cause
the reader any confusion.)

In a similar way, to get (iii) from (ii), let Q be a union of cosets of Kxz
◦Kyz.

Substitute ϕ−1
yz [Q] in place of Q in (ii), multiply both sides by Cxyz on the left, and

use the inverse property of functions to arrive at (iii).
To get (i) from (iii), let Q be a union of cosets of Hxy

◦Hxz. In (iii), substitute
ϕxz[C

−1
xyz

◦Q ◦Cxyz] in place of Q, and use the inverse property of functions, to get

(3) Cxyz
◦C−1

xyz
◦Q ◦Cxyz = ϕ−1

xy [ϕ
−1

yz [ϕxz[C
−1

xyz
◦Q ◦Cxyz]]] ◦Cxyz .

Multiply both sides with C−1
xyz on the right, and use the inverse property for groups

to get

(4) Q = ϕ−1

xy [ϕ
−1

yz [ϕxz[C
−1

xyz
◦Q ◦Cxyz]]].

Finally, apply ϕxy and then ϕyz to both sides of (4) and use the inverse property
of functions to get (i) from (4). �

Turn next to the second involution law. As before, it suffices to characterize
when the equation holds for pairs of atoms in C[F ].

Theorem 3.7 (Second Involution Law Theorem). Let F be a semi-frame, and

(x, y, z) a triple in E3 . The following conditions are equivalent .

(i) (Rxy,α ⊗Ryz,β)
−1 = R−1

yz,β ⊗R−1
xy,α for some α < κxy and some β < κyz .

(ii) (Rxy,α ⊗Ryz,β)
−1 = R−1

yz,β ⊗R−1
xy,α for all α < κxy and all β < κyz .

(iii) ϕxz [Cxyz] = C−1
zyx .

Consequently, the second involution law holds in the algebra C[F ] just in case (iii)
holds for all triples (x, y, z) in E3 .

Proof. Fix α < κxy and β < κyz, with the goal of showing that conditions (i)
and (iii) are equivalent. The first step is to work out concrete formulas for the
expressions on the left and right sides of condition (i). The definition of ⊗ gives

(1) Rxy,α ⊗Ryz,β =
⋃

{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β] ◦Cxyz}.

Form the relational converse of both sides of (1), and apply the distributivity of
converse over arbitrary unions, to obtain

(Rxy,α ⊗Ryz,β)
−1 =

⋃

{R−1
xz,γ : Hxz,γ ⊆ ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz}.

This last equation is equivalent to the equation

(2) (Rxy,α ⊗Ryz,β)
−1 =

⋃

{R−1
xz,γ : H−1

xz,γ ⊆ (ϕ−1
xy [Kxy,α

◦Hyz,β] ◦Cxyz)
−1},

by the first involution law for groups (which says that (g−1)−1 = g for every element
g in a group). Converse Theorem 2.5 asserts that

R−1

xz,γ = Rzx,ξ just in case H−1

xz,γ = Hxz,ξ .

Substitute the right side of each of these equations into the right side of (2) to
arrive at

(3) (Rxy,α ⊗Ryz,β)
−1 =

⋃

{Rzx,ξ : Hxz,ξ ⊆ (ϕ−1
xy [Kxy,α

◦Hyz,β] ◦Cxyz)
−1}.
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Use the second involution law for groups (which says that (g ◦h)−1 = h−1
◦g−1 for

all elements g and h in a group) and the isomorphism properties of ϕxy to see that

(ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz)

−1 = C−1

xyz
◦ (ϕ−1

xy [Kxy,α
◦Hyz,β ])

−1

= C−1

xyz
◦ϕ−1

xy [(Kxy,α
◦Hyz,β)

−1]

= C−1

xyz
◦ϕ−1

xy [H
−1

yz,β
◦K−1

xy,α].

Replace the first term by the last term in the right side of (3) to conclude that

(4) (Rxy,α ⊗ Ryz,β)
−1 =

⋃

{Rzx,ξ : Hxz,ξ ⊆ C−1
xyz

◦ϕ−1
xy [H

−1

yz,β
◦K−1

xy,α]}.

The next step is to work out an analogous expression for the right side of (i).
Choose ρ < κxy and η < κyz so that

(5) K−1

xy,α = Kxy,ρ and H−1

yz,β = Hyz,η .

Apply semi-frame condition (ii) and Converse Theorem 2.5 to obtain

(6) R−1

xy,α = Ryx,ρ and R−1

yz,β = Rzy,η .

Use (6) and the definition of ⊗ to get

R−1

yz,β ⊗R−1

xy,α = Rzy,η ⊗Ryx,ρ(7)

=
⋃

{Rzx,γ : Hzx,γ ⊆ ϕ−1
zy [Kzy,η

◦Hyx,ρ] ◦Czyx}.

Convention 2.6 and (5) yield

(8) Kzy,η = Hyz,η = H−1

yz,β and Hyx,ρ = Kxy,ρ = K−1

xy,α .

Combine (7) and (8) to arrive at

(9) R−1

yz,β ⊗R−1

xy,α =
⋃

{Rzx,γ : Hzx,γ ⊆ ϕ−1
zy [H

−1

yz,β
◦K−1

xy,α] ◦Czyx}.

Apply the isomorphism ϕzx to both sides of the inclusion

Hzx,γ ⊆ ϕ−1

zy [H
−1

yz,β
◦K−1

xy,α] ◦Czyx(10)

to obtain the equivalent inclusion

ϕzx[Hzx,γ ] ⊆ ϕzx[ϕ
−1

zy [H
−1

yz,β
◦K−1

xy,α] ◦Czyx].(11)

Use the definition of the coset Kzx,γ as the image of the coset Hzx,γ under the
isomorphism ϕzx, and then use Convention 2.6, to rewrite the left side of (11) as

(12) ϕzx[Hzx,γ ] = Kzx,γ = Hxz,γ .

The right side of (11) may also be rewritten in the following way:

ϕzx[ϕ
−1

zy [H
−1

yz,β
◦K−1

xy,α] ◦Czyx] = ϕzx[ϕ
−1

zy [H
−1

yz,β
◦K−1

xy,α]] ◦ϕzx[Czyx](13)

= ϕ−1

xz [ϕyz[H
−1

yz,β
◦K−1

xy,α]] ◦ϕzx[Czyx]

= C−1

xyz
◦ϕ−1

xy [H
−1

yz,β
◦K−1

xy,α] ◦Cxyz
◦ϕzx[Czyx].

The first equality uses the isomorphism property of ϕzx, the second uses semi-frame
condition (ii) which says that

ϕzx = ϕ−1

xz and ϕyz = ϕ−1

zy ,
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and the third equality uses Lemma 3.6(ii) (with H−1

yz,β
◦K−1

xy,α in place of Q). Com-

bine (12) with (13) to conclude that the inclusion in (11), and consequently also
the one in (10), is equivalent to the inclusion

(14) Hxz,γ ⊆ C−1

xyz
◦ϕ−1

xy [H
−1

yz,β
◦K−1

xy,α] ◦Cxyz
◦ϕzx[Czyx].

Use the equivalence between (10) and (14) to rewrite (9) as

(15) R−1

yz,β ⊗R−1

xy,α =
⋃

{Rzx,γ : Hxz,γ ⊆ C−1
xyz

◦ϕ−1
xy [H

−1

yz,β
◦K−1

xy,α] ◦Cxyz
◦ϕzx[Czyx]}.

It follows from (4) and (15) that the equation in (i) holds just in case the right
side of (4) is equal to the right side of (15). The right sides of (4) and (15) are
equal just in case the cosets

C−1

xyz
◦ϕ−1

xy [H
−1

yz,β
◦K−1

xy,α](16)

and

C−1

xyz
◦ϕ−1

xy [H
−1

yz,β
◦K−1

xy,α] ◦Cxyz
◦ϕzx[Czyx](17)

are equal, by Lemma 3.3. (Notice that (16) and (17) really are cosets of Hxy
◦Hxz.

In more detail, each of the factors in (16) and (17) is a coset of Hxy
◦Hxz, so the

composition of these factors is also a coset of Hxy
◦Hxz . For example, H−1

yz,β
◦K−1

xy,α

is a coset of Kxy
◦Hyz, and ϕ̂xy maps the group Gx/(Hxy

◦Hxz) isomorphically

onto the group Gy/(K/H), so the inverse image ϕ−1
xy [H

−1

yz,β
◦K−1

xy,α] must be a coset

of Hxy
◦Hxz . The isomorphism ϕ̂zx, which coincides with ϕ̂−1

xz , maps the group
Gz/(K/K) isomorphically onto the group Gx/(Hxy

◦Hxz), and Czyx is a coset of
Hzy

◦Hzx = K/K, so the image ϕzx[Czyx] must be a coset of Hxy
◦Hxz.) The

cosets in (16) and (17) are equal just in case

Hxy
◦Hxz = Cxyz

◦ϕzx[Czyx],

or, put another way, they are equal just in case

ϕzx[Czyx]
−1 = Cxyz,(18)

by the cancellation law for groups. Rewrite (18) as

(19) ϕzx[C
−1

zyx] = Cxyz,

using the isomorphism properties of ϕzx, and then apply the inverse ϕxz of the
isomorphism ϕzx to both sides of (19) to obtain the equivalent equation

(20) C−1

zyx = ϕxz[Cxyz].

Combine these various equivalences to conclude that (i) holds if and only if (20)
holds, that is to say, if and only if (iii) holds.

It has been shown that (i) and (iii) are equivalent for any fixed α and β. Since
(iii) does not involve α and β, it may be concluded that (iii) implies (i) for any α
and β, and hence (iii) implies (ii). The implication from (ii) to (i) is trivial.

The form of the second involution law as a positive, regular equation implies
that it holds in C[F ] just in case it holds for all atoms Rxy,α and Rwz,β in C[F ]. If
y = w, then the law holds for the given pair of atoms just in case ϕxz [Cxyz] = C−1

zyx,
by the equivalence of conditions (ii) and (iii) established above.
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Assume y 6= w. We show that the second involution law holds automatically for
the given pair of atoms. Indeed, choose γ and δ so that

H−1

xy,α = Hxy,γ and H−1

wz,β = Hwz,δ .

Semi-frame condition (ii) and Converse Theorem 2.5 imply that

R−1

xy,α = Ryx,γ and R−1

wz,β = Rzw,δ .

Combine this with the definition of ⊗ under the assumption that y 6= w to obtain

R−1

wz,β ⊗R−1

xy,α = Rzw,δ ⊗Ryz,γ = ∅(21)

and

(Rxy,α ⊗Rwz,β)
−1 = ∅

−1 = ∅.(22)

Since the right sides of (21) and (22) are equal, so are the left sides. �

Turn finally to the task of characterizing when the associative law for relative
multiplication holds in an algebra C[F ]. Again, it suffices to characterize when it
holds for atoms. It is helpful to introduce a bit of notation. Let E4 denote the set
of quadruples (x, y, z, w) such that the pairs (x, y), (x, z), and (x,w) are all in E ,
or, equivalently, such that the triples (x, y, z) and (x, z, w) are in E3 .

Theorem 3.8 (Associative Law Theorem). Let F be a semi-frame, and (x, y, z, w)
a quadruple in E4 . The following conditions are equivalent .

(i) (Rxy,α ⊗ Ryz,β) ⊗ Rzw,γ = Rxy,α ⊗ (Ryz,β ⊗ Rzw,γ) for some α < κxy,
β < κyz and γ < κzw .

(ii) (Rxy,α⊗Ryz,β)⊗Rzw,γ = Rxy,α⊗ (Ryz,β ⊗Rzw,γ) for all α < κxy, β < κyz

and γ < κzw .
(iii) Cxyz

◦Cxzw = ϕyx[Cyzw
◦Hyx] ◦Cxyw .

Consequently, the associative law for ⊗ holds in the algebra C[F ] just in case (iii)
holds for all quadruples (x, y, z, w) in E4 .

Proof. Fix some α < κxy, β < κyz, and γ < κzw, with goal of establishing the
equivalence of (i) and (iii). The first task is to compute and simplify an expression
for

(1) (Rxy,α ⊗Ryz,β)⊗Rzw,γ .

The definition of ⊗ implies that

(2) Rxy,α ⊗Ryz,β =
⋃

{Rxz,ξ : Hxz,ξ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz}.

Form the product, in the sense of ⊗ , on both sides of (2) on the right with Rzw,γ ,
and use the distributivity of ⊗ over arbitrary unions, to see that (1) is equal to
the union

(3)
⋃

{Rxz,ξ ⊗Rzw,γ : Hxz,ξ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz}.

The definition of ⊗ also yields

(4) Rxz,ξ ⊗Rzw,γ =
⋃

{Rxw,ρ : Hxw,ρ ⊆ ϕ−1
xz [Kxz,ξ

◦Hzw,γ ] ◦Cxzw}

for each ξ. Write

(5) D1 = ϕ−1

xy [Kxy,α
◦Hyz,β] ◦Cxyz,
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and observe that D1 is a coset of the normal subgroup Hxy
◦Hxz in Gx. Combine

(5) with (3) and (4) to arrive at the equality of (1) with

⋃

{Rxw,ρ : Hxw,ρ ⊆ ϕ−1
xz [Kxz,ξ

◦Hzw,γ ] ◦Cxzw for some Hxz,ξ ⊆ D1}.

