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Abstract. Given a convex cone C in Rd, an integral zonotope T is
the sum of segments [0, vi] (i = 1, . . . , m) where each vi ∈ C is a
vector with integer coordinates. The endpoint of T is k =

∑m

1 vi. Let
T (C, k) be the family of all integral zonotopes in C whose endpoint is
k ∈ C. We prove that, for large k, the zonotopes in T (C, k) have a limit
shape, meaning that, after suitable scaling, the overwhelming majority
of the zonotopes in T (C, k) are very close to a fixed convex set. We
also establish several combinatorial properties of a typical zonotope in
T (C, k).

1. Introduction and main results

This paper is about convex cones C in Rd, integral zonotopes contained
in C, and their limit shape. The cone C is going to be closed, convex and
pointed (that is no line lies in C) and its interior, IntC, is non-empty. We
write C or Cd for the set of these cones.

A convex (lattice) polytope T ⊂ C is an integral zonotope if there exists
m ∈ N and v1, . . . ,vm ∈ Zd ∩ C (that is, each vi is lattice point in C) such
that

T =
{

m∑
i=1

αivi | (α1, . . . , αm) ∈ [0, 1]m
}

= Conv
{

m∑
i=1

εivi | (ε1, . . . , εm) ∈ {0, 1}m
}
,

The multiset V = {v1, . . . ,vm} ⊂ Zd determines T = T (V ) uniquely, of
course, but not conversely. More about this later. The endpoint of T is just∑m
i=1 vi. Define T (C,k) as the family of all integral zonotopes in C whose

endpoint is k ∈ Zd ∩ IntC. Clearly, T (C,k) is a finite set. Let p(C,k)
denote its cardinality.

The main result of this paper is that, for large k, the overwhelming
majority of the elements of T (C,k) are very close to a fixed convex set
T0 = T0(C,k) which is actually a zonoid. We write dist(A,B) for the Haus-
dorff distance of the sets A,B ⊂ Rd. Here comes our main result.
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Theorem 1.1. Given C ∈ Cd (d ≥ 2) and k ∈ IntC there is a convex set
T0 = T0(C,k) such that for every ε > 0,

lim
n→∞

card
{
T ∈ T (C, nk) | dist( 1

nT, T0) > ε
}

p(C, nk) = 0.

This result has been known for d = 2. Twenty years ago, Bárány [1],
Sinai [13] and Vershik [15] proved the existence of a limit shape for the set
of all convex lattice polygons lying in the square [−n, n]2 endowed with the
uniform distribution. Although not all convex lattice polygons are (trans-
lates of) zonotopes, case d = 2 of Theorem 1.1 follows directly from their
result. The approach of these papers relies on a natural link between convex
lattice polygons on the first hand, and integer partitions on the other hand.

In addition to Theorem 1.1, the asymptotic behaviour as n → ∞ of
p(C, nk) can also be determined.

Theorem 1.2. Under the above conditions on C and k there is a number
q(C,k) > 0 such that, as n tends to infinity,

n−
d

d+1 log p(C, nk) −→ cd q(C,k),

where cd = d+1

√
ζ(d+1)
ζ(d) (d+ 1)! depends only on the dimension.

As we shall see in Section 3, q(C,k) is a constant multiple of the d+ 1st
root of the volume of the minimal cap of C containing k.

The next section connects integral zonotopes and strict integer parti-
tions. Section 3 is about the limiting zonoid and some examples. The basic
probabilistic model and proofs of the main results are in Section 4. Sec-
tion 5 establishes several combinatorial properties of a typical zonotope T
in T (C,k), namely we estimate the number of i-dimensional faces of T ,
for i = 0, 1, . . . , d − 1. Section 6 includes proofs of the existence of limit
shapes for integral zonotopes chosen in arbitrary convex bodies in R2, and
in hypercubes for higher dimensions.

