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8 Term algebras of elementarily equivalent atom

structures

Andréka, H. and Németi, I.

We dedicate this paper to Bjarni Jónsson.

Abstract

We exhibit two relation algebra atom structures such that they are

elementarily equivalent but their term algebras are not. This answers

Problem 14.19 in the book Hirsch, R. and Hodkinson, I., “Relation

Algebras by Games”, North–Holland, 2002.

1 Introduction

Atom structures for Boolean algebras with operators, and in particular for
relation algebras, were introduced in Jónsson-Tarski [7]. These structures
proved to be a central tool in algebraic logic, see, e.g., [2], [3, section 19], [4,
section 2.7], [5, section 2.7], [8, 9, 10]. There is a kind of duality between
atom structures of algebras and complex algebras of relational structures, a
large part of this duality is elaborated in [7]. Atom structures are useful in
constructing relation algebras, because atom structures are simpler and hence
easier to work with. Therefore, it is useful to see what properties of com-
plex algebras can be ensured by constructing appropriate atom structures.
Representability of the complex algebra is not such a property, because there
are two elementarily equivalent relation algebra atom structures such that
the complex algebra of one is representable while that of the other is not, a
result of Hirsch and Hodkinson [5, Corollary 14.14].

The term algebra of an atom structure is the smallest subalgebra of its
complex algebra that has the same atom structure: it is the subalgebra of
the complex algebra generated by the singletons of the atoms. They are
more tightly connected to their atom structures, e.g., representability of the
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term algebra of a relation algebra atom structure can be ensured by its first-
order logic theory. So, if two atom structures are elementarily equivalent,
then their term algebras are either both representable, or neither of them is
representable (a result of Venema [11], see [5, Theorem 2.84]). If two atom
structures are “very close”, i.e., if they are L∞,ω-indistinguishable, then their
term algebras are also this very close, i.e., they are L∞,ω-indistinguishable
([5, Exercise 14.6]). Problem 14.19 in [5] asks if this last result holds with
Lωω in place of L∞,ω: If S, S ′ are elementarily equivalent relation algebra
atom structures, must the term algebras of S and S ′ also be elementarily
equivalent?

In this paper we give a negative answer to this question. We construct a
relation algebra atom structure S, such that the term algebra of S and that
of an ultraproduct of S are not elementarily equivalent. Moreover, S is an
atom structure of a completely representable simple relation set algebra.

2 The construction

We begin by recalling terminology from [5]. A (relational algebra type) atom
structure is a structure 〈S, P, C, I〉, where P,C and I are ternary, binary, and
unary relations on S, respectively. The complex algebra of an atom structure
〈S, P, C, I〉 is the algebra 〈A,+,−, ; , `, 1′〉 where A is the collection of all
subsets of S, + and − are the operations of forming union and complement
(with respect to S) respectively, and the operations ; , `, 1′ are determined by
P,C, I as follows. Let X, Y ⊆ S. Then X ; Y = {u : P (x, y, u) for some x ∈
X, y ∈ Y }, X` = {u : C(x, u) for some x ∈ X}, and 1′ = I. The atom
structure is called completely representable if its complex algebra is com-
pletely representable, that is to say if, up to an isomorphism, A is a set of
binary relations such that the biggest element is the union (as opposed to the
supremum only) of the atomic relations, and the operations +,−, ; , `, 1′ are
the following standard operations on binary relations: union, complement
(with respect to a largest element of A), relation composition, converse, and
the identity relation. Finally, the term algebra of an atom structure is the
subalgebra of its complex algebra generated by the singletons. In the paper,
ω denotes the set of non-negative integers.