This union may be rewritten as

(6)
⋃
{

Rxw,ρ : Hxw,ρ ⊆
⋃

{ϕ−1
xz [Kxz,ξ

◦Hzw,γ ] ◦Cxzw : Hxz,ξ ⊆ D1}
}

.

In more detail, the sets

ϕ−1

xz [Kxz,ξ
◦Hzw,γ ] ◦Cxzw,

for various ξ, are cosets of Hxz
◦Hxw (since ϕxz induces an isomorphism from

Gx/(Hxz
◦Hxw) to Gz/(Kxz

◦Hzw)), and any coset Hxw,ρ of Hxw that is contained
in a union of cosets of Hxz

◦Hxw must be contained entirely within one of these
cosets. It follows that (1) and (6) are equal.

We now transform (6) in a series of steps. First,

⋃

{Kxz,ξ : Hxz,ξ ⊆ D1} =
⋃

{ϕxz[Hxz,ξ] : Hxz,ξ ⊆ D1}(7)

= ϕxz[
⋃

{Hxz,ξ : Hxz,ξ ⊆ D1}]

= ϕxz[D1],

by the definition of Kxz,ξ as the image of Hxz,ξ under the mapping ϕxz , the dis-
tributivity of function images over unions, and the fact that D1 is the union of the
set of cosets of Hxz that are included in it, by (5) and the remark following (5).
Therefore

⋃

{ϕ−1
xz [Kxz,ξ

◦Hzw,γ ] ◦Cxzw : Hxz,ξ ⊆ D1}

=
⋃

{ϕ−1
xz [Kxz,ξ

◦Hzw,γ ] : Hxz,ξ ⊆ D1} ◦Cxzw

= ϕ−1

xz [
⋃

{Kxz,ξ
◦Hzw,γ : Hxz,ξ ⊆ D1}] ◦Cxzw

= ϕ−1

xz [
⋃

{Kxz,ξ
◦Kxz

◦Hzw,γ : Hxz,ξ ⊆ D1}] ◦Cxzw

= ϕ−1

xz [
⋃

{Kxz,ξ : Hxz,ξ ⊆ D1} ◦Kxz
◦Hzw,γ ] ◦Cxzw

= ϕ−1

xz [ϕxz [D1] ◦Kxz
◦Hzw,γ ] ◦Cxzw

= ϕ−1

xz [ϕxz [D1]] ◦ϕ−1

xz [Kxz
◦Hzw,γ ] ◦Cxzw

= D1
◦ϕ−1

xz [Kxz
◦Hzw,γ ] ◦Cxzw

= ϕ−1

xy [Kxy,α
◦Hyz,β] ◦Cxyz

◦ϕ−1

xz [Kxz
◦Hzw,γ ] ◦Cxzw,

by the distributivity of coset composition over arbitrary unions, the distributivity
of inverse function images over arbitrary unions, the fact that Kxz is the identity
element for its group of cosets, the distributivity of coset composition over arbitrary
unions, (7), the isomorphism property of ϕ−1

xz , the fact that ϕxz and ϕ−1
xz are inverses

of one another (by semi-frame condition (ii)), and the definition of D1 in (5).
Recall that Cxyz is a coset of Hxy

◦Hxz. The latter is the identity element of
the quotient group Gx/(Hxy

◦Hxz), and also the image of K/K under the inverse
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isomorphism ϕ−1
xz . Consequently,

Cxyz
◦ϕ−1

xz [Kxz
◦Hzw,γ ] = Cxyz

◦Hxy
◦Hxz

◦ϕ−1

xz [Kxz
◦Hzw,γ ]

= Cxyz
◦ϕ−1

xz [K/K] ◦ϕ−1

xz [Kxz
◦Hzw,γ ]

= Cxyz
◦ϕ−1

xz [K/K ◦Kxz
◦Hzw,γ ]

= Cxyz
◦ϕ−1

xz [K/K ◦Hzw,γ ]

= Cxyz
◦ϕ−1

xz [K/K ◦Kyz
◦Hzw,γ ]

= ϕ−1

xy [ϕ
−1

yz [K/K ◦Kyz
◦Hzw,γ ]] ◦Cxyz

= ϕ−1

xy [ϕ
−1

yz [K/K] ◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦Cxyz

= ϕ−1

xy [K/H ◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦Cxyz .

The sixth equality uses Lemma 3.6(iii) (with K/K ◦Kyz
◦Hzw,γ in place of Q), the

seventh the isomorphism property of ϕ−1
yz , and the eighth the fact that ϕyz maps

K/H to K/K .
Combine the last two strings of equalities with the isomorphism properties of

ϕ−1
xy , and the fact that Kxy

◦Hyz is the identity element of the quotient group
Gy/(Kxy

◦Hyz), to arrive at

⋃

{ϕ−1
xz [Kxz,ξ

◦Hzw,γ ] ◦Cxzw : Hxz,ξ ⊆ D1}

= ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz

◦ϕ−1

xz [Kxz
◦Hzw,γ ] ◦Cxzw

= ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦ϕ−1

xy [K/H ◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦Cxyz

◦Cxzw

= ϕ−1

xy [Kxy,α
◦Hyz,β

◦K/H ◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦Cxyz

◦Cxzw

= ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦Cxyz

◦Cxzw .

Conclusion: (6) may be rewritten as the inclusion

(8)
⋃

{Rxw,ρ : Hxw,ρ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β
◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦Cxyz

◦Cxzw},

so (1) and (8) are equal.
The next task is to work out an analogous expression for

(9) Rxy,α ⊗ (Ryz,β ⊗Rzw,γ)

in an analogous fashion. Write

(10) D2 = ϕ−1

yz [Kyz,β
◦Hzw,γ ] ◦Cyzw .

The definition of ⊗ and (10) imply that

(11) Ryz,β ⊗Rzw,γ =
⋃

{Ryw,ξ : Hyw,ξ ⊆ D2}.

Form the ⊗ product, on both sides of this equation on the left with Rxy,α, and use
the distributivity of ⊗ over arbitrary unions, to see that (9) is equal to

(12)
⋃

{Rxy,α ⊗Ryw,ξ : Hyw,ξ ⊆ D2}.

Since

Rxy,α ⊗Ryw,ξ =
⋃

{Rxw,ρ : Hxw,ρ ⊆ ϕ−1
xy [Kxy,α

◦Hyw,ξ] ◦Cxyw},

by the definition of ⊗ , it follows that (12), and hence also (9), is equal to
⋃

{Rxw,ρ : Hxw,ρ ⊆ ϕ−1
xy [Kxy,α

◦Hyw,ξ] ◦Cxyw for some Hyw,ξ ⊆ D2}.
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This union can be rewritten as
⋃
{

Rxw,ρ : Hxw,ρ ⊆
⋃

{ϕ−1
xy [Kxy,α

◦Hyw,ξ] ◦Cxyw : Hyw,ξ ⊆ D2}
}

,

and therefore also as

(13)
⋃

{Rxw,ρ : Hxw,ρ ⊆ ϕ−1
xy [Kxy,α

◦D2] ◦Cxyw}.

(This last step uses the distributivity of coset compositions and of inverse function
images over arbitrary unions.) Use the identity element property for Kyz with
respect to its cosets, the isomorphism properties of ϕ−1

yz on cosets and unions of
cosets of Kyz, and the definition of Kyz,β to write

ϕ−1

yz [Kyz,β
◦Hzw,γ ] = ϕ−1

yz [Kyz,β
◦Kyz

◦Hzw,γ ](14)

= ϕ−1

yz [Kyz,β] ◦ϕ−1

yz [Kyz
◦Hzw,γ ]

= Hyz,β
◦ϕ−1

yz [Kyz
◦Hzw,γ ].

It follows that

ϕ−1

xy [Kxy,α
◦D2] ◦Cxyw

= ϕ−1

xy [Kxy,α
◦ϕ−1

yz [Kyz,β
◦Hzw,γ ] ◦Cyzw] ◦Cxyw

= ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ] ◦Cyzw] ◦Cxyw

= ϕ−1

xy [Kxy,α
◦Kxy

◦Hyz,β
◦ϕ−1

yz [Kyz
◦Hzw,γ ] ◦Cyzw] ◦Cxyw

= ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ] ◦Kxy

◦Cyzw] ◦Cxyw

= ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw,

by (10), (14), the identity element properties of Kxy with respect to its cosets,
the fact that Kxy is a normal subgroup of Gy and therefore commutes with the
other sets, and the isomorphism properties of ϕ−1

xy . In this regard, observe that
the complex product Kxy

◦Cyzw is a union of cosets of Kxy (this was the point of
introducing Kxy into the fourth expression), and of course so is

Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]

(since the coset Kxy,α is present in the complex product), so the isomorphism
property of ϕ−1

xy for unions of cosets of Kxy really is applicable.
This last string of equalities shows that (13) may be rewritten in the form

(15)
⋃

{Rxw,ρ : Hxw,ρ ⊆

ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw},

so (9) is equal to (15).
It has been shown that (1) is equal to (8), and (9) to (15). It follows that (1)

and (9) will be equal, that is to say, condition (i) of the theorem will hold, just in
case (8) and (15) are equal. According to Lemma 3.3, the unions (8) and (15) are
equal just in case the corresponding cosets

ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦Cxyz

◦Cxzw

and

ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw
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are equal. Apply the cancellation law for the quotient group Gx/(Hxy
◦Hxz

◦Hxw)
to conclude that these two cosets are equal if and only if

(16) Cxyz
◦Cxzw = ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw .

To justify this application of the cancellation law, it must be shown that the
relevant factors, namely

(17) ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]],

(18) Cxyz
◦Cxzw,

and

(19) ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw,

really are all cosets in Gx of the normal subgroup

(20) Hxy
◦Hxz

◦Hxw .

Begin with (17). Observe that Kyz
◦Hzw,γ is a coset of Kyz

◦Hzw, so its inverse
image under ϕyz is a coset of Hyz

◦Hyw . The complex product Kxy,α
◦Hyz,β is a

coset of K/H , so the product

(21) Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]

is a coset of the group Kxy
◦Hyz

◦Hyz
◦Hyw, which coincides with the group

(22) Kxy
◦Hyz

◦Hyw .

Applying ϕ−1
xy to (21) gives (17). Applying it to (22) gives

ϕ−1

xy [Kxy
◦Hyz

◦Hyw].

Since

ϕ−1

xy [Kxy
◦Hyz

◦Hyw] = ϕ−1

xy [Kxy
◦Kxy

◦Hyz
◦Hyw]

= ϕ−1

xy [Kxy
◦Hyz

◦Kxy
◦Hyw]

= ϕ−1

xy [Kxy
◦Hyz] ◦ϕ−1

xy [Kxy
◦Hyw]

= (Hxy
◦Hxz) ◦(Hxy

◦Hxw)

= Hxy
◦Hxy

◦Hxz
◦Hxw

= Hxy
◦Hxz

◦Hxw,

and since (21) is a coset of (22), it may be concluded that (17) is a coset of (20),
as claimed.

Turn now to (18). By assumption, Cxyz is a coset of the subgroup Hxy
◦Hxz,

and Cxzw is a coset of the subgroup Hxy
◦Hxw, so the product coset (18) is a coset

of the product subgroup, which is (20).
Consider, finally, (19). By assumption, Cyzw is a coset of Hyz

◦Hyw, so the
product Kxy

◦Cyzw is a coset of Kxy
◦Hyz

◦Hyw . It follows that the inverse image

(23) ϕ−1

xy [Kxy
◦Cyzw]

is a coset of the inverse image ϕ−1
xy [Kxy

◦Hyz
◦Hyw]. It was shown above that this

inverse image coincides with (20), so (23) is a coset of (20). The set Cxwy is a coset
of Hxw

◦Hxy, by assumption, so the product of Cxwy with (23) is a coset of the
product of Hxw

◦Hxy with (20). This last product reduces to (20), so (19) is a coset
of (20).
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We carry out one final transformation of (16). Semi-frame condition (ii) says
that ϕyx is the inverse of ϕxy, and consequently Kxy coincides with the subgroup
Hyx, by Convention 2.6. Also, the subgroupHyx is normal. Consequently, equation
(16) may be rewritten in the form

Cxyz
◦Cxzw = ϕyx[Cyzw

◦Hyx] ◦Cxyw,

which is just the equation in condition (iii).
It has been demonstrated that condition (i) holds for the fixed α, β, and γ just

in case the equation in condition (iii) holds. Since the formulation of (iii) does not
involve any of the three given indices, it follows that (iii) implies (i) for each such
triple of indices, and therefore (iii) implies (ii). The implication from (ii) to (i) is
obvious.

