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Abstract
Let Uy,...,Ug:1 be n-element sets in R?. Pach’s selection theorem says that there
exist subsets Z; C Uy,..., Zgr1 C Ugy1 and a point u € R? such that each | Z;| > ¢;(d)n
and u € conv{zi,...,zq+1} for every choice of z1 € Z1,...,2441 € Zg+1. Here we

show that this theorem does not admit a topological extension with linear size sets Z;.
However, there is a topological extension where each |Z;| is of order (logn)'/?.

1 Introduction

Pach’s homogeneous selection theorem is the following key result in discrete geometry.
Theorem 1.1 (Pach [12]). Ford > 1 there exists a constant c1(d) > 0 such that the following

holds. For any n-element sets Uy, ..., Ugp1 in RY, there exist subsets Zy C Uy, ..., Z441 C
Ugs1 and a point u € R? such that each |Z;| > c1(d)n and u € conv{zi, ..., 2441} for every
choice of z1 € Z1,...,2411 € Zgi1-

This result was proved by Bardny, Fiiredi, and Lovéasz [3] for d = 2 and by Pach [12] for
general d. Here we show that this theorem does not admit a topological extension when the
size of the Z; is linear in n, but does admit one when the sizes are of order (logn)Y/?. Now
we reformulate Theorem [L.T] and then we state the topological extension.

Throughout the paper we will identify an abstract simplicial complex X with its geo-
metric realization. For k > 0, let X(*) denote the k-dimensional skeleton of X and let X (k)
be the family of k-dimensional faces of X. For an abstract simplex o = {vy,...,vx} € X(k),
we write (vg, ..., v) for its geometric realization.

Let A,_; denote the (n — 1)-simplex. Consider d + 1 sets Vi,..., Vg1, each of size n,
and their join

d+1
(A(Ozl)*(d+1) Vi k Vg i={0 C U VitlonVj| <1lforalll<i<d+1}.

n
i=1
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Trivially, there is an affine map f : (Agozl)*(d+1) — R? that is a bijection between V;
and U; for each ¢ (where U; are the sets from the statement of Pach’s theorem). In this

setting the homogeneous selection theorem says that there exist subsets Z; C V; such that
|Zi| > c1(d)n and

N F{z1, - za41)) £ 0.

21€21,5,2d+1€2d+1

Assume now that f is not affine but only continuous. For a mapping f : (A;O_)l)*(dﬂ) —
R?, let 7(f) denote the maximal m such that there exist m-element subsets Z; C Vi,...,Z441 C
Vi41 that satisfy

N F{z1, - za41)) £ 0.

21€21,..,2d4+1€ 2441

Define the topological Pach number 7(d,n) to be the minimum of 7(f) as f ranges over
all continuous maps from (Anoll)*(d“) to R%. Our main result is the following:

Theorem 1.2. Ford > 1 there exists a constant c3(d) = O(d) such that 7(d,n) < co(d)n'/?
for all n > (2d)?.

For a lower bound on 7(d,n) we only have the following:

Theorem 1.3. Ford > 1 there exists a constant c3(d) > 0 such that 7(d,n) > c3(d)(logn)'/?
for all n.

Motivation and background. Theorem [[1]is a descendant of the following selection
theorem.

Theorem 1.4 (First selection theorem). Let P be a set of n-points in general position in
R?. Then there is a point in at least ca(d) (dil) d-simplices spanned by P.

Theorem [[L4] was proved by Boros and Fiiredi [4] in the plane and it was generalized to
arbitrary dimension by the first author [2]. Relatively recent extensive work of Gromov [9]
implies a topological version of Theorem [[L4} see Theorem [4.]] for the precise statement of
this extension. In addition, Gromov’s approach yielded a significant improvement of the
lower bound for the highest possible value of the constant c¢4(d) in Theorem [L4]

From this point of view, it is desirable to know whether there is a topological extension
of Theorem [L.I] which could also possibly be quantitatively stronger with respect to the
constant ¢ (d). However, Theorem shows that in the case of this homogeneous selection
theorem we would ask for too much.

A brief proof overview. Our proof of Theorem partially builds on the approach
from [14] where the homogeneous selection theorem was used to distinguish a geometric and
a topological invariant.