Theorem 1 There are completely representable relational algebra atom struc-

tures which are elementarily equivalent but their term algebras are not ele-

mentarily equivalent.
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Proof. First we define a relation algebra type atom structure S = 〈S, P, C, I〉.
The universe S of the atom structure is

{Idn,i : n ∈ ω, i ≤ n}∪

{rn,k : n ∈ ω, 1 ≤ k ≤ n} ∪ {r−n,k : n ∈ ω, 1 ≤ k ≤ n}∪

{wn,i,m,j : n,m ∈ ω, i ≤ n, j ≤ m},

and I = {Idn,i : n ∈ ω, i ≤ n}. The binary relation C is

{(x, x) : x ∈ I}∪

{(rn,k, r
−

n,k) : n ∈ ω, 1 ≤ k ≤ n} ∪ {(r−n,k, rn,k) : n ∈ ω, 1 ≤ k ≤ n}∪

{(wn,i,m,j, wm,j,n,i) : n,m ∈ ω, i ≤ n, j ≤ m}.

To define P , we first define two unary operations on S, the domain dm(a)
and the range rg(a) of a:

dm(x) = rg(x) = x for each x ∈ I,

dm(rn,k) = rg(r−n,k) = Idn,0, rg(rn,k) = dm(r−n,k) = Idn,k, and

dm(wn,i,m,j) = rg(wm,j,n,i) = Idn,i.

Now, the ternary relation P on S is:

{(dm(a), a, a) : a ∈ S}∪{(a, rg(a), a) : a ∈ S}∪{(a, b, dm(a)) : (a, b) ∈ C}∪

{(a, b, c) : a, b, c ∈ S \ I, dm(a) = dm(c), rg(a) = dm(b), rg(b) = rg(c)}.

With this, the atom structure S has been defined.
Here is a short intuitive description of S, see Figure 1. Keeping the

complex algebra in mind, we call the elements of S atoms, the elements of
I identity atoms, and the rest diversity atoms, and we say that a goes from
dm(a) to rg(a). Now, between any two identity atoms in S only one or
two diversity atoms go. The pairs of identity atoms that have two diversity
atoms between them (in both directions) are the pairs Idn,0 and Idn,k with
1 ≤ k ≤ n, we call these splitable pairs and the atoms going between them
are called split atoms: from Idn,0 to Idn,k the two diversity atoms rn,k and
wn,0,n,k go, and from Idn,k to Idn,0 their converses, r−n,k and wn,k,n,0. Between
Idn,i and Idn,i two atoms go, the identity atom Idn,i and the diversity atom
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wn,i,n,i. Between Idn,i and Idm,j when n 6= m or 0 /∈ {i, j} only one atom goes,
namely wn,i,m,j.

The pair of the two diversity atoms rn,k and wn,0,n,k going from Idn,0 to
Idn,k is called a leaf. These leaves are connected at Idn,0, and we call them
a plant emanating from Idn,0. So, intuitively, S consists of infinitely many
plants, one plant with n leaves for all natural number n, see Figure 1.

           

PSfrag replacements

Id11

Id10

w1011 r11

Id21 Id22 Id31 Id32 Id33

r21 r22 r31 r32 r33

Id20 Id30

Figure 1: The split atoms in the atom structure S.

All the atoms of S are “big” in the sense that their products in the
complex algebra are as big as possible allowing representability. At the end
of this proof we show that the complex algebra of S is indeed completely
representable, so it is a relation algebra atom structure.

Let S ′ be a nontrivial ultrapower of S. Then S,S ′ are elementarily equiv-
alent by the fundamental theorem of ultraproducts. We will show that their
term algebras are not elementarily equivalent, by exhibiting a formula that
distinguishes them, as follows. The ultrapower S ′ looks exactly like S, there
are leaves grouped into plants, except that in S ′ there are plants with in-
finitely many leaves, too. The key idea is that in the term algebras, the
finite and infinite plants can be distinguished by a first-order logic formula.
Namely, only finitely many leaves can be “split” by any element of the term
algebra. Thus, for an infinite plant there is no element that splits all its
leaves, while for a finite plant clearly there is such an element. Using this,
we can express that in S all the plants are finite while in S ′ there are infinite
plants, too. This will be a first-order logic formula distinguishing S and S ′.
We note that in the complex algebra of S ′ there are elements splitting all
the leaves of the infinite plants, too, but these elements cannot be generated
from singletons, so they are not in the term algebra.
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We now turn to elaborating the details of the above plan. Let A,A′