2. Strict integer partitions

A multiset V = {v1, . . . ,vm} ⊂ Zd ∩ C determines the zonotope T =
T (V ) uniquely but, as remarked earlier, T does not determine V uniquely.
We are going to choose a suitable multiset W ⊂ Zd ∩ C uniquely. This
is fairly simple. First let Pd denote the primitive vectors in Zd; a vector
z = (z1, . . . , zd) ∈ Zd is primitive if gcd(z1, . . . , zd) = 1. Note that 0 /∈ Pd.
Given T = T (V ) with generators V = {v1, . . . ,vm} ⊂ Zd ∩ C, there is
a unique multiset W = {w1, . . . ,w`} ⊂ Pd ∩ C that generates the same
zonotope, that is, T (V ) = T (W ). Indeed, each vi can be written uniquely
as hw for some w ∈ Pd and h ∈ Z+. Then put h copies of w inW . This way
we get a multiset W ⊂ Pd ∩C such that T = T (W ). It is easy to check (we
omit the details) that if T = T (U) for some other multiset U ⊂ Zd∩C, then
the above construction gives the same W . That means that W is uniquely
determined by T .

We have just defined a one-to-one correspondence between lattice zono-
topes T lying in C and multisets of primitive vectors W ⊂ Pd ∩ C. If the
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endpoint of T is k, then
m∑
i=1

wi = k.

Such a multiset is called a strict integer partition of the vector k ∈ Zd
from the cone C. It can be alternatively described by the family (ω(x))x∈Pd

of multiplicities ω(x) = card {j ∈ {1, . . . , `} | wj = x} of the available parts
x ∈ Pd ∩ C. Notice that for any partition, there is only a finite number of
vectors x ∈ Pd ∩C such that ω(x) 6= 0. Therefore, picking a strict partition
is actually equivalent to picking a function ω : Pd ∩ C → Z+ with finite
support. For any such function ω we define

X(ω) :=
∑

x∈Pd∩C
ω(x) x.

With this notation, the fact that ω describes a partition of k corresponds
to the condition X(ω) = k.

One can consider non-strict partitions as well, that is, the uniform distri-
bution on all multisets V = {v1, . . . ,vm} ⊂ Zd ∩ C with

∑m
1 vi = k (where

vi 6= 0), so the same zonotope may appear several times. The results of this
paper remain valid in this case as well but some constants are different. For
instance, Theorem 1.2 remains valid except that the constant cd is slightly
different, namely, no division by ζ(d) is required. We omit the details.

3. The limiting zonoid

The dual Co of a cone C ∈ Cd is defined, as usual, via
Co = {u ∈ Rd | ∀x ∈ C \ {0}, u · x > 0}.

Note that the dual Co is an open cone, which is convenient for our purposes.
Its closure is in Cd as one can see easily. Given u ∈ Co and t > 0 we define
the corresponding section C(u = t) and cap C(u ≤ t) of C by

C(u = t) = {x ∈ C | u · x = t},
C(u ≤ t) = {x ∈ C | u · x ≤ t}.

We are going to use the following result of Gigena [9], see also [8].

Theorem 3.1. Given C ∈ Cd and a ∈ IntC there is a unique u = u(C,a)
such that

• a is the center of gravity of the section C(u = 1),
• C(u ≤ 1) has minimal volume among all caps of C that contain a,
moreover, C(u ≤ 1) is the unique cap with this property.

Clearly u ∈ C◦. It follows that d
d+1a is the center of gravity of the cap

C(u ≤ 1):
d

d+ 1a = 1
VolC(u ≤ 1)

∫
C(u≤1)

x dx.

Further, there is a λ > 0 such that

a =
∫
C(u≤λ)

x dx.
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One can check directly that this λ is unique and is given by

λ =
(
d+ 1
d

1
VolC(u ≤ 1)

)1/(d+1)
.

Define Q = Q(C,a) = C(u ≤ λ) with this λ. An easy computation shows
that

q(C,a) := VolQ(C,a) = λd VolC(u ≤ 1)

=
((

1 + 1
d

)d
VolC(u ≤ 1)

)1/(d+1)

.

We will show later in Section 4.5, that this is the q(C,k) appearing in
Theorem 1.2.

Example 1. Let C = Rd+ = Pos{e1, . . . , ed} be the positive orthant of
Rd where the ei form the standard basis of Rd, and a = (a1, . . . , ad) ∈ IntC.
Then the section C(u = 1) is the intersection of C with the hyperplane
passing through the points daiei, (i = 1, . . . , d), and VolC(u ≤ 1) =
1
d!d

da1 . . . ad. Consequently

q(C,a) =
(

(d+ 1)d

d! a1 . . . ad

)1/(d+1)

.