For the proof of Theorem [[.2] we need to exhibit a continuous map f: (Anozl)*(dﬂ) — R¢
such that 7(f) is low, namely at most ¢3(d)n'/?. Our result is in fact stronger: For some N >
(d + 1)n, we construct a map f: Ay_; — R? such that for any pairwise disjoint n-subsets



Vi,..., Vg of the vertex set of Ay_1, the restriction of f to Vi *---x Vg = (A,Sozl)*(d+1)
satisfies

T(fVieevy,) < c2(d)n/?. (1)

The construction of f proceeds roughly as follows (see Sections 2] and Bl for the relevant
definitions). Let L be any finite graded lattice of rank d + 1 with minimal element 0, whose
set of atoms A satisfies |A| = N > n(d+1). Let S(A) =2 An_1 be the simplex on the vertex
set A, and let L = L — {0}. We first observe (see Claim B2 that there exists a continuous
map g from S(A) to the order complex A(L) such that g({ag,...,ap)) C A(f’gvf_oai) for
any atoms ao,...,a, € A (in words: (ao,...,a,) maps into the subcomplex below the join
of the atoms ag, ...,a, € A in the order complex of L). Next we define f : S(A) — R? as
the composition e o g, where e : A( ~) — R% is the affine extension of a generic map from L
to RY.

Our main technical result, Theorem 2.1} provides an upper bound on 7(fy;«..«v, . ) in
terms of the expansion of the bipartite graph Gy, of atoms vs. coatoms of L. The desired
bound () follows from Theorem 211 by choosing L to be the lattice of linear subspaces of
the vector space FI™ over the finite field with ¢ elements (for suitable ¢ = ¢(n,d)), and
utilizing a well known expansion property of the corresponding graph Gr..

The paper is organized as follows: In Section 2l we state Theorem 2] and apply it to
prove Theorem The proof of Theorem 2.1 is given in Section Bl In Section Ml we prove
Theorem [[3] as a direct application of results of Gromov [9] and Erdés [§].

Subsequent work. Considering our work, Bukh and Hubard [5] very recently improved
the bound on 7(d,n) to 7(d,n) < 30(Inn)"/ (=1,

2 Finite Lattices and Topological Pach Numbers

A finite poset (L, <) is a lattice if for any two element x,y € L the set {z : z < z,z < y} has
a unique maximal element x Ay, and the set {z : z > z, 2 > y} has a unique minimal element
x V y. In particular, a lattice has a minimal element 0 and a maximal element 1. A lattice
L is graded with rank function rk : L — N, if rk(0) = 0 and if rk(y) = rk(z) + 1 whenever
y covers z (ie. {z:2 <z <y} = {z,y}). See Stanley’s book [13] for a comprehensive
reference on the combinatorics of posets and lattices.

Let L be a graded lattice of rank k(1) = d + 1. Let
A={zeL:rk(x)=1} , C={reL:rk(zx)=4d}
be respectively the sets of atoms and coatoms of L. For x € L let
Ay ={ac€A:a<z} , Cpo={ceC:z<c}.

Let G, denote the bipartite graph on the vertex set AU C with edges (a,c) € A x C iff
a < c. For a set of atoms Z C A let I'(Z) = U,czC, be the neighborhood of Z.

The main ingredient of the proof of Theorem is the following connection between 7(d, n)
and the expansion of G7p,.



Theorem 2.1. Let L be a graded lattice of rank d + 1 such that |A] > n(d + 1). Then
m = 7(d,n) satisfies

i 1IN
g D))< g (n

The proof of Theorem 211is deferred to Section [Bl

max |Co| +[C1).

Proof of Theorem Let n > (2d)%. By Bertrand’s postulate there exists a prime
q such that

2d < ((d+1)n)"/* < ¢ < 2((d+ 1)n)"". 2)
Let F, be the finite field of order gq. Let L = L(d + 1,q) denote the graded lattice of linear
subspaces of Fg“ ordered by inclusion, with the natural rank function rk(z) = dimz for

all x € L. The sets of atoms and coatoms of L satisfy |A| = |C] = Ny = qd(;ll_l and
|Cy| = Ng—q = q;_—_ll for all a € A. Any two distinct 1-dimensional subspaces of FZH are
contained in exactly Ny_o = dq - hyperplanes of Fd+1. Hence, if a # d' € A are two

distinct atoms then
d—1 _ 1

Ca N Cor| = Ng_g =1 ——=
qg—1

It follows that if Z C A, then the family {C, : a € Z} forms an Ny_j-uniform hypergraph

on vertex set I'(Z) with | Z] edges, and any two distinct edges intersect in a set of size Ng_o.

Applying a result of Corradi [6] (see also exercise 13.13 in [10] and Theorem 2.3(ii) in [1])

we obtain the following lower bound on the expansion of Gy,.