denote the term algebras of S,S ′, respectively. Let the operations of the
term algebras be denoted as follows: ·,+,−, 0, 1 denote Boolean intersection,
addition, complementation, zero and unit, and let ; , `, 1′ denote relation
algebraic composition, conversion and identity element, respectively. For
a, x, y ∈ A we say that a splits x, y if x, y are distinct identity atoms and
there are atoms going from x to y both in a and in its complement. Formally,
let

x× y := x; 1 · 1; y,

σ(a, x, y) :⇔
x, y are distinct identity atoms and a · (x× y) 6= 0, −a · (x× y) 6= 0.

Thus, if a splits x, y, then x, y is a splitable pair of identity atoms. Next we
prove by an easy induction that each element in A′ splits only finitely many
pairs of atoms. Let the induction statement be denoted by F (a),

F (a) :⇔ a splits only finitely many pairs of identity atoms.

Since A
′ is a term algebra, it is generated by its atoms. When a is an

atom, it can split only one pair of atoms, namely it can split only the pair
dm(a), rg(a) of its domain and range. Thus, F (a) holds for all atoms a.

Assume that F (a), F (b) hold. By definition, a splits x, y iff −a splits x, y,
so F (−a) holds, too. It is easy to see that if a + b splits x, y then at least
one of a and b splits x, y. So a + b can split only those pairs of atoms that
are split either by a or by b, hence F (a) and F (b) imply F (a+ b).

F (1′) holds, because 1′ cannot split any pair of distinct atoms (since
dm(a) = rg(a) for identity atoms).

If a splits x, y, then a` splits y, x, so if F (a) holds, then also F (a`) holds.
We set to show F (a; b). First notice that the product a; b of two diversity

atoms splits no pair of atoms in A, and this fact can be expressed by a
first-order logic formula about S:

[a, b /∈ I ∧ x, y ∈ I ∧ x 6= y ∧ P (a, b, c) ∧ P (x, c, c) ∧ P (x, d, d) ∧ P (c, y, c) ∧
P (d, y, d)] → P (a, b, d).

Therefore this same formula holds in S ′, too, since S ′ is an ultrapower of S,
and so the product a; b of two diversity atoms splits no pair of atoms in A

′,
either. This implies

5



(⋆) A′ |= ∀a, b(a + b ≤ −1′ → ∀x, y¬σ(a; b, x, y)),

as follows. Let x, y be a pair of distinct identity atoms, and let X, Y ⊆ S ′ be
subsets of diversity atoms. Then X ; Y =

⋃
{a; b : a ∈ X, b ∈ Y }, in A

′. Now,
assume that x× y ∩X ; Y 6= 0. Then x× y ∩ a; b 6= 0 for some a ∈ X, b ∈ Y .
Since a, b are diversity atoms, they do not split x, y, thus x×y ⊆ a; b ⊆ X ; Y ,
which means that X ; Y does not split x, y, either. This proves (⋆).

Let now a, b ∈ A′ be arbitrary. Let a′ := a ·1′, a′′ := a ·−1′, and the same
for b, i.e., b′ := b · 1′, b′′ := b · −1′. Then a; b = a′; b + a; b′ + a′′; b′′. Hence,
by the previously proven case for addition, a; b can split only those pairs of
atoms that are split by either one of a′; b, a; b′ or a′′; b′′. Assume that x, y
are distinct identity atoms. By the above statement (⋆), then a′′; b′′ does not
split x, y. We show that if a′; b splits x, y, then b also splits them. Indeed,
let r, s be atoms going from x to y such that r ≤ a′; b and s ≤ −(a′; b). Then
r ≤ b since a′; b ≤ b by a′ ≤ 1′. Also we must have x ≤ a′. Assume s ≤ b.
Then s ≤ x; b ≤ a′; b, contradicting our assumption s ≤ −(a′; b). Similarly, if
a; b′ splits x, y then a also splits them. Thus, a; b can only split those atoms
that are split by a or by b, hence F (a; b) holds by F (a), F (b). We have proved
that F (a) holds for all a ∈ A′.