The associative law holds in C[F ] just in case it holds for all atoms. Consider a
triple of atoms

Rxy,α, Rwz,β , Ruv,γ .

If y = w and z = u, then the law holds for the triple of atoms just in case

Cxyz
◦Cxzw = ϕyx[Cyzw

◦Hyx] ◦Cxyw,

by the equivalence of conditions (ii) and (iii) in the first part of the theorem.
If y 6= w or if z 6= u, then the associative law holds automatically for this triple,

since both sides reduce to the empty relation. Indeed, if y 6= w, then

Rxy,α ⊗Rwz,β = ∅,

by the definition of ⊗ , and consequently

(Rxy,α ⊗Rwz,β)⊗Ruv,γ = ∅,(24)

again, by the definition of ⊗ . If also z 6= u, then a similar argument shows that

Rxy,α ⊗ (Rwz,β ⊗Ruv,γ) = ∅.(25)

In this case, associativity holds by (24) and (25).
If z = u, then the argument is slightly more involved. In this case,

(26) Rwz,β ⊗Ruv,γ =
⋃

{Rwv,ξ : Hwv,ξ ⊆ ϕ−1
wz [Kwz,β

◦Huv,γ ] ◦Cwzv},

by the definition of ⊗ , and therefore

Rxy,α ⊗ (Rwz,β ⊗Ruv,γ) =
⋃

{Rxy,α ⊗ Rwv,ξ : Hwv,ξ ⊆ ϕ−1
wz [Kwz,β

◦Huv,γ ] ◦Cwzv},

by (26) and the distributivity of the operation ⊗ over arbitrary unions. Each of
the relations Rxy,α ⊗Rwv,ξ in this union is empty, by the definition of ⊗ , since we
have assumed that y 6= w. It follows that (25) holds in this case as well. Compare
(25) with (24) to arrive at the desired conclusion for the case y 6= w. The case
z 6= u is treated in an analogous fashion. �

The next corollary says that semi-frame condition (iv) is necessary for C[F ] to
be a relation algebra.

Corollary 3.9 (Semi-frame Corollary). Assume that F is a pre-semi-frame. If

either the Second Involution Law or the Associative Law holds in the algebra C[F ],
then F is a semi-frame.
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Proof. Assume that the Second Involution Law holds in C[F ]. Semi-frame condition
(iv) was used only once in the proof of Theorem 3.7, when Lemma 3.6(ii) was
applied to justify the third equality in (13). Omitting that step, the proof shows
that Theorem 3.7(i) holds just in case the cosets in (16) and the modified (17) of
that proof are equal, that is to say, just in case

(1) C−1

xyz
◦ϕ−1

xy [Q] = ϕ−1

xz [ϕyz[Q]] ◦ϕzx[Czyx],

where Q is H−1

yz,β
◦K−1

xy,α. From the assumption that the Second Involution Law

holds, it follows that (1) holds for all α, β, that is to say, for all cosets Q of
Hyz

◦Kxy. Take Q = Hyz
◦Kxy and use semi-frame condition (iii) to obtain

ϕ−1
xy [Q] = ϕ−1

xz [ϕyz[Q]]. Substitute the left side of this equality for the right side in
(1), and use the cancellation law for groups (and the fact that for this choice of Q,
the inverse image ϕ−1

xy (Q) is a normal subgroup of Gx, and hence commutes with
ϕzx(Czyx)) to reduce (1) to

(2) C−1

xyz = ϕzx[Czyx].

Substitute the left side of (2) for the right side in equation (1), and then multiply
both sides of the resulting equation by Cxyz on the right to arrive at Lemma 3.6(ii),
which is equivalent to Lemma 3.6(i). Thus, Lemma 3.6(i) holds for all triples
(x, y, z) in E3, which is just what semi-frame condition (iv) expresses.

Assume now that the Associative Law holds in C[F ]. The derivation of semi-
frame condition (iv) is similar to the preceding one. Semi-frame condition (iv) was
used only once in the proof of Theorem 3.8, when Lemma 3.6(iii) was applied to jus-
tify the sixth equality in the transformation of the expressionCxyz

◦ϕ−1
xz [Kxz

◦Hzw,γ ].
If we use the “half-transformed” expression that we get without using Lemma 3.6(iii),
in place of the one in step (8) of that proof, we get the term

(3) ϕ−1

xy [Kxy,α
◦Hyz,β ] ◦Cxyz

◦ϕ−1

xz [Kxz
◦Kyz

◦Hzw,γ ] ◦Cxzw .

Theorem 3.8(i) is equivalent to the equality of (3) and the term in (15) of that
proof, that is to say, to the term

(4) ϕ−1

xy [Kxy,α
◦Hyz,β

◦ϕ−1

yz [Kyz
◦Hzw,γ ]] ◦ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw .

Multiply the two terms on the left by ϕxy[Kxy,α
◦Hyz,β], use isomorphism property

of ϕ−1
xy , and write Q in place of Kyz

◦Hzw,γ to get that Theorem 3.8(i) is equivalent
to the equation

(5) Cxyz
◦ϕ−1

xz [Kxz
◦Q] ◦Cxzw = ϕ−1

xy [ϕ
−1

yz [Q]] ◦ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw .

The assumption that the associative law holds implies that (5) holds for all cosets
Q of Kyz

◦Hzw. In particular, it holds for Kyz
◦Hzw, from which it follows that

(6) Cxyz
◦Cxzw = ϕ−1

xy [Kxy
◦Cyzw] ◦Cxyw .

Substitute the left side of (6) for the right side in its occurrence on the right side
of (5), and then cancel the occurrence of Cxzw on the right of both sides of the
resulting equation, to get Lemma 3.6(iii). The desired conclusion now follows just
as in the previous paragraph. �

Coset relation algebras are generalizations of group relation algebras, since each
group relation algebra may be viewed as a coset relation algebra. In more detail,
let F = (G,ϕ) be a group frame, and put F̄ = (G,ϕ,C) where Cxyz = Hxy

◦Hxz

for each triple (x, y, z) in E3. It is easy to see that the algebras G[F ] and C[F̄ ] are
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equal. In Section 5, it will be shown the class of coset relation algebras is a proper
extension of the class of group relation algebras: there exist coset relation algebras
that are not group relation algebras.

We conclude the present section with two lemmas that concern the relationship
between these two constructions. The first lemma characterizes when the operation
⊗ gives the same result as relational composition.

Lemma 3.10. Let F be a semi-frame . The following conditions are equivalent for

all triples (x, y, z) in E3 .

(i) Rxy,α ⊗Ryz,β = Rxy,α |Ryz,β for some α < κxy and some β < κyz .
(ii) Rxy,α ⊗Ryz,β = Rxy,α |Ryz,β for all α < κxy and all β < κyz .
(iii) Cxyz = Hxy

◦Hxz .

Proof. Assume first that condition (iii) holds, with the goal of establishing (ii).
Clearly,

(1) ϕ−1

xy [Kxy,α
◦Hyz,β] ◦Cxyz = ϕ−1

xy [Kxy,α
◦Hyz,β],

becauseHxy
◦Hxz is the identity element in its group of cosets. For the same reason,

the inner automorphism τ of Gx/(Hxy
◦Hxz) determined by the coset Cxyz is the

identity automorphism. Semi-frame condition (iv) therefore reduces to

(2) ϕ̂xy | ϕ̂yz = τ | ϕ̂xz = ϕ̂xz .

Use (2) and the implication from (iv) to (iii) in the Composition Theorem to obtain

(3) Rxy,α |Ryz,β =
⋃

{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β]}

for all α < κxy and β < κyz . (The first hypothesis in condition (iv) is satisfied
because of semi-frame condition (iii).) Use Definition 3.1 to get

(4) Rxy,α ⊗Ryz,β =
⋃

{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β ] ◦Cxyz}

for all α < κxy and all β < κyz . Combine (3), (4), and (1) to arrive at (ii).
The implication from (ii) to (i) is obvious. To establish the implication from (i)

to (iii), let α < κxy and β < κyz be fixed indices such that (i) holds. Since the
universe A of the algebra C[F ] is closed under the operation ⊗ , the composition
Rxy,α |Ryz,β must belong to A. Apply Corollary 2.9 to see that this composition
must belong to A for every choice of α < κxy and β < κyz. Invoke the Composition
Theorem to obtain (3). Use Definition 3.1 to get (4). Combine (3) and (4) with
the assumption in (i) to arrive at

(5)
⋃

{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β ]}

=
⋃

{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β] ◦Cxyz}

for the α and β chosen so that (i) holds. Apply Lemma 3.3 to (5) to obtain
(1). (To check that Lemma 3.3 really is applicable, observe that the inverse image
ϕ−1
xy [Kxy,α

◦Hyz,β] of the cosetKxy,α
◦Hyz,β ofK/H is a coset ofHxy

◦Hxz, because
ϕ̂xy maps Gx/(Hxy

◦Hxz) isomorphically to Gy/(K/H). Also, Cxyz is a coset of
Hxy

◦Hxz, by assumption. Consequently, the composition

ϕ−1

xy [Kxy,α
◦Hyz,β] ◦Cxyz

is a coset of Hxy
◦Hxz.) The only element of a (quotient) group that leaves another

element of the group unchanged under group composition is the identity element,
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by the cancellation law for groups. Consequently, it follows from (1) that Cxyz

must coincide with the identity element Hxy
◦Hxz of the quotient group. �

In general, the composition Rxy,α |Ryz,β does not belong to the algebra C[F ].
Fortunately, it is possible to characterize when it does belong.

Lemma 3.11. Let F be a semi-frame . The following conditions are equivalent for

all triples (x, y, z) in E3 .

(i) Rxy,α |Ryz,β is in C[F ] for some α < κxy and some β < κyz .
(ii) Rxy,α |Ryz,β is in C[F ] for all α < κxy and all β < κyz .
(iii) Cxyz is in the center of the group Gx/(Hxy

◦Hxz).

Proof. The equivalence of (i) and (ii) is proved in Corollary 2.9. To establish the
implication from (iii) to (ii), assume that Cxyz is in the center of Gx/(Hxy

◦Hxz).
The inner automorphism τ determined by Cxyz is then the identity automorphism,
so semi-frame condition (iv) for the given triple (x, y, z) reduces to

(1) ϕ̂xy | ϕ̂yz = ϕ̂xz .

Keeping in mind semi-frame condition (iii), we see that the conditions in part (iv)
of the Composition Theorem are satisfied for the triple (x, y, z). By the implication
from (iv) to (ii) in that theorem, the composition Rxy,α | Ryz,β must be in the
universe A of the algebra C[F ] for all α and β.

To establish the implication from (ii) to (iii), assume that Rxy,α | Ryz,β is in
A for all α and β. It follows from the Composition Theorem that (1) holds. By
assumption, F is a semi-frame, so

(2) ϕ̂xy | ϕ̂yz = τ | ϕ̂xz ,

with τ denoting τxyz. Comparing (1) and (2), it is clear that

ϕ̂xz = τ | ϕ̂xz .

Form the relational composition of each side of this equation with ϕ̂−1
xz on the right

to see that τ is the identity automorphism of the quotient group Gx/(Hxy
◦Hxz).

This can only happen if Cxyz is in the center of the quotient group, because τ is
the inner automorphism determined by Cxyz . �

4. Coset Semi-frames

In the preceding section, necessary and sufficient conditions are given for the
algebra C[F ] constructed from a coset semi-frame F to satisfy the identity law, the
second involution law, the cycle law, and the associative law, and hence to be a
relation algebra. We single out the coset semi-frames that satisfy these conditions.

Definition 4.1. A coset semi-frame

F = (〈Gx : x ∈ I 〉 , 〈ϕxy : (x, y) ∈ E 〉 , 〈Cxyz : (x, y, z) ∈ E3〉)

is said to satisfy the coset conditions if the following equations hold for all pairs
(x, y) in E , all triples (x, y, z) in E3, and all quadruples (x, y, z, w) in E4 respectively.

(i) Cxyy = Hxy .
(ii) ϕxz [Cxyz] = C−1

zyx .

(iii) ϕxy[Cxyz] = C−1
yxz .

(iv) Cxyz
◦Cxzw = ϕyx[Cyzw

◦Hyx] ◦Cxyw .
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These are called the coset conditions for the identity law, the second involution law,
the cycle law, and the associative law respectively.

The results in the previous section lead to the following theorem, which is one
of the main results of this paper.

Theorem 4.2 (Coset Semi-frame Theorem). If a coset semi-frame F satisfies the

coset conditions, then the algebra C[F ] constructed from F is a complete and atomic

measurable relation algebra with base set and unit

U =
⋃

{Gx : x ∈ I} and E =
⋃

{Gx ×Gy : (x, y) ∈ E}

respectively . The atoms in this algebra are the relations of the form Rxy,α for pairs

(x, y) in E , and the subidentity atoms are the relations of the form Rxx,0 for elements

x in I . The measure of Rxx,0 is just the cardinality of the group Gx .