T Ny +(1Z] =1)Ng—2 ¢ 1 4 |Z|Ng—
d—1 -1
q Ng—|Z q“ N,
-y LA s - L ®)
q" ' +1Z|Na—2 |Z|Ng—2
aN. NHé
d d
> Ng— - = Nag—
4 1Z

Next note that (2)) implies that |A| = Ny > ¢¢ > (d + 1)n. Applying Theorem 1] together
with @), it follows that m = 7(d,n) satisfies

N1+é
Nyg——4— < min [['(2)
m ZCA|Z|=m
§d+1(max|C’|—|—|C’|) (4)
——i4N' + Ng)
= d+1 d—1 d)-
The assumption g > 2d implies that
Ny - qd+1 -1
Ng—dNgy  ¢H1—1-d(¢?—1) 5
e . (5)

<2
¢ T —dg? ~ g—d ~




Rearranging (@) and using (5) and ¢ < 2%(d + 1)n, we obtain

1+
(d+1)N, 1
<2(d+1)N}¢
— Nd_defl — ( + ) d

< 2(d + 1)((d+ 1)gh) "/

<2(d+1)((d+ 1)(2%(d + 1)n))
= 4(d+ 1)((d +1)*n) ",

1/d

3 Continuous Maps of Finite Lattices

In this section we prove Theorem 2.I1 We first recall some definitions. The order complex
A(P) of a finite poset (P, <) is the simplicial complex on the vertex set P, whose k-simplices
are the chains zg < -+ < xp in P.

Let L be a graded lattice of rank d + 1 and let L = L — {0}. For a subset o C L let
Vo = Vgeox. Let S(A) be the simplex on the set A of atoms of L (identified as usual with
its geometric realization). For z € L let I~/§$ ={ye L:y< x}. The main ingredient in the
proof of Theorem [2.1]is the following result.

Proposition 3.1. There exists a continuous map f : S(A) — R such that for any u € R?

Hee C:ue f((A)} §dmeaj<|C'a|. (6)
(Note that, in accordance with our notation, (A.) stands here for the geometric realization
of A, considered as a face of S(A).)
We first note the following

Claim 3.2. There exists a continuous map g : S(A) — A(L) such that for all x € L
9((4z)) C A(ESJ:)-

Proof: We define g inductively on the k-skeleton S(A)*). On the vertices a € A of S(A)
let g(a) = a. Let 0 < k < |A| — 1 and suppose g has been defined on S(A)*~1. Let
o= {ag,...,a;) € S(A)*) and let y = Vo. For 0 <i < k let

0y = <a07 e 7ai—17 a//\i7ai+1, e 7ak>
be the i-th face of o. Let y; = V. Then g is defined on o; and by induction hypothesis
9(0i) C A(L<y,) C A(L<y).

Being a cone, A(Egy) is contractible and hence g can be continuously extended from the
boundary 9o to the whole of o so that g(o) € A(L<,). Tt follows in particular that for
zel

9({(Az)) € A(L<va,) C A(L<a).



O

Proof of Proposition B.1k By a general position argument we choose a mapping e :
L — R? with the following property: For any pairwise disjoint subsets Si,...,Sqi1 C L of
cardinalities |S;| < d, it holds that

d+1
ﬂ aff (e(Si)) =0,
i=1
and thus in particular
d+1
ﬂ relint conv (e(S;)) = 0. (7)
i=1

Extend e by linearity to the whole of A(L) and let f = eo g : S(A) — R%, where g is the
map from Claim We claim that the map f satisfies (6). Let v € R% and let

T ={neA(L):uc relinte((n))}.

Choose a maximal pairwise disjoint subfamily 7/ C T'. It follows by (7)) that |T'| < d. For
each ’ € T’ choose an atom a(n’) € A such that

a(n’) < miny’. ®)

Now let ¢ € C be such that u € f({A.)). Then there exists a b € g((A.)) € A(L<.) such
that u = e(b). Let n € T' be such that b € relint(n). Then

ne A(L<.). 9)

By maximality of T” there exists a simplex ' € T" and a vertex x € ' Nn. It follows by (8)
and (@) that a(n’) <z < ¢, ie. ¢ € Cyuy) (see figure[d). Therefore

{ee Crue fANH S Y [Cupy)l < dmax|Cal.
T]/GT/
O

Proof of Theorem [2.Ik Let L be a lattice of rank d + 1 whose set of atoms A satisfies
|A| > (d+ 1)n. Let Vi,..., V441 be disjoint n-subsets of A. By Proposition 3.1l there exists
a continuous map f : S(A) — R? such that for any u € R?

{ee Crue f((AN} < dmax|Cl.

Let m = 7(d,n). Then there exist Z; C Vi,...,Zq41 C Vgy1 and a u € R? such that
|Zi] >mforall 1 <i<d+1and

ue N F{z1, . 2a41).
21€21,.2d4+1€Zd+1

Write
d+1

C(Zy,... Zap1) = [ {c € C: AN Z; # 0}
=1
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Figure 1: The bold chain corresponds to 1. The other chains represent simplices of T".