We are ready to exhibit the sentence distinguishing A and A
′. This sen-

tence states that for all atoms x there is an element a that splits all pairs
x, y if they are splitable. Formally, let

ϕ :⇔ ∀x∃a∀y(∃aσ(a, x, y) → σ(a, x, y)).

Now, A |= ϕ because for all x there are only finitely many y such that x, y is
splitable. On the other hand, assume that S ′ is the ultrapower of S by the
ultrafilter D on J , and let

x := 〈Idn,0 : n ∈ J〉/D.

Then x is an identity atom in A
′ such that infinitely many “leaves” emanate

from x. Since all elements a of A′ can split only finitely many of these leaves,
there is no element in A

′ that can split all of the splitable atoms x, y, thus
A

′ 6|= ϕ. We have shown that A and A
′ are not elementarily equivalent.

Finally, we show that S and S ′ are completely representable. It is enough
to show that S is completely representable, since an ultraproduct of com-
pletely representable atom structures is again completely representable (see
[5, Exercise 14.1]).
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Let U be a set and R, T ⊆ U × U be binary relations on U . Relation
composition R | T of relations R and T , converse R−1 of relation R and the
identity relation IdU on U are defined as follows.

R | T = {(u, v) : ∃w[(u, w) ∈ R and (w, v) ∈ T ]},

R−1 = {(v, u) : (u, v) ∈ R},

IdU = {(u, u) : u ∈ U}.

The relation U × U \ IdU is called the diversity relation on U .
To show complete representability of S, we will construct a set U and a

function rep : S → U × U such that

(i) 〈rep(a) : a ∈ S〉 is a partition of U × U to nonempty parts,

(ii) a ∈ I iff rep(a) ⊆ IdU iff rep(a) ∩ IdU 6= ∅,

(iii) C(a, b) iff rep(b) = rep(a)−1 iff rep(b) ∩ rep(a)−1 6= ∅,

(iv) P (a, b, c) iff rep(c) ⊆ rep(a) | rep(b) iff rep(c) ∩ (rep(a) | rep(b)) 6= ∅.

U consists of countably many disjoint copies of ω: let Un,i = ω × {(n, i)},
and

U :=
⋃

{Un,i : n ∈ ω, i ≤ n}.

We define for n,m ∈ ω, i ≤ n, j ≤ m

rep(Idn,i) := {(u, u) : u ∈ Un,i}, rep(wn,i,n,i) := Un,i × Un,i \ Idn,i,

rep(wn,i,m,j) := Un,i × Um,j when n 6= m, or i 6= j and 0 /∈ {i, j}.

It remains to define rep(s) for the “split” atoms s (i.e., for the atoms that
form leaves). Assume n, k ∈ ω and 1 ≤ k ≤ n (and i, j ∈ ω are arbitrary).

rep(rn,k) :=
{〈(i, n, 0), (2i3j , n, k)〉 : i, j ∈ ω} ∪ {〈(i, n, 0), (2j3i, n, k)〉 : i, j ∈ ω}∪
{〈(2i3j, n, 0), (i, n, k)〉 : i, j ∈ ω} ∪ {〈(2j3i, n, 0), (i, n, k)〉 : i, j ∈ ω}∪
{〈(2i5k, n, 0), (i, n, k)〉 : i, j ∈ ω}.

rep(wn,0,n,k) := Un,0 × Un,k \ rep(rn,k),

rep(r−n,k) := rep(rn,k)
−1, rep(wn,k,n,0) := rep(wn,0,n,k)

−1.
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The properties of R := rep(rn,k) that we will use are the following. Let
T := Un,0 × Un,k \R. Assume X, Y ∈ {R, T} and 1 ≤ ℓ ≤ n, k 6= ℓ.