Proof. The algebra C[F ] is a complete and atomic Boolean algebra of binary re-
lations containing the identity relation idU , and closed under the set-theoretic op-
eration of converse and under the operation ⊗ , by the definition of a semi-frame,
the assumption that F is a semi-frame, and Boolean Algebra Theorem 2.3, Identity
Theorem 2.4, Converse Theorem 2.5, and the definition of ⊗ . The Boolean axioms
(R1)–(R3), the first involution law (R6), and the two distributive laws (R8) and
(R9) are valid in C[F ], by Theorem 2.3 and the remarks following Definition 3.2.
The associative law (R4), the identity law (R5), the second involution law (R7),
and the cycle law (R11) are also valid in C[F ], by Associative Law Theorem 3.8,
Identity Law Theorem 3.4, Second Involution Law Theorem 3.7, and Cycle Law
Theorem 3.5 respectively, because F is assumed to satisfy the coset conditions.
Consequently, C[F ] is a complete and atomic relation algebra in which the uni-
verse consists of binary relations, and all operations except the one for relative
multiplication, coincide with the standard set-theoretic operations of set relation
algebras.

The atoms of the algebra C[F ] are the relations of the form Rxy,α, and the
subidentity atoms are the relations of the form Rxx,0, by Lemma 2.2, Theorem 2.3,
and the construction of C[F ]. The identity relation idU is the disjoint union of the
subidentity atoms Rxx,0, by Theorem 2.4 and semi-frame condition (i).

To prove that each subidentity atom Rxx,0 is measurable, with measure the
cardinality of the group Gx, it must be shown that the square

(1) Rxx,0 ⊗ E ⊗ Rxx,0

is a union of κxx non-zero functional atoms. The unit E may be written in the
form

(2) E =
⋃

{Gy ×Gz : (y, z) ∈ E} =
⋃

{Ryz,α : (y, z) ∈ E and α < κyz},

by Lemma 2.2 and Theorem 2.3. Consequently,

Rxx,0 ⊗ E ⊗Rxx,0 = Rxx,0 ⊗ (
⋃

{Ryz,α : (y, z) ∈ E and α < κyz})⊗Rxx,0(3)

=
⋃

{Rxx,0 ⊗Ryz,α ⊗Rxx,0 : (y, z) ∈ E and α < κyz},

by (2) and the distributivity of ⊗ over arbitrary unions. If x 6= y or x 6= z, then

(4) Rxx,0 ⊗Ryz,α ⊗Rxx,0 = ∅,
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by the definition of the operation ⊗ . On the other hand, if x = y and x = z, then

(5) Rxx,0 ⊗Ryz,α ⊗Rxx,0 = Rxx,0 ⊗Rxx,α ⊗Rxx,0

= Rxx,0 |Rxx,α |Rxx,0 = Rxx,α .

The first equality uses the assumptions on y and z. The second equality uses the
assumption that F satisfies the coset condition for the identity law, together with
Lemma 3.10 and Theorem 3.4, which ensures that condition (iii) of Lemma 3.10,
namely

(6) Cxyz = Cxxx = Hxx = Hxx
◦Hxx = Hxy

◦Hxz,

is satisfied. The third equality uses the fact that Rxx,0 = idGx
, and Rxx,α is a

subset of Gx ×Gx. Combine (3)–(5), and use Lemma 2.2, to arrive at

(7) Rxx,0 ⊗ E ⊗Rxx,0 =
⋃

{Rxx,α : α < κxx} = Gx ×Gx .

Since Hxx = Kxx = {ex}, the sets Hxx,γ = Kxx,γ have the form {gγ}, and
therefore the relations Rxx,α (for α < κxx) have the form

(8) Rxx,α =
⋃

γ{Hxx,γ × (Kxx,γ
◦Kxx,α)}

=
⋃

γ{{gγ} × {gγ ◦gα}} = {(gγ, gγ ◦gα) : γ < κxx},

which is a function, and in fact a bijection.
It follows from (7) and (8) that the square (1) is the disjoint union of κxx func-

tions. Consequently, Rxx,0 is a measurable atom of measure κxx. Combine this with
the observations of the previous paragraph to conclude that the relation algebra
C[F ] is measurable. �

The theorem justifies the following definition.

Definition 4.3. Suppose that F is a coset semi-frame that satisfies the coset
conditions. The relation algebra C[F ] constructed from F in Coset Semi-frame
Theorem 4.2 is called the (full) coset relation algebra on F . A general coset relation

algebra is defined to be an algebra that is embeddable into a full coset relation
algebra.

The task of verifying that a given group triple satisfies the semi-frame conditions
and the coset conditions, and therefore yields a full coset relation algebra, that is to
say, it yields an example of a measurable relation algebra, can be quite complicated
and tedious. Fortunately, some simplifications are possible. To describe them, it is
helpful to assume that the group index set I is linearly ordered, say by a relation
< . Roughly speaking, under the assumption of condition (i), condition (ii) holds
in general just in case it holds for each pair (x, y) in E with x < y, and similarly for
the other semi-frame conditions. Similar simplifications are possible for most of the
remaining semi-frame and coset conditions. Actually, it is possible to replace coset
conditions (i)—(iii) with four simpler conditions that do not simultaneously involve
the formation of a coset inverse and the application of a quotient isomorphism.

We begin with two lemmas. The first formulates some conditions that are equiv-
alent to coset condition (ii) for the second involution law and coset condition (iii)
for the cycle law.

Lemma 4.4. Let F be a semi-frame, and (u, v, w) a triple in E3 . Consider the

following conditions on the coset system of F .
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(i) C−1
xyz = Cxzy for all permutations (x, y, z) of (u, v, w).

(ii) ϕxz [Cxyz] = C−1
zyx for all permutations (x, y, z) of (u, v, w).

(iii) ϕxz [Cxyz] = Czxy for all permutations (x, y, z) of (u, v, w).
(iv) ϕxy[Cxyz] = C−1

yxz for all permutations (x, y, z) of (u, v, w).
(v) ϕxy[Cxyz] = Cyzx for all permutations (x, y, z) of (u, v, w).

Conditions (iii) and (v) are equivalent . Any two of conditions (i)–(iv), and also

any two of conditions (i), (ii), (iv) and (v), imply all of the other conditions .

Proof. First, observe that

(1) ϕyz [ϕxy[Cxyz]] = ϕxz [Cxyz]

holds by semi-frame condition (iv), since

τxyz(Cxyz) = C−1

xyz
◦Cxyz

◦Cxyz = Cxyz .

Apply ϕzy to both sides of (1), and use the fact that ϕzy is the inverse of ϕyz, by
semi-frame condition (ii), to obtain

(2) ϕzy[ϕxz[Cxyz]] = ϕxy[Cxyz].

The equivalence of (iii) and (v) is now easy to prove. If (iii) holds, then

Cyzx = ϕzy[Czxy] = ϕzy[ϕxz[Cxyz]] = ϕxy[Cxyz],

by (iii) (with z, x, and y in place of x, y, and z respectively), another application
of (iii), and (2). On the other hand, if (v) holds, then

Czxy = ϕyz[Cyzx] = ϕyz[ϕxy[Cxyz]] = ϕxz[Cxyz],

by (v) (with y, z, and x in place of x, y, and z respectively), another application
of (v), and (1).

The next step is to show that conditions (i) and (ii) imply all of the remaining
conditions. The derivation of (iii) and (iv) from (i) and (ii) is easy. For (iii), use
(ii) and (i) (with x and z interchanged):

ϕxz[Cxyz] = C−1

zyx = Czxy .

For (iv), first use (i), (ii) (with y and z interchanged), and (i) (with y, z, and x in
place of x, y, and z respectively) to get

ϕxy[C
−1

xyz] = ϕxy[Cxzy] = C−1

yzx = Cyxz .

Form the coset inverses of the first and last terms, and use the isomorphism prop-
erties of ϕxy, to arrive at (iv). It has already been shown that (v) follows from (iii),
so conditions (i) and (ii) do imply all of the remaining conditions.

To show that conditions (i) and (iii) imply all of the remaining conditions, it
suffices to derive (ii), by the observations of the preceding paragraph. Use (iii) and
(i) (with x and z interchanged) to obtain

ϕxz[Cxyz] = Czxy = C−1

zyx .

Similarly, to show that conditions (i) and (iv) imply all of the remaining conditions,
it suffices to derive (ii). First, use (i), (iv) (with y and z interchanged), and (i)
(with z, x, and y in place of x, y, and z respectively) to obtain

ϕxz[C
−1

xyz] = ϕxz[Cxzy] = C−1

zxy = Czyx .

Form the coset inverses of the first and last terms, and use the isomorphism prop-
erties of ϕxz, to arrive (ii).
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To prove that (ii) and (iii) imply all of the remaining conditions, it suffices to
derive (i). Use (iii) and (ii) to get

Czxy = ϕxz[Cxyz] = C−1

zyx .

Interchange x and z to arrive at (i). Similarly, to prove that (ii) and (iv) imply
all of the remaining conditions, it suffices to derive (i). Use (ii) (with x and y
interchanged) and the isomorphism properties of ϕxy, (iv), (1), and (ii) to obtain

Czxy = ϕyz[C
−1

yxz] = ϕyz[ϕxy[Cxyz]] = ϕxz[Cxyz] = C−1

zyx .

Again, interchange x and z to arrive at (i).
Finally, to show that (iii) and (iv) imply the remaining conditions, it suffices to

derive (i). Use (iii) (with x and y interchanged) and the isomorphism properties of
ϕyz, (iv), (1), and (iii) to obtain

C−1

zyx = ϕyz[C
−1

yxz] = ϕyz[ϕxy[Cxyz]] = ϕxz[Cxyz] = Czxy .

As before, interchange x and z to arrive at (i). �

The second lemma facilitates the verification of the second and third coset con-
ditions in cases when some of the indices coincide.

Lemma 4.5. Let F be a semi-frame . If Cxyz = Hxy
◦Hxz for every permutation

(x, y, z) of a given triple in E3, then

C−1

xyz = Cxzy and ϕxy[Cxyz] = Cyzx

for every permutation of the given triple.

Proof. Assume that

(1) Cxyz = Hxy
◦Hxz

for all permutations (x, y, z) of a given triple in E3. Obviously,

C−1

xyz = (Hxy
◦Hxz)

−1 = H−1

xz
◦H−1

xy = Hxz
◦Hxy = Cxzy

for all such permutations, by (1), the second involution law for cosets, the fact that
Hxz and Hxy are subgroups of Gx and hence closed under inverses, and (1) (with
y and z interchanged). Thus, the first equation in the conclusion holds.

Semi-frame conditions (ii) and (iii), together with Convention 2.6 and the fact
that Hyx

◦Hyz is a subgroup of Gy, imply that

(2) ϕxy[Hxy
◦Hxz] = K/H = Hyx

◦Hyz = (Hyx
◦Hyz)

−1 .

Consequently,

ϕxy[Cxyz] = ϕxy[Hxy
◦Hxz] = (Hyx

◦Hyz)
−1 = C−1

yxz = Cyzx,

by (1), (2), (1) (with x and y interchanged), and the first conclusion of the lemma
(with x and y interchanged). Thus, the second equation in the conclusion holds. �

The next theorem formulates a set of simplified semi-frame and coset conditions.

Theorem 4.6. A group triple F is a coset semi-frame that satisfies the first three

coset conditions if and only if the following eight conditions are satisfied .

(i) ϕxx is the identity automorphism of Gx/{ex} for every x in I .
(ii) ϕyx = ϕ−1

xy for every pair (x, y) in E with x < y .
(iii) ϕxy[Hxy

◦Hxz] = Kxy
◦Hyz and ϕyz[Kxy

◦Hyz] = Kxz
◦Kyz for every triple

(x, y, z) in E3 with x < y < z .
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(iv) ϕ̂xy | ϕ̂yz = τxyz | ϕ̂xz for every triple (x, y, z) in E3 with x < y < z .
(v) Cxxy = Cxyx = Cxyy = Hxy for all pairs (x, y) in E .
(vi) C−1

xyz = Cxzy for all triples (x, y, z) in E3 with x, y, z mutually distinct .
(vii) ϕxy[Cxyz] = Cyzx for all triples (x, y, z) in E3 with x < y < z .
(viii) ϕxz [Cxyz] = Czxy for all triples (x, y, z) in E3 with x < y < z .

If F is a group triple that satisfies conditions (i)–(viii), then F satisfies the fourth

coset condition if and only if

(ix) Cxyz
◦Cxzw = ϕyx[Cyzw

◦Hyx] ◦Cxyw for all quadruples (x, y, z, w) in E4
with x < y < z < w.

Proof. Suppose that a group triple F satisfies conditions (i)–(viii) of the theorem.
The proof that semi-frame conditions (i)–(iii) must hold is easy, and is in fact
exactly the same as in the case of the corresponding simplification of the group
frame conditions for group pairs (see Theorem 4.4 and its proof in [4]). The details
are therefore omitted. Turn to the verification of semi-frame condition (iv).