Example 2. Let C be the circular cone in R3 of equation x2 + y2 ≤ z2

with z ≥ 0 and consider k = (0, 0, 1). The minimal cap of C containing k is
the one cut off by the plane z = 1. Its volume is π/3, so in this case

q(C,k) =
(

43π

34

)1/4

= 1.255294...

Next we explain what the limiting zonoid T0 = T0(C,k) from Theorem 1.1
is. Its support function is given by

hT0(v) =
∫

v · x dx

where the integral is taken over Q(C,k) ∩ C(v ≥ 0). Similarly, the point
t(v) where the hyperplane orthogonal to v supports T0(C,k) is

∫
xdx with

the integral taken over the same set as above. So the boundary point of T0
with outer normal v is given by

(3.1) t(v) =
∫
Q(C,k)∩C(v≥0)

x dx.

As expected, t(v) = k for v ∈ C◦ and t(v) = 0 for v ∈ −C◦. The proof of
these facts follow from the proof of Propositions 4.5 and 4.6.

Remark. When computing t(v) we can integrate over C(u ≤ 1)∩C(v ≥
0) instead ofQ(C,k)∩C(v ≥ 0) and use a homothety (with centre the origin)
so that t(v) = k for v ∈ C◦.

Thus for instance in Example 1 one can, in principle, determine the
limiting zonotope. Here C = Rd+ and we may choose k to be the all one
vector 1 since the whole question is linearly invariant (or equivariant if you
wish). Write 4 for the convex hull of the vectors dei, i = 1, . . . , d and
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the origin. Clearly 4 = C(u ≤ 1). The boundary points of the limiting
zonotope T0(Rd+,1) are given by∫

4∩C(v≥0)
x dx

scaled properly as explained in the Remark above.
The computation is easy when d = 2. Then v = (t,−s) with s, t ≥ 0 and

s+t = 1, say. Then4∩C(v ≥ 0) is a triangle with vertices (0, 0), (1, 0), (s, t).
The integral in question is equal to the area of the triangle (which is t/2)
times its centre of gravity (which equals (1 + s, t)/3). Using s = 1 − t and
suitable scaling we get t(v) = (2t− t2, t2). With x, y coordinates this is just
x+ y = 2√y (for x ≥ y), a parabola arc. Thus the boundary of T0 consists
of two parabola arcs given by the equations x + y = 2√y (for x ≤ y) and
x + y = 2√y (for x ≥ y), which is the same as the limit shape in R2 of
convex lattice polygons, see Bárány [1] and Vershik [15].

Figure 1. The limiting zonoid in dimension 2.

The same method works in R3. This time the previous triangle is replaced
by the simplex with vertices (0, 0, 0), (1, 0, 0), (s, t, 0), (u, 0, v) with s, t, u, v ≥
0 and s + t = 1 u + v = 1. The integral in question is the volume of this
simplex (tv/6) times its centre of gravity ((1+u+s, t, v)/4). Using s = 1− t
and u = 1 − v again we get t(v) = (3tv − t2v − tv2, t2v, tv2) . Thus the
equation of the boundary of T0 is x + y + z = 3 3

√
yz; this holds when

x− 2y+ z ≥ 0 and x+ y− 2z ≥ 0, as one can check directly. T0 is centrally
symmetric with respect to center (1/2, 1/2, 1/2). Its boundary is made up of
six pieces that come in symmetric pairs. The piece in the region determined
by inequalities x − 2y + z ≥ 0 and x + y − 2z ≥ 0 is given by the equation
x + y + z = 3 3

√
yz. Other pieces are given by equations x + y + z = 3 3

√
xz

and x+ y + z = 3 3
√
xy, and the reflections with respect to the center.

The same method works in higher dimensions. There 4 ∩ C(v ≥ 0)
is not a single simplex, one has to triangulate it into simplices, and on
each simplex, the integral in question can be computed the same way as
above. We have not carried out this computation. Yet one can show that
a certain part of the boundary of T0 in Rd is described by the equation
x1 + . . .+ xd = d(x2 . . . xd)1/d.