(r1) For each u ∈ Un,0 there are at least two v ∈ Un,k such that (u, v) ∈ X .

(r2) For each v ∈ Un,k there are at least two u ∈ Un,0 such that (u, v) ∈ X .

(r3) For all distinct u, v ∈ Un,0 there is w ∈ Un,k such that (u, w) ∈ X and
(v, w) ∈ Y .

(r4) For all distinct u, v ∈ Un,k there is w ∈ Un,0 such that (w, u) ∈ X and
(w, v) ∈ Y .

(r5) For all u ∈ Un,k and v ∈ Un,ℓ there is w ∈ Un,0 such that (w, u) ∈ X
and (w, v) ∈ Y .

Now, (r1) follows from (r3) and (r2) follows from (r4). To check (r3), let
u, v ∈ Un,0 be distinct. Assume u = (i, n, 0) and v = (j, n, 0). Then i 6= j and
(u, w) ∈ R, (v, w) ∈ R for w = (2i3j , n, k) by the first line in the definition
of R. Let w = (2i3q, n, k) where q = j + 1. Then (u, w) ∈ R by the first line
in the definition of R. To show (v, w) ∈ T we have to show (v, w) /∈ R. This
last statement is true because j /∈ {i, q}, so the pair (v, w) is not included in
R by the first line of its definition, and j < 2i3q by q = j + 1, so the pair
(v, w) is not included in R by the second and third lines of its definition.
Similarly, (u, w) ∈ T, (v, w) ∈ R for w = (2q3j, n, k) where q = i+1. Finally,
(u, w) ∈ T, (v, w) ∈ T for w = (2q3t, n, k) where q, t are both bigger than
i + j. The proof for (r4) is slightly more involved than the proof of (r3)
because of the last line in the definition of R. Let u, v ∈ Un,k be distinct, say
u = (i, n, k) and v = (j, n, k) with i 6= j. Then (w, u) ∈ R and (w, v) ∈ R for
w = (2i3j , n, 0) by the second line in the definition of R. Let w = (2i3q, n, k)
where q = j + 1. Then (w, u) ∈ R by the second line in the definition of
R. Also, the pair (w, v) is not included in R by the first line of its definition
since 2i3q > j, it is not included in R by the second line since j /∈ {i, q},
and it is not included by the third line since 5k is not a divisor of 2i3q. The
rest of (r4) and the case of (r5) when i 6= j are similar. The third line in the
definition of R is present for the case of (r5) when i = j: assume u = (i, n, k)
and v = (i, n, ℓ), and let w = (2i5k, n, 0). Then (w, u) ∈ R by the third line
in the definition of R and (w, v) /∈ R because i < 2i5k and 5k is a divisor of
2i5k but 5ℓ is not a divisor of 2i5k.
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We are ready to check (i)-(iv). To check (i)-(iii) is straightforward. It is
also straightforward to check (iv) when a, b, c are all diversity atoms that do
not form leaves. It remains to check the following when k, ℓ 6= 0, k 6= ℓ.

(iv.1) rep(wn,0,n,0) | rep(a) ⊇ rep(b) when a, b ∈ {rn,k, wn,0,n,k},

(iv.2) rep(wn,k,n,k) | rep(a) ⊇ rep(b) when a, b ∈ {r−n,k, wn,k,n,0},

(iv.3) rep(wn,k,n,ℓ) | rep(a) ⊇ rep(b) when a ∈ {r−n,ℓ, wn,ℓ,n,0} and b ∈

{r−n,k, wn,k,n,0},

(iv.4) rep(a) | rep(b) ⊇ {(u, v) ∈ Un,0×Un,0 : u 6= v} when a ∈ {rn,k, wn,0,n,k}
and b ∈ {r−n,k, wn,k,n,0},

(iv.5) rep(a) | rep(b) ⊇ {(u, v) ∈ Un,k×Un,k : u 6= v} when a ∈ {r−n,k, wn,k,n,0}
and b ∈ {rn,k, wn,0,n,k},

(iv.6) rep(a) | rep(b) ⊇ Un,k × Un,ℓ when a ∈ {r−n,k, wn,k,n,0} and b ∈
{rn,ℓ, wn,0,n,ℓ}.