Consider a triple (x, y, z) in E3, and assume first that not all of the indices are
distinct, say x = y. The mapping ϕxy is the identity automorphism of Gx/{ex},
by condition (i), so that

Hxy = Hxx = {ex} = Kxx = Kxy, Hxz = Hyz, Kxz = Kyz,

and therefore

Hxy
◦Hxz = Hxz, Kxy

◦Hyz = Hyz = Hxz, Kxz
◦Kyz = Kyz

◦Kyz = Kyz .

It follows that the isomorphism ϕ̂xy induced by ϕxy on Gx/(Hxy
◦Hxz) coincides

with the identity automorphism ofGx/Hxz, the isomorphism ϕ̂yz onGy/(Kxy
◦Hyz)

coincides with ϕyz , and the isomorphism ϕ̂xz induced by ϕxz on Gx/(Hxy
◦Hxz)

coincides with ϕxz. On the other hand, the coset that determines the inner auto-
morphism τxyz is the subgroup

Cxyz = Cxxz = Hxz,

by condition (v), so that τxyz must be the identity automorphism of Gx/Hxz.
Consequently,

ϕ̂xy | ϕ̂yz = ϕyz = ϕxz = τxyz | ϕ̂xz ,

so semi-frame condition (iv) holds in this case. The cases when y = z and when
x = z are treated in a completely analogous fashion.

It remains to consider the case when x, y, and z are all distinct. Condition (vi)
of the theorem implies that

C−1

xyz = Cxzy, C−1

yxz = Cyzx, C−1

zxy = Czyx,(1)

from which it follows that

τ−1

xyz = τxzy, τ−1

yzx = τyxz, τ−1

zxy = τzyx .(2)

For example, for every coset D in Gy/(Hyz
◦Hyx), we have

τyxz(τyzx(D)) = τyxz(C
−1

yzx
◦D ◦Cyzx) = C−1

yxz
◦(C−1

yzx
◦D ◦Cyzx) ◦Cyxz

= Cyzx
◦C−1

yzx
◦D ◦Cyzx

◦C−1

yzx = D,

by the definition of τyzx, the definition of τyxz, the second equation in (1), and
the laws of group theory. This argument shows that the composition of τyzx and
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τyxz is the identity function on its domain. The same is also true of the reverse
composition, so these two inner automorphisms are the inverses of one another.

The next step is to check that

(3) τxyz | ϕ̂xy = ϕ̂xy |τyzx and τxyz | ϕ̂xz = ϕ̂xz |τzxy .

To verify the first equation, consider an arbitrary coset D in Gx/(Hxy
◦Hxz). The

definition of τxyz, the isomorphism properties of ϕxy, condition (vii) of the theorem,
and the definition of τyzx imply that

ϕxy[τxyz [D]] = ϕxy[C
−1

xyz
◦D ◦Cxyz] = ϕxy[Cxyz]

−1
◦ϕxy[D] ◦ϕxy[Cxyz ]

= C−1

yzx
◦ϕxy[D] ◦Cyzx = τyzx[ϕxy[D]].

An analogous argument, using condition (viii) in place of condition (vii), establishes
the second equation in (3).

Consider finally the case when all of the indices x, y, and z are distinct. Assume
x < y < z, and use condition (iv) of the theorem to obtain

(4) ϕ̂xy | ϕ̂yz = τxyz | ϕ̂xz .

Compose both sides of this equation on the right with ϕ̂−1
yz , and on the left with

τ−1
xyz, to arrive at

τ−1

xyz | ϕ̂xy = ϕ̂xz | ϕ̂
−1

yz .

The mapping τ−1
xyz coincides with τxzy, by (2), and ϕ̂−1

yz coincides with ϕ̂zy, because,
as has already been pointed out, semi-frame condition (ii) is valid in F . The
previous equation may therefore be rewritten in the form

(5) ϕ̂xz | ϕ̂zy = τxzy | ϕ̂xy,

which is a permuted version of (4) in which the second and third indices y and z
have been transposed. Compose both sides of (4) on the right with ϕ̂−1

xz and on the
left with ϕ̂−1

xy to obtain

ϕ̂yz | ϕ̂
−1

xz = ϕ̂−1

xy |τxyz .

Observe that

ϕ̂−1

xy |τxyz = ϕ̂−1

xy |τxyz | ϕ̂xy | ϕ̂
−1

xy = ϕ̂−1

xy | ϕ̂xy |τyzx | ϕ̂
−1

xy = τyzx | ϕ̂
−1

xy ,

by the properties of isomorphism composition and (3). It follows from these com-
putations and from the validity of semi-frame condition (ii) in F that

(6) ϕ̂yz | ϕ̂zx = ϕ̂yz | ϕ̂
−1

xz = ϕ̂−1

xy |τxyz = τyzx | ϕ̂
−1

xy = τyzx | ϕ̂yx,

which is a permuted version of (4) in which the indices have been shifted one to the
left modulo 3, so that x, y, and z have been replaced by y, z, and x respectively.
This argument shows that the two permuted versions of (4), the first obtained by
transposing the last two indices y and z of the triple (x, y, z) to arrive at (5), and
the second by shifting each of the indices x, y, and z of the triple to the left by one
modulo 3 to arrive at (6), are valid in F . All permutations of the triple (x, y, z)
may be obtained by composing these two permutations. For example, transpose
the last two indices of (4), permuting (x, y, z) to (x, z, y), to obtain (5), and then
use (6) to shift the indices of (5) to the left by one modulo 3, permuting (x, z, y) to
(z, y, x), to arrive at

ϕ̂zy | ϕ̂yx = τzyx | ϕ̂zy .

It follows that semi-frame condition (iv) is valid in F .
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The next step in the proof is the verification of the coset conditions for the
identity law, the second involution law, and the cycle law under the assumption of
conditions (i)–(viii) of the theorem. Certainly, F will satisfy the coset condition for
the identity law, since this is just the equality of the last two cosets in condition
(v) of the theorem. In order to verify the coset conditions for the second involution
law and the cycle law, which coincide with conditions (ii) and (iv) in Lemma 4.4,
it suffices to show that conditions (i) and (v) of that lemma, namely

C−1

xyz = Cxzy(10)

and

ϕxy[Cxyz] = Cyzx,(11)

hold for all triples (x, y, z) in E3 . If two of the indices, say x and y, are equal, then

Cxyz = Cxxz = Hxz = {ex} ◦Hxz = Hxy
◦Hxz,(12)

Cxzy = Cxzx = Hxz = Hxz
◦{ex} = Hxz

◦Hxy,

Czxy = Czxx = Hzx = Hzx
◦Hzx = Hzx

◦Hzy,

by the assumption on x and y, condition (v) (with z in place of y), condition (i),
which implies that Hxy = {ex}, and, for the second to the last equality in the
last line, the assumption that Hzx is a subgroup of Gz and therefore closed under
composition. It is clear from this argument that (12) holds for all permutations of
the indices x, y, and z. Apply Lemma 4.5 to arrive at (10). The cases y = z and
x = z are handled in a similar fashion.

As regards the verification of (11), if two of the indices, say x and y are equal,
then (12) holds for all permutations of the variables x, y, and z, and therefore
Lemma 4.5 yields (11). A similar argument applies if y = z or x = z.

Assume now that all three indices x, y, and z are distinct. If x < y < z, then (11)
holds, by condition (vii) of the theorem. To derive the permuted version of (11)
in which the indices x and y are transposed, use condition (vi), the isomorphism
properties of ϕxy, condition (vii), and condition (vi) (with y, z, and x in place of
x, y, and z respectively) to obtain

ϕxy[Cxzy] = ϕxy[C
−1

xyz] = ϕxy[Cxyz]
−1 = C−1

yzx = Cyxz .

Apply ϕyx to the first and last terms in this string of equalities, and use the fact
that ϕyx is the inverse of ϕxy, by semi-frame condition (ii), to arrive at

(13) ϕyx[Cyxz] = Cxzy .

To derive the permuted version of (11) in which x, y, and z are shifted one to the
right modulo 3 to obtain the equation for z, x, and y respectively,

(14) ϕzx[Czxy] = Cxyz,

apply ϕzx to both sides of condition (viii), and use semi-frame condition (ii) (with
z in place of y).

The permutation of the triple (x, y, z) implicit in (13) that is obtained by trans-
posing the first two indices to obtain (y, x, z), and the permutation of the triple
implicit in (11) that is obtained by shifting each index to the right by one modulo
3 to obtain (z, x, y), together generate all permutations of (x, y, z), and hence all
permutations of (11). For example, use (13) to shift all the indices of (11) to the
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right by one modulo 3, permuting (x, y, z) to (z, x, y) and arriving at (14), and then
repeat this process on (14), permuting (z, x, y) to (y, z, x), to arrive at

ϕyz[Cyzx] = Czxy .

From these observations, it is clear that (11) holds for all permuted versions of a
given triple of distinct elements in E3. Combine this with the arguments following
(11) to see that (11) holds for all triples in E3. Use (10), (11), and Lemma 4.4 to
conclude the coset conditions for the second involution law and the cycle law hold
in F . This completes the derivation of the coset conditions for the identity law, the
second involution law, and the cycle law from conditions (i)–(viii) above.

To establish the reverse implication, assume F is a semi-frame satisfying the
coset conditions for the identity law, the second involution law, and the cycle law.
Certainly, F satisfies conditions (i)–(iv) of the theorem, because these conditions
are special cases of the semi-frame conditions. To see that F satisfies condition
(v), use the coset condition for the identity law for the pair (y, x), which says that
Cyxx = Hyx, use the definition of ϕyx, and use semi-frame condition (ii) in the form
of Convention 2.6 (with x and y interchanged), to obtain

(15) ϕyx[Cyxx] = ϕyx[Hyx] = Kyx = Hxy .

The coset conditions for the second involution law and the cycle law are conditions
(ii) and (iv) of Lemma 4.4, so they imply all of the other conditions of the lemma.
In particular, they imply (v) (with y, x, and x in place of x, y, and z respectively),
so

(16) ϕyx[Cyxx] = Cxxy .

Combine (15) and (16) to arrive at

(17) Cxxy = Hxy .

Invoke Lemma 4.4 again, this time using (i) (with x and y in place of y and z
respectively), to obtain

C−1

xxy = Cxyx .

Combine this equation with (17), and use the fact that Hxy is a subgroup of Gx

and therefore closed under inverse, to arrive at

(18) Cxyx = C−1

xxy = H−1

xy = Hxy .

Together, the coset condition for the identity law, (17), and (18) imply condition
(v) of the theorem. To derive conditions (vi), (vii), and (viii) of the theorem, use
Lemma 4.4 again, and in fact parts (i), (v), and (iii) respectively. This completes
the proof of the first assertion of the theorem.

To prove the second assertion of the theorem, suppose that F satisfies conditions
(i)–(viii) of the theorem. It follows from the first part of the theorem that F must
be a semi-frame that satisfies the first three coset conditions. The key step in the
argument is showing that F satisfies the coset condition for the associative law for
one quadruple of elements in E4 if and only if it satisfies the condition for every
permutation of that quadruple.

Fix a quadruple (x, y, z, w) in E4 of not necessarily distinct elements, and suppose
that

(19) Cxyz
◦Cxzw = ϕyx[Cyzw

◦Hyx] ◦Cxyw .
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The immediate goal is to derive a permuted version of (19) in which the indices z
and w have been transposed. Form the coset inverses of both sides of (19), and
apply the second involution law for cosets, to obtain

(20) C−1

xzw
◦C−1

xyz = C−1

xyw
◦ϕyx[Cyzw

◦Hyx]
−1 .

Conditions (ii) and (iv) in Lemma 4.4 hold for all triples of indices in E3, because
F satisfies the coset conditions for the second involution law and the cycle law.
Consequently, part (i) of the lemma holds for all such triples. Use it repeatedly on
different triples to obtain

(21) C−1

xyz = Cxzy, C−1

xyw = Cxwy, C−1

xzw = Cxwz, C−1

yzw = Cywz .

Expand the second term on the right side of (20) as follows:

(22) ϕyx[Cyzw
◦Hyx]

−1 = ϕyx[(Cyzw
◦Hyx)

−1] = ϕyx[H
−1

yx
◦C−1

yzw]

= ϕyx[Hyx
◦C−1

yzw] = ϕyx[C
−1

yzw
◦Hyx] = ϕyx[Cywz

◦Hyx],

by the isomorphism properties of ϕyx, the second involution law for cosets, the
assumption that Hyz is a normal subgroup of Gx, and hence is closed under inverses
and commutes with all elements in Gx, and the final equation in (21). Combine
(22) with (20) and the first three equations in (21) to arrive at

(23) Cxwz
◦Cxzy = C−1

xzw
◦C−1

xyz = C−1

xyw
◦ϕyx[Cyzw

◦Hyx]
−1

= Cxwy
◦ϕyx[Cywz

◦Hyx].