If ce C(Zy,...,Z441) then there exist z; € Z1,...,24+1 € Zg+1 such that z; < ¢ for all 4
and hence u € f((z1,...,24+1)) C f((Ac)). Hence by Proposition B.1]

O, Zusy)| < dmax |Cal. (10)
On the other hand
d+1
IC(Z1, ..., Zan)l = |C = | J(C -T(2))]
i=1
d+1 d+1 (11)
>|Cl=> (IC]=Ir(Z)) = > [T(Z)| - d|C|
i=1 i=1
> i _dlcl.
>(d+1), _min_[(2)|-dC]

Theorem 2. now follows from (I0) and (ITJ).
(]

Remark: The mapping g : S(A) — A(L) constructed in Claim is in general not
simplicial. It follows (as of course must be the case by Theorem [LLT]) that f = eog: S(4) —
R? is not affine.

4 The Lower Bound

Theorem [[3]is a direct consequence of Gromov’s topological overlap Theorem [9] combined
with a result of Erd6s on complete (d + 1)-partite subhypergraphs in (d + 1)-uniform dense
hypergraphs [§]. We first recall these results. Let X be a finite d-dimensional pure simplicial
complex. For k > 0, let fr(X) = |X (k)| denote the number of k-dimensional faces of X.



Define a positive weight function w = wx on the simplices of X as follows. For o € X (k),
let ¢(o) = [{n € X(d) : ¢ C n}| and let
c(0)
w(o) = .
(kﬁ)f a(X)
Let C*(X) denote the space of Fy-valued k-cochains of X with the coboundary map dy, :

C*(X) — CHF(X). As usual, the space of k-coboundaries is denoted by di_1 (C* (X)) =
B¥(X). For ¢ € C*(X), let [¢] denote the image of ¢ in C*(X)/B*(X). Let

lol = > wlo)
ceX (k):¢(0)#0

and
I[g]ll = min{||¢ + di_19|| : v € CFH(X)}.

The k-th coboundary expansion constant of X is

(L]
hi(X) = {HMH

Note that hy(X) = 0 iff H*(X;Fy) # 0. One may regard hi(X) as a sort of distance
between X and the family of complexes Y that satisfy H*(Y;Fy) # 0. Gromov’s celebrated
topological overlap result is the following:

L€ CF(X) — Bk(X)} .

Theorem 4.1 (Gromov [9]). For any integer d > 0 and any € > 0 there exists a § = §(d,€) >
0 such that if hi,(X) > € for all 0 < k < d — 1, then for any continuous map f : X — RY
there exists a point u € R® such that

{o € X(d) : ue f(o)} = dfa(X).

We next describe a result of Erdds that generalizes the well known Erddés-Stone and
Ko6véri-Sés-Turan theorems from graphs to hypergraphs.

Theorem 4.2 (Erdés [8]). For any d and ¢ > 0 there exists a constant ¢ = ¢(d,d) > 0
such that for any (d + 1)-uniform hypergraph F on N-element set V' with at least ¢/ N+
hyperedges, there exists an m > c(log N)l/d and disjoint m-element sets Zy,...,Zq11 CV
such that {z1,...,2q11} € F forall z1 € Z1, ..., 2441 € Zg11.

Proof of Theorem [1.3k Recall that Vi,...,V 1 are disjoint n-element sets and let V' =
ViU-—-UVy, [V[=N=(d+1n. Let X =Vi*...xVyyand let f: X — R? be a
continuous map. It was shown by Gromov [9] (see also [7, [11]) that the expansion constants
h;(X) are uniformly bounded away from zero. Concretely, it follows from Theorem 3.3 in
[T1] that hy(X) > e=2"%for 0 <i<d—1. Let § = §(d,2~%). Then by Theorem E1] there
exists a u € R? and a family F C X(d) of cardinality

|]_—| > 5fd(X) — 67’Ld+1 _ 6(d + 1)7(d+1)Nd+1

such that u € f(o) for all o € F. Writing ¢/ = d(d + 1)~ @D and c3(d) = ¢(d, ), it follows
from Theorem that there exists an m > ¢3(d)(log N)Y/¢ > ¢3(d)(logn)'/® and disjoint
m-sets Z1,---,,Zqr1 C V such that v € f({z1,...,2441)) for all z; € Z1,..., 2441 € Zgy1.
Clearly, there exists a permutation 7w on {1,...,d+1} such that Z ;) C Vi forall 1 <i < d+1.
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