Of the above, (iv.1) is true because of (r2) and because rep(wn,0,n,0) is the
diversity relation on Un,0: assume (u, v) ∈ rep(b) ⊆ Un,0 × Un,k. There is
(w, v) ∈ rep(a), w 6= u because (r2). Then w ∈ Un,0 because the domain of
rep(a) is Un,0 and (w, v) ∈ rep(wn,0,n,0) because w 6= u and rep(wn,0,n,0) is the
diversity relation on Un,0. Hence, (u, v) ∈ {(u, w)} | {(w, v)} ⊆ rep(wn,0,n,0) |
rep(a). The proofs of (iv.2) and (iv.3) are analogous. To show (iv.4), let
u, v ∈ Un,0 be distinct. By (r3), there is w ∈ Un,k such that (u, w) ∈ rep(a)
and (v, w) ∈ rep(b), thus (u, v) ∈ rep(a) | rep(b)−1 (we used the already
proven (iii)). The rest is completely analogous, except that to prove (iv.5)
we use (r4), and to prove (iv.6) we use (r5).

By this, we have proved Theorem 1. QED

Remark 1 We note that our atom structure is obtained from its restriction
to the atom structure where we omit the atoms rn,k and r−n,k for all n, k ∈
ω, 1 ≤ k ≤ n. We get our S by splitting Idn,0× Idn,k (and its converse) to get
the “leaves”. For the method of splitting in relation algebra see [1].
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Remark 2 We describe, briefly, another example of a pair of elementarily
equivalent relational algebra atom structures with non-elementarily equiv-
alent term algebras, due to Robin Hirsch and Ian Hodkinson. (They de-
vised this example after seeing ours [6] and we include the example with
their permission.) Let H = 〈H,P, C, I〉 be the atom structure where the
atoms are the elements of H := ω ∪ {1′, x, x−}, there is one identity atom,
namely I = {1′}, all atoms are self-converse except for x, x− which are
each other’s converses: C = {(a, a) : a ∈ H \ {x, x−}} ∪ {(x, x−), (x−, x)},
and there is one kind of forbidden diversity triple, namely (n, x, n + 1) for
n ∈ ω, i.e., P = {(1′, a, a) : a ∈ H} ∪ {(a, 1′, a) : a ∈ H} ∪ {(a, b, 1′) :
(a, b) ∈ C} ∪ {(a, b, c) : a, b, c ∈ H \ {1′}, (a, b, c) /∈ F}, where the set of
the Peircean transforms of the forbidden triples is F := {(n, x, n + 1) : n ∈
ω} ∪ {(n + 1, x−, n) : n ∈ ω} ∪ {(n + 1, n, x−) : n ∈ ω} ∪ {(x−, n, n + 1) :
n ∈ ω} ∪ {(n, n+ 1, x) : n ∈ ω} ∪ {(x, n + 1, n) : n ∈ ω}. Let H′ be another
atom structure which is elementarily equivalent to H but in which there is a
non-well-founded model ω+ instead of ω. In both term algebras the elements
are finite and cofinite sets of atoms. One can express that n and m are self-
converse diversity atoms and m = n + 1, by using the forbidden triangles.
Let ϕ be the formula that says that for all self-converse non-identity atoms n
there is an element closed under predecessors and containing n but not n+1.
This formula is true in the first term algebra (the element is {0, 1, 2, . . . , n})
but false in the second term algebra.
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