Multiply the first and last expressions in (23) on the left by C−1
xwy and on the right

by C−1
xzy, and use the inverse law for cosets, to obtain

(24) C−1

xwy
◦Cxwz = ϕyx[Cywz

◦Hyx] ◦C−1

xzy .

In more detail, the inverse law for cosets, the assumption that Cxzy is a coset of
Hxz

◦Hxy, and the assumption that the subgroup Hxy is normal yield

C−1

xwy
◦Cxwz

◦Cxzy
◦C−1

xzy = C−1

xwy
◦Cxwz

◦Hxz
◦Hxy

= C−1

xyw
◦Hxy

◦Cxwz
◦Hxz = C−1

xyw
◦Cxwz .

The final equality is justified because Cxwz is a coset of the normal subgroup
Hxw

◦Hxz, and therefore absorbs the factor Hxz in the sense that

Cxwz
◦Hxz = Cxwz

◦ (Hxw
◦Hxz) ◦Hxz = Cxwz

◦Hxw
◦Hxz = Cxwz,

by the identity law for groups of cosets, the assumption that Cxwz is a coset of
Hxw

◦Hxz, and the assumption that Hxz is a subgroup of Gx and therefore closed
under composition. Similarly, the coset C−1

xwy of Hxw
◦Hxy absorbs the factor Hxy .

An analogous argument shows that the product of Cxzy with its inverse is absorbed
by the term ϕyx[Cywz

◦Hyx] on the right side of equation (24). This completes the
justification of the computation in (24). Combine the first and second equations in
(21) with (24) to conclude that

(25) Cxyw
◦Cxwz = ϕyx[Cywz

◦Hyx] ◦Cxyz .

This is just the desired permuted version of (19) in which the indices z and w have
been transposed.
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The next goal is to derive a permuted version of (19) in which the indices y and
w have been transposed. Begin with an application of Lemma 3.6(iii) (with w and
y in place of y and z respectively, and with Cywz

◦Hyx in place of Q) to obtain

(26) Cxwy
◦ϕ−1

xy [Cywz
◦Hyz] = ϕ−1

xw[ϕ
−1

wy[Cywz
◦Hyx]] ◦Cxwy .

Notice in this connection that Cywz is a coset ofHyw
◦Hyz, so the product Cywz

◦Hyx

is a coset ofHyw
◦Hyz

◦Hyx, and therefore a union of cosets ofHyw
◦Hyx . This latter

group coincides with Kxy
◦Kwy, by semi-frame condition (ii) and Convention 2.6,

so the hypotheses of Lemma 3.6(iii) are indeed satisfied. Use semi-frame condition
(ii) to rewrite (26) as

(27) Cxwy
◦ϕyx[Cywz

◦Hyz] = ϕwx[ϕyw[Cywz
◦Hyx]] ◦Cxwy .

The argument of ϕwx on the right side of (27) may be rewritten as

ϕyw[Cywz
◦Hyx] = ϕyw[Cywz

◦Hyw
◦Hyx](28)

= ϕyw[Cywz] ◦ϕyw[Hyw
◦Hyx].

The first equality uses the fact that Cywz is a coset of Hyw
◦Hyz and therefore

absorbs Hyw, and the second uses the isomorphism properties of ϕyw . The function
ϕyw maps the group Kxy

◦Hyw to the group Kxw
◦Kyw, by the second equation in

condition (iii) of the theorem (with w in place of z), which has been shown to hold
for all triples in E3. The first of these groups coincides with Hyx

◦Hyw, and the
second with Hwx

◦Hwy, by semi-frame condition (ii) and Convention 2.6, so (using
also the assumption that the subgroups involved are normal)

(29) ϕyw[Hyw
◦Hyx] = Hwy

◦Hwx .

Also, parts (ii) and (iv) of Lemma 4.4 hold for all triples in E3, because F satisfies
the coset conditions for the second involution law and the cycle law. Apply part
(v) of the lemma (with y and w in place of x and y respectively) to obtain

(30) ϕyw[Cywz] = Cwzy .

Combine (28)–(30), and use the fact that the coset Cwzy of Hwz
◦Hwy absorbs the

subgroup Hwy, to arrive at

(31) ϕyw[Cywz
◦Hyx] = ϕyw[Cywz] ◦ϕyw[Hyw

◦Hyx]

= Cwzy
◦Hwy

◦Hwx = Cwzy
◦Hwx .

Replace the occurrence in (27) of the left side of (31) with the right side of (31) to
get

Cxwy
◦ϕyx[Cywz

◦Hyz] = ϕwx[Cwzy
◦Hwx] ◦Cxwy .

Combine this with (23) to conclude that

(32) Cxwz
◦Cxzy = ϕwx[Cwzy

◦Hwx] ◦Cxwy,

which is the permuted version of (19) in which the indices y and w have been
transposed.

Finally, we derive a permuted version of (19) in which the indices x and y have
been transposed. Apply ϕxy to both sides of (19) to obtain

(33) ϕxy[Cxyz
◦Cxzw] = ϕxy[ϕyx[Cyzw

◦Hyx] ◦Cxyw].
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The left side of (33) may be rewritten as

(34) ϕxy[Cxyz
◦Cxzw] = ϕxy[Cxyz

◦Hxy
◦Cxzw] = ϕxy[Cxyz

◦Cxzw
◦Hxy]

= ϕxy[Cxyz] ◦ϕxy[Cxzw
◦Hxy] = Cyzx

◦ϕxy[Cxzw
◦Hxy].

The first equality uses the fact that the coset Cxyz of Hxy
◦Hxz absorbs the sub-

group Hxy, the second uses the assumption that Hxy is normal, the third uses the
isomorphism properties of ϕxy (which is why it is necessary to insert a copy of Hxy

to compose with Cxzw) , and the fourth uses Lemma 4.4(v). The right side of (33)
may be rewritten as

ϕxy[ϕyx[Cyzw
◦Hyx] ◦Cxyw] = ϕxy[ϕyx[Cyzw

◦Hyx]] ◦ϕxy[Cxyw](35)

= Cyzw
◦Hyx

◦ϕxy[Cxyw]

= Cyzw
◦Hyx

◦Cywx

= Cyzw
◦Cywx,

by isomorphism properties of ϕxy, semi-frame condition (ii), Lemma 4.4(v) (with
w in place of z), and the fact that the coset Cywx absorbs the group Hyx . Combine
(33)—(35) to arrive at

Cyzw
◦Cywx = Cyzx

◦ϕxy[Cxzw
◦Hxy].

Multiply both sides of the preceding equation by C−1
yzx on the left and by C−1

ywx on
the right, and use the inverse law for groups of cosets, to obtain

(36) C−1

yzx
◦Cyzw = ϕxy[Cxzw

◦Hxy] ◦C−1

ywx .

From Lemma 4.4(i), it follows that

(37) C−1

yzx = Cyxz and C−1

ywx = Cyxw .

Combine (36) and (37) to conclude that

(38) Cyxz
◦Cyzw = ϕxy[Cxzw

◦Hxy] ◦Cyxw,

which is the desired permuted version of (19) obtained by transposing the indices
x and y.

It has been shown that the three permuted versions of (19) obtained by trans-
posing the indices z and w, the indices y and w, and the indices x and y, are all
derivable from (19). These three transpositions generate all permutations of the
quadruple (x, y, z, w), so it follows that every version of (19) in which the indices
x, y, z, and w have been permuted is derivable from (19).

The next step is to derive all instances of the coset condition for the associative
law on the basis of condition (ix) of the theorem and the assumption that F is a
semi-frame satisfying conditions (i)–(viii) of the theorem, or equivalently, satisfying
the first three coset conditions. Suppose that the first two indices of an arbitrary
quadruple in E4, say (x, y, z, w), are equal, with the goal of deriving (19). This
derivation does not require the use of condition (ix) at all. Observe that

(39) Cxyz = Cxxz = Hxz and Cxyw = Cxxw = Hxw,

by the assumption on x and y, and condition (v) of the theorem. Also, ϕyx and
Hyx coincide with ϕxx and {ex} respectively, and ϕxx is the identity function on
Gx/{ex}, by condition (i) of the theorem, so

(40) ϕyx[Cyzw
◦Hyx] = ϕxx[Cxzw

◦{ex}] = Cxzw
◦{ex} = Cxzw .
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Consequently,

(41) Cxyz
◦Cxzw = Hxz

◦Cxzw = Cxzw,

by the first part of (39) and the fact that the coset Cxzw absorbs the subgroup Hxz.
Therefore,

(42) ϕyx[Cyzw
◦Hyz] ◦Cxyw = Cxzw

◦Cxyw = Cxzw
◦Hxw = Cxzw,

by (40), the second part of (39), and the fact that the coset Cxzw absorbs the
subgroup Hxw. Combine (41) and (42) to arrive at (19).

Consider next the case of an arbitrary quadruple (x, y, z, w) in E4 in which at least
two of the indices are equal. Form a permutation of this quadruple in which two
of the equal indices are moved to the first and second positions of the quadruple.
The resulting quadruple satisfies the hypotheses of the preceding paragraph, so
the version of (19) that is associated with this quadruple is valid in F , by the
observations of the previous paragraph. It follows that (19) must hold for the given
quadruple (x, y, z, w), since every permuted version of a valid instance of the coset
condition for the associative law is also valid.

Turn finally to the case when the indices in a quadruple (x, y, z, w) in E4 are
distinct. If x < y < z < w, then (19) holds by the assumed condition (ix).
Consequently, every permuted version of (19) also holds, so (19) is valid in F in all
cases in which the indices of the given quadruple are mutually distinct. Combine
the observations of this and the preceding paragraph to conclude that if condition
(ix) of the theorem is true in a semi-frame F satisfying conditions (i)–(viii), then
the coset condition for the associative law holds in F . The reverse implication is
trivially true. �

The following special case of the second part of Theorem 4.6 is quite useful in
verifying the coset condition for the associative law in basic examples of semi-frames.

Corollary 4.7. Suppose F is a semi-frame satisfying the coset conditions for the

identity law, the second involution law, and the cycle law. If

Hxy
◦Hxz

◦Hxw = Gx

for all quadruples (x, y, z, w) in E4, then F satisfies the coset conditions for the

associative law.

Proof. Consider a quadruple (x, y, z, w) in E4, with the intention of showing that

(1) Cxyz
◦Cxzw = ϕyx[Cyzw

◦Hyx] ◦Cxyw .

Since Cxyz and Cxzw are cosets of Hxy
◦Hxz and Hxz

◦Hxw, the complex product

Cxyz
◦Cxzw

is a coset of the triple product

Hxy
◦Hxz

◦Hxw,

which is Gx, by assumption. There is only one coset of the improper subgroup Gx,
namely itself, so

(2) Cxyz
◦Cxzw = Gx .

As regards the right side of (1), because Cyzw is a coset of Hyz
◦Hyw, the product

Cyzw
◦Hyx
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is a coset of the triple product

Hyz
◦Hyw

◦Hyx,

which is Gy, by assumption. Therefore,

Cyzw
◦Hyx = Gy .

Apply the mapping ϕyx to both sides of the previous equation to obtain

ϕyx[Cyzw
◦Hyx] = ϕyx[Gy ] = Gx .

Multiply the first and last terms of this equation on the right by Cxyw to arrive at

(3) ϕyx[Cyzw
◦Hyx] ◦Cxyw = Gx

◦Cxyw = Gx .

Combine (2) and (3) to see that (1) holds in this case. Apply Theorem 4.6 to
conclude that coset conditions for the associative law are valid in F . �

There are a number of other special cases in which the verification of the coset
conditions for a given semi-frame simplify. For instance, in many of the examples
of group triples, most of cosets Cxyz in the coset shifting system are the identity
coset in the sense that they are the identity element of the corresponding quotient
group,

Cxyz = Hxy
◦Hxz .

The next corollary is perhaps the simplest example of such a special case. Call two
cosets Cxyz and Cuvw associated if (u, v, w) is a permutation of (x, y, z).

Corollary 4.8. Let F be a semi-frame, and (p, q, r) a triple in E3 with p < q < r.
If every coset not associated with Cpqr is the identity coset, then F satisfies the four

coset conditions if and only if the following conditions hold .

(i) C−1
pqr = Cprq, and C−1

qrp = Cqpr , and C−1
rpq = Crqp .

(ii) ϕpq [Cpqr] = Cqrp .
(iii) ϕpr [Cpqr ] = Crpq .
(iv) Cpqr ⊆

⋂

{Hpq
◦Hpr

◦Hps : (p, s) ∈ E and s 6= p, q, r}.

Proof. Assume the conditions of the corollary, with the goal of verifying the con-
ditions of Theorem 4.6. The assumption that F is a semi-frame implies that con-
ditions (i)—(iv) of Theorem 4.6 are satisfied. Also, condition (v) of the theorem
holds. To see this, consider an arbitrary pair (x, y) in E . The cosets

Cxxy, Cxyy, Cxyx,

are identity cosets, by assumption, so

Cxxy = Hxx
◦Hxy = {ex} ◦Hxy = Hxy = Hxy

◦{ex} = Hxy
◦Hxx = Cxyx

and

Cxyy = Hxy
◦Hxy = Hxy .

The second and fifth equalities use semi-frame condition (i).
To verify that condition (vi) of the theorem is equivalent to condition (i) of the

corollary (under the basic assumption of the corollary), let (x, y, z) be a triple in
E3 of pairwise distinct elements. If (x, y, z) is not associated with (p, q, r), then

C−1

xyz = (Hxy
◦Hxz)

−1 = H−1

xz
◦H−1

xy = Hxz
◦Hxy = Cxzy .

The first and last equality use the basic assumption of the corollary, the second uses
the second involution law for group complexes, and the third uses the fact that Hxy
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and Hxz are subgroups, and hence closed under the operation of forming inverses.
If (x, y, z) is an associate of (p, q, r), then condition (vi) of the theorem holds by
condition (i) of the corollary, and vice versa.

The next step is to check that conditions (vii) and (viii) of the theorem are
respectively equivalent to conditions (ii) and (iii) of the corollary. Let (x, y, z) be
a triple in E3 with x < y < z. If this triple is not (p, q, r), then it cannot be an
associate of (p, q, r), because of the ordering, and therefore

ϕxy[Cxyz] = ϕxy[Hxy
◦Hxz] = K/H = Hyx

◦Hyz = Hyz
◦Hyx = Cyzx .

The first and fifth equalities hold by the basic assumption of the corollary, the
second by semi-frame condition (iii), the third by semi-frame condition (ii) (and
semi-frame condition (i) in the case when x = y), and the fourth by the fact that
the subgroups are normal and hence commute with one another. A completely
analogous argument shows that

ϕxz[Cxyz] = Czxy .

Thus, in this case, conditions (vii) and (viii) of the theorem hold. If the triple
(x, y, z) is (p, q, r), then conditions (vii) and (viii) of the theorem are exactly con-
ditions (ii) and (iii) of the corollary.

The associative law coset conditions will hold for all permutations of a quadruple
(x, y, z, w) just in case

(1) Cxyz
◦Cxzw = ϕyx[Cyzw

◦Hyx] ◦Cxyw,

by Associative Law Theorem 3.8. By assumption,

Cxyw = Hxy
◦Hxw, Cxzw = Hxz

◦Hxw, Cyzw = Hyz
◦Hyw

(under the hypothesis that w is different from p, q, and r), so equation (1) can
equivalently be rewritten as

(2) Cxyz
◦Hxz

◦Hxw = ϕyx[Hyz
◦Hyw

◦Hyx] ◦Hxy
◦Hxw .

It is a consequence of semi-frame condition (iii) that

ϕyx[Hyz
◦Hyw

◦Hyx] = Hxy
◦Hxz

◦Hxw,

so the right-hand side of (2) reduces to Hxy
◦Hxz

◦Hxw . On the other hand,

Cxyz
◦Hxz = Cxyz,

since Cxyz is a coset of Hxy
◦Hxz, so the left-hand side of (2) reduces to Cxyz

◦Hxw .
Thus, (2) is equivalent to

(3) Cxyz
◦Hxw = Hxy

◦Hxz
◦Hxw .

Finally, since Cxyz is a coset of Hxy
◦Hxz, equation (3) will hold just in case Cxyz

is a subset of Hxy
◦Hxz

◦Hxw .
If (x, y, z) is not an associate of (p, q, r), then Cxyz is the identity cosetHxy

◦Hxz,
and so the desired inclusion is trivial. If (x, y, z) is an associate of (p, q, r), then
of course (p, q, r) is an associate of (x, y, z), and for (p, q, r), the desired inclusion
holds by condition (iv) of the corollary. This means that condition (1) holds for
(p, q, r), and hence also for the original triple (x, y, z), since the validity of (1) for
one triple implies its validity for all associates of the triple.

The remaining parts of the proof are trivial and are left to the reader. �
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The final observation we wish to make is that in a coset relation algebra C[F ],
the operation ⊗ reduces to relational composition in all those cases in which the
indices x, y, and z of the coset Cxyz used to define the relative product Rxy,α⊗Ryz,β

are not mutually distinct.

Corollary 4.9. If F is a group triple satisfying conditions (i)–(viii) of Theorem

4.6, then

Rxy,α ⊗Ryz,β = Rxy,α |Ryz,β

for every triple (x, y, z) in E3 in which at least two of the indices x, y, z are equal .

Proof. According to Lemma 3.10,

Rxy,α ⊗Ryz,β = Rxy,α |Ryz,β

if and only if

(1) Cxyz = Hxy
◦Hxz .

The verification that (1) follows from conditions (i)–(viii) of Theorem 4.6 is nearly
identical to the argument establishing (12) in the proof of Theorem 4.6. The details
are left to the reader. �

5. Example

In this section, and example of a coset relation algebra that is not representable
is constructed. Start with a group pair

F = (G,ϕ) = (〈Gx : x ∈ I 〉, 〈ϕxy : (x, y) ∈ I × I 〉)

in which the index set I has five elements, say

I = {p, q, r, s, t}.

Each of the groupsGx is assumed to be a copy of the Cartesian product Z2×Z2×Z2,
where Z2 = {0, 1} denotes the cyclic group of order two, and these copies are
assumed to be mutually disjoint. To describe the subgroups Hxy and Kxy for

p r

s

q

t

0

2

3

1

0

0 0

0

3 3

3

3

2

2

2

2

1

11

1

Figure 1. Normal subgroup diagram.
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distinct indices x and y in I, consider the following four subgroups of Z2×Z2×Z2 :

L0 = Z2 × {0} × {0}, L1 = {0} × Z2 × {0},

L2 = {0} × {0} × Z2, L3 = {(0, 0, 0), (1, 1, 1)}.

Take Hxy, respectively Kxy, to be the copy of one of these four subgroups in Gx,
respectively Gy, according to the prescriptions given in Figure 1. For example, the
subgroup Hpt is the copy of L3 in Gp and the subgroup Kpt is the copy of L0 in
Gt, because the edge between the vertices p and t in the diagram is labeled with 3
and 0. Similarly, the subgroup Hqs is the copy of L2 in Gq and the subgroup Kqs

is the copy of L1 in Gs, because the edge from q to s is labeled with 2 and 1.
The quotient isomorphisms ϕxy when x and y are equal are of course taken to be

the appropriate identity automorphisms of Gx/{ex} for every x in I. For distinct
x and y, they are completely determined by the requirement that ϕ̂xy | ϕ̂yz = ϕ̂xz .
For instance, according to the diagram in Figure 1, we must have

ϕpq[L0
◦L3] = L0

◦L1, ϕpq[L0
◦L1] = L0

◦L3, ϕpq[L0
◦L2] = L0

◦L2

(see (a), (b), and (c) respectively in Figure 2). (The composite subgroups on the

p

q

t

0

3

1

0

p

s

q

0

20

2

p r

q

0

0 3

1

(a) (c)(b)

Figure 2. The triangles from the pentagon that determine ϕpq .

left, inside the brackets, should actually be interpreted as denoting their copies in
Gp, and the composite subgroups on the right should be interpreted as denoting
their copies in Gq.) These three requirements determine ϕpq in the following way.
According to the pentagon, the copy of the subgroup L0 in Gp is mapped by ϕpq to
the copy of the subgroup L0 in Gq. The subgroup L0 has four cosets in Z0×Z0×Z0,
namely

C0 = (0, 0, 0) ◦L0 = {(0, 0, 0), (1, 0, 0)}, C1 = (0, 1, 0) ◦L0 = {(0, 1, 0), (1, 1, 0)},

C2 = (0, 0, 1) ◦L0 = {(0, 0, 1), (1, 0, 1)}, C3 = (0, 1, 1) ◦L0 = {(0, 1, 1), (1, 1, 1)}.
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Observe that

L0
◦L3 = {(0, 0, 0), (1, 0, 0)} ◦{(0, 0, 0), (1, 1, 1)}

= {(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1)}= C0 ∪ C3,

L0
◦L1 = {(0, 0, 0), (1, 0, 0)} ◦{(0, 0, 0), (0, 1, 0)}

= {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}= C0 ∪ C1,

L0
◦L2 = {(0, 0, 0), (1, 0, 0)} ◦{(0, 0, 0), (0, 0, 1)}

= {(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1)}= C0 ∪ C2 .

Because ϕpq maps the copies of L0
◦L3 and C0 in Gp respectively to the copies of

L0
◦L1 and C0 in Gq, it must map the copy of C3 in Gp to the copy of C1 in Gq,

by the preceding observations. Similarly, it must map the copies of C1 and C2 in
Gp respectively to the copies of C3 and C2 in Gq.

The resulting group pair F is easily seen to be a frame, so the group relation alge-
bra G[F ] exists. The next step is to modify the operation of relative multiplication
in G[F ] by introducing a coset system

C = 〈Cxyz : (x, y, z) ∈ I × I × I〉.

If a triple of indices (x, y, z) is not a permutation of the triple (p, q, r), take Cxyz

to be the identity coset,

Cxyz = Hxy
◦Hxz .

Suppose now that (x, y, z) is a permutation of (p, q, r). As is clear from Figure 1, two
different edges emanating from a given vertex x are labeled with distinct numbers,
so the subgroup Hxy

◦Hxz is a composition of two distinct subgroups of Gx of order
2, and therefore has order 4. It follows that the quotient group

(1) Gx/(Hxy
◦Hxz)

has order 2, so it has exactly two cosets, the identity coset and the non-identity
coset. Take Cxyz to be the non-identity coset,

Cxyz = Gx ∼ (Hxy
◦Hxz).

It is not difficult to check that the resulting group triple

F̄ = (G,ϕ,C)

is a coset semi-frame that satisfies the coset conditions. For example, the quotient
group in (1) is abelian, so the inner automorphism of (1) determined by the coset
Cxyz must be the identity automorphism. Use, in addition, the fact that F is a
group frame to verify semi-frame condition (iv) for F̄ ,

ϕ̂xy | ϕ̂yz = ϕ̂xz = τ | ϕ̂xz .

The proof that F̄ satisfies the coset conditions is based on Corollary 4.8. It
suffices to check that conditions (i)–(iv) of that corollary are satisfied. As regards
condition (i), the quotient group in (1) has order 2, so every coset is its own inverse.
Consequently,

C−1

pqr = Cpqr = Cprq = Gp ∼ (Hpq
◦Hpr),

and similarly

C−1

qrp = Cqpr and C−1

rpq = Crqp .
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As regards conditions (ii) and (iii), the quotient isomorphisms ϕ̂pq and ϕ̂pr induced
by ϕpq and ϕpr respectively map the identity coset to the identity coset, and con-
sequently they map the non-identity coset to the non-identity coset. It follows
that

ϕpq[Cpqr ] = ϕpq [Gp ∼ (Hpq
◦Hpr)] = Gq ∼ (Kpq

◦Hqr)

= Gq ∼ (Hqp
◦Hqr) = Cqrp,

and similarly, ϕpr[Cpqr ] = Crpq. Finally, to verify condition (iv) of the corollary,
observe that each of the four edges emanating from vertex p in Figure 1 is labeled
with a different number. Consequently, the composite subgroups

Hpq
◦Hpr

◦Hpw

for w = s, t have order 8, that is to say, they coincide with Gp. The coset Cpqr is
trivially included in their intersection, since

(Hpq
◦Hpr

◦Hps) ∩ (Hpq
◦Hpr

◦Hpt) = Gp .

Apply Corollary 4.8 to arrive at the following conclusion.

Theorem 5.1. The group triple F̄ is a coset semi-frame that satisfies the coset

conditions . Consequently, the corresponding algebra C[F̄ ] is a full coset relation

algebra and hence an example of a finite, measurable relation algebra .

It is instructive to look somewhat closer at the operation ⊗ of relative multiplica-
tion in the algebra C[F̄ ] just constructed, and to compare it with the corresponding
operation in G[F ]. On atoms, ⊗ is determined by

Rxy,a ⊗Rwz,β = Rxy,a |Rwz,β

whenever y 6= w, or y = w and {x, y, z} 6= {p, q, r}, and

Rxy,a ⊗Ryz,β = Gx ×Gy ∼ (Rxy,a |Ryz,β)

whenever {x, y, z} = {p, q, r}. Thus, the operation of relative multiplication in
C[F̄ ] is obtained by changing only slightly the operation of relational composition
in G[F ] as it affects atomic relations, namely, for those pairs of atomic relations
Rxy,a and Ryz,β that are indexed, in some order, by a permutation (x, y, z) of the
triple (p, q, r), the relative product has been shifted to the complement of what it
is in G[F ] .

It turns out that the full coset relation algebra of the theorem is not representable
as a set relation algebra, and in particular, it is not isomorphic to a full group
relation algebra.

Theorem 5.2. The finite measurable relation algebra C[F̄ ] is not representable .

Proof. Write A = C[F̄ ]. The argument that A is not representable proceeds by
contradiction. Assume that it is representable, say ϑ is a representation of A over
a base set V . Because A is simple in the algebraic sense of the word (see the
remarks preceding Theorem 6.1 below), it may be assumed that the unit of the
representation is the Cartesian square V × V (see, for example, Theorem 16.18 in
[3]). We identify Rxx,0 with x in the proof, so that the set I becomes the set of
measurable atoms of A. This permits some simplification in the notation.
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The first step is to use the representation ϑ for constructing a scaffold in A, that
is to say, a system of atoms 〈axy : x, y ∈ I〉 satisfying the following three conditions
for all measurable atoms x, y, and z in I.

axx = x.(1)

ayx = a⌣

xy .(2)

axz ≤ axy ⊗ ayz .(3)

Each element x in I is a subidentity atom, so its image ϑ(x) must be idVx
for

some non-empty subset Vx of V , these sets are mutually disjoint for distinct x, and
because A is finite,

⋃

{idVx
: x ∈ I} =

⋃

{ϑ(x) : x ∈ I} = ϑ(
∑

I) = ϑ(1’) = idV .

For each x in I, choose an element vx in Vx, and for each pair of elements x, y, let
axy be the unique atom in A such that

(vx, vy) ∈ ϑ(axy).

Since ϑ(x) is the unique atom containing (vx, vx), property (1) follows. Since ϑ(a⌣

xy)
is an atom (the converse of an atom is an atom) that contains (vy , vx), by the
representation properties of ϑ, property (2) follows. Since (vx, vy) is in ϑ(axy) and
(vy, vz) is in ϑ(ayz), it follows from the definition of relational composition that
(vx, vz) is in ϑ(axy) |ϑ(ayz). The representation properties of ϑ imply that

ϑ(axy) |ϑ(ayz) = ϑ(axy ⊗ ayz).

Thus, ϑ(axz) and ϑ(axy ⊗ ayz) have a non-empty intersection—they both contain
the pair (vx, vz)—so the former, which is an atom, must be below the latter. Use
the representation properties of ϑ one more time to conclude that (3) holds. This
completes the proof of the three scaffold conditions.

Here are some further properties of the elements axy that we shall need. Notice
that each such atom is actually one of the atomic binary relations of A on the base
set U =

⋃

{Gx : x ∈ I}, so it makes sense to speak of the pairs in axy. The converse
of each atom is the set-theoretic relational inverse, in symbols,

ayx = a−1

xy .(4)

Second, the relative product of two elements is the set-theoretic relation composi-
tion of the elements as long as the set of indices {x, y, z} does not coincide with the
set {p, q, r},

axy ⊗ ayz = axy |ayz .(5)

Third, the relative product is disjoint from the relational composition when the two
sets of indices {x, y, z} and {p, q, r} are equal,

(6) axy ⊗ ayz = Gx ×Gy ∼ axy |ayz .

Fourth, the intersection of certain relative products that share a common “edge” is
an atom when that common edge is pq or qr or pr. Specifically,

(7) (aps ⊗ asq) ∩ (apt ⊗ atq) = apq,

and similarly if pq is replaced by either qr or pr.
Choose elements us and ut in U so that

(8) (us, ut) ∈ ast .
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Such a choice is possible because ast is a non-empty binary relation. Since for each
x = p, q, r

(9) ast ≤ asx |axt,

by (3) and (5), the pair in (8) must also belong to the the right side of (9), so that
there must be an element ux in U for which

(us, ux) ∈ asx and (ux, ut) ∈ axt,

by (8). In particular, take x = p, q, and use (4), to obtain

(up, us) ∈ aps and (us, uq) ∈ asq,

so that

(up, uq) ∈ aps |asq = aps ⊗ asq,

and also to obtain

(up, ut) ∈ apt and (ut, uq) ∈ atq,

so that

(up, uq) ∈ apt |atq = apt ⊗ atq .

Apply (7) to arrive at

(10) (up, uq) ∈ apq .

Similar arguments applied to p and r and to r and q lead to

(11) (up, ur) ∈ apr and (ur, uq) ∈ arq .

In view of the definition of relational composition, (11) implies that

(12) (up, uq) ∈ apr |arq .

Together, (10) and (12) show that the intersection

apq ∩ (apr |arq)

is not empty, since both factors contain the pair (up, uq). The left-hand factor is an
atom, so

(13) apq ⊆ apr |arq .

On the other hand,

apq ⊆ apr ⊗ arq = Gp ×Gq ∼ apr |arq,

by (3) and (6). This is a direct contradiction to (13), so the assumption that A is
representable cannot be tenable. �

The group Z2 can be replaced everywhere in the preceding construction by an
arbitrary non-trivial abelian group. The mappings ϕxy are no longer uniquely
determined, and the definition of relative multiplication is slightly more involved.
In each case we get an atomic, measurable relation algebra that is not representable.
These are new examples of non-representable relation algebras, with a completely
different underlying motivation than the examples that have appeared so far in the
literature.
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6. A Decomposition Theorem

The isomorphism index set E of a coset semi-frame F = (G,ϕ,C) satisfying the
coset conditions is an equivalence relation on the group index set I, and the unit

E =
⋃

{Gx ×Gy : (x, y) ∈ E}

of the corresponding full coset relation algebra C[F ] is an equivalence relation on
the base set U =

⋃

x∈I Gx. Call the semi-frame F simple if the group index set I
is not empty, and if E is the universal relation on the index set I. It turns out that
F is simple in this sense of the word if and only if the algebra C[F ] is simple in the
algebraic sense of the word, namely, it has more than one element and every non-
constant homomorphism on the algebra is injective; or, equivalently, the algebra
has exactly two ideals, the trivial ideal and the improper ideal.

Theorem 6.1. Let F be a semi-frame satisfying the coset conditions. The coset

relation algebra C[F ] is simple if and only if the semi-frame F is simple.

Proof. We begin with a preliminary observation: for all triples (x, y, z) in E3,

(1)
⋃

{Rxy,α ⊗Ryz,β : α < κxy and β < κyz} = Gx ×Gz .

For the proof, suppose that (x, y, z) is in E3. The definition of ⊗ implies that

(2) Rxy,α ⊗Ryz,β =
⋃

{Rxz,γ : Hxz,γ ⊆ ϕ−1
xy [Kxy,α

◦Hyz,β] ◦Cxyz}.

Each relation Rxz,γ is included in

(3) Gx ×Gz ,

by Partition Lemma 2.2, so each product of the form (2) is included in (3), and
therefore the left side of (1) is included in the right side.

To establish the reverse inclusion, notice that as the indices α and β vary, the
complex products Kxy,α

◦Hyz,β run through all cosets of the subgroup K/H . The
function ϕxy induces an isomorphism from the quotient group Gx/(Hxy

◦Hxz) to
the quotient group Gy/(K/H), so the inverse images ϕ−1

xy [Kxy,α
◦Hyz,β ] must run

through all of the cosets of Hxy
◦Hxz . It follows that, as α and β vary, the complex

products

(4) ϕ−1

xy [Kxy,α
◦Hyz,β] ◦Cxyz

must also run through all cosets of Hxy
◦Hxz, because Cxyz is a fixed element of

the quotient group Gx/(Hxy
◦Hxz). Thus, for each index γ < κxz, there are indices

α < κxy and β < κyz such that the coset Hxz,γ of Hxz is included in (4). The
relation Rxz,γ is therefore included in Rxy,α ⊗ Ryz,β, by (2). The union of all of
the relations Rxz,γ is (3), by Partition Lemma 2.2, so the right side of (1) must be
included in the left side.

Turn now to the proof of the theorem, and assume first that the semi-frame F
is simple. The isomorphism index set E is the universal relation on the group index
set I, by assumption, so

(5) U × U = (
⋃

x∈I Gx)× (
⋃

y∈I Gy) =
⋃

{Gx ×Gy : x, y ∈ U}

=
⋃

{Rxy,α : x, y ∈ U and α < κxy} =
⋃

{Gx ×Gy : (x, y) ∈ E} = E,

by the definition of U , the distributivity of Cartesian products over arbitrary unions,
Partition Lemma 2.2, the assumption on E , and the definition of E. The index set
I is assumed to be non-empty, and the groups are non-empty, so the unit U ×U of
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C[F ] is non-empty and therefore different from the zero element ∅. In particular,
the relation algebra C[F ] has more than one element.

In order to show that a non-degenerated, atomic relation algebra is simple, it
suffices to show that the equation 1; r; 1 = 1 holds for every subidentity atom r
(see, for example, Givant [2], Theorem 9.2). A subidentity atom of C[F ] has the
form Ryy,0 for some y in I, so it must be shown that

(6) (U × U)⊗Ryy,0 ⊗ (U × U) = U × U

for every y in I. Use (5) and the distributivity of ⊗ over arbitrary unions to rewrite
the left side of (6) as the union of the relations

(7) Rxu,α ⊗Ryy,0 ⊗Rvz,β

over all x, u, v, z in I, with α < κxu and β < κvz. If u 6= y or v 6= y, then the
relation in (7) reduces to the empty relation, by the definition of ⊗ . The left side
of (6) is therefore equal to the union of the relations

(8) Rxy,α ⊗Ryy,0 ⊗Ryz,β

over all x and z in I, with α < κxy and β < κyz. The coset condition for the
identity law, which F is assumed to satisfy, and Identity Law Theorem 3.4, imply
that

Rxy,α ⊗Ryy,0 = Rxy,α .

Consequently, (8) reduces to

(9) Rxy,α ⊗Ryz,β .

For fixed x and z, the union, over all α and β, of the relations in (9) is (3), by the
preliminary observation in (1). The union of all relations of the form (7) therefore
coincides with the union of all relations of the form (3), and this latter union is just
U × U , by (5). Conclusion: the equation in (6) holds in C[F ] for all y in I, as was
to be shown.

We postpone the proof of the reverse implication of the theorem until after the
next theorem. �

It turns out that every full coset relation algebra can be decomposed into the
direct product of simple, full coset relation algebras, or equivalently, full coset
relation algebras on simple frames. We sketch briefly how this decomposition may
be accomplished. Given an arbitrary coset semi-frame

F = (〈Gx : x ∈ I 〉 , 〈ϕxy : (x, y) ∈ E〉 , 〉 , 〈Cxyz : (x, y, z) ∈ E3〉),

consider an equivalence class J of the isomorphism index set E . The universal
relation J × J on J is a subrelation of E , and in fact it is a maximal connected
component of E in the graph-theoretic sense of the word. The restriction of F to
J is defined to be the group triple

FJ = (〈Gx : x ∈ J 〉 , 〈ϕxy : (x, y) ∈ J × J〉 , 〉 , 〈Cxyz : (x, y, z) ∈ J × J × J〉)

Each such restriction of F to an equivalence class of the index set E inherits the
coset semi-frame properties of F , and is therefore a simple semi-frame. Call these
restrictions the components of F . Clearly, F is the disjoint union of its components
in the sense that the group system, the isomorphism system, and the coset system
of F are obtained by respectively forming the unions of the group systems, the
isomorphism systems, and the coset systems of the components of F . It is also easy
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to see that F satisfies the coset conditions if and only if each component satisfies
the coset conditions, because these conditions are formulated only for cosets Cxyz

such that the elements x, y, and z all belong to the same equivalence class of E .
If F is a semi-frame satisfying the coset conditions, then so is each component

FJ , and consequently C[FJ ] is a full coset relation algebra that is simple, with base
set and unit

UJ =
⋃

x∈J Gx and Ej = UJ × UJ

respectively. The coset relation algebra C[F ] is isomorphic to the direct product of
the simple coset relation algebras C[FJ ] constructed from the components of F (so
J varies over the equivalence classes of E). In fact, if internal direct products are
used instead of Cartesian direct products, then C[F ] is actually equal to the internal
direct product of the full coset relation algebras constructed from its component
semi-frames.

Theorem 6.2 (Decomposition Theorem). Every full coset relation algebra is iso-

morphic to a direct product of full coset relation algebras on simple frames .

The details of the proof of this theorem are left to the reader.
Return now to the proof of the reverse implication in Theorem 6.1. Assume that

the given semi-frame F is not simple. If the group index set I is empty, then the
base set U is also empty, and in this case C[F ] is a one-element relation algebra with
the empty relation as its only element. In particular, C[F ] is not simple. On the
other hand, if the group index set I is non-empty, then the isomorphism index set
E has at least two equivalence classes, by the definition of a simple semi-frame. The
coset relation algebra C[F ] is isomorphic to the direct product of the coset relation
algebras on the component semi-frames of F , by Decomposition Theorem 6.2, and
there are at least two such components. Each of these components is a simple
semi-frame that satisfies the coset conditions, so the corresponding coset relation
algebra must be simple, by the first part of the proof of Theorem 6.1. It follows
that C[F ] is isomorphic to a direct product of at least two simple relation algebras,
so C[F ] cannot be simple. For example, the projection of C[F ] onto one of the
factor algebras is a non-constant homomorphism that is not injective.
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