6 IMRE BÁRÁNY, JULIEN BUREAUX, AND BEN LUND

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 2. The limiting zonoid in dimension 3.

The same limit shape comes up in another way as well. We are going
to explain, rather informally, how this happens. We start with a simple
proposition.

Proposition 3.2. Assume S ⊂ C is a closed set and
∫
S x dx = a. Then

VolS ≤ q(C,a) and equality holds iff S = Q(C,k).

Proof. It is clear that
∫
S x dx = a implies that

∫
S u ·x dx = u · a. Note that∫

Q u · x dx = u · a as well. Then∫
S\Q

u · x dx =
∫
Q\S

u · x dx.

The value of u ·x is larger on S \Q than on Q\S. This shows that VolS \Q
is smaller than Vol(Q \ S) unless both are equal to zero. �

Assume that k ∈ Zd ∩ IntC and consider the cap Q(C, nk) when n is
large. Define Vn = Zd∩Q(C, nk). It is known (and follows from an estimate
similar to the one in Lemma A.2) that, as n goes to infinity,∑

x∈Vn

x = nk(1 + o(1)).

Suppose now that
∑

x∈S x = nk for some S ⊂ Zd∩C. Under these conditions
Proposition 3.2 implies that |S| ≤ |Vn|(1 + o(1)).

This shows that the (asymptotically) largest set S ⊂ Zd∩C with
∑

x∈S x =
nk is Vn. The integral zonotope T (Vn) has its endpoint close to nk. The
limiting zonoid T0(C,k) from Theorem 1.1 turns out to be the limit of the
zonotopes 1

nT (Vn) as n→∞.
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4. The probabilistic approach

Throughout this paper we work under the following condition:

(4.1) C ∈ Cd and k ∈ IntC ∩ Zd are fixed.

In this section, we give a proof of Theorem 1.1 and Theorem 1.2 based on
statistical mechanics techniques. Obviously, the statement of the theorem
itself is already of probabilistic nature.

4.1. Description of the model. Let Ω be the set of all functions from
Pd ∩ C to Z+ with finite support. Recall from Section 2 the correspon-
dence between lattice zonotopes, strict integer partitions, and multiplicity
functions ω ∈ Ω. In particular, each function ω is associated to a unique
zonotope T (ω), and conversely. Moreover, the endpoint of T (ω) is

X(ω) =
∑

x∈Pd∩C
ω(x) x.

The probability distribution Qn on Ω, which is defined for all ω ∈ Ω by

Qn(ω) = 1
p(C, nk)1{X(ω)=nk}

is exactly the uniform distribution on T (C, nk). The conclusion of Theo-
rem 1.1 can be stated as convergence in probability for this distribution:

dist( 1
nT, T0) Qn−−−→

n→∞
0.

We now define a new probability distribution Pn on Ω, which will turn
out to behave roughly like Qn when n tends to +∞. It depends on two
parameters u and βn fixed throughout the paper as follows:

(4.2) u = u(C, λk), βn = d+1

√
ζ(d+ 1)
ζ(d)

1
n
,

where u(C, λk) = λ−1 u(C,k) ∈ C◦ is defined by Theorem 3.1, with λ > 0
chosen such that

(d+ 1)!
∫
C(u≤1)

x dx = k.

The reason for these choices will become apparent in Proposition 4.1. The
probability distribution Pn is then defined for all ω ∈ Ω by

Pn(ω) = 1
Zn

e−βnu·X(ω), where Zn =
∑
ω∈Ω

e−βnu·X(ω).

This definition, which is directly inspired by statistical mechanics, is a special
case of the Boltzmann distribution. It is a generalization of the model
introduced by Sinai [13] for convex lattice polygonal lines. Here Zn is the
so-called partition function of the model. The sum defining Zn is easily seen
to be convergent.

The crucial observation is the following: since Pn(ω) only depends on the
value X(ω), we see that for all m ∈ Zd,

(4.3) Pn[X = m] = p(C,m)
Zn

e−βnu·m.
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In particular, the distribution induced on Ω by Pn conditional on the event
{X = nk} is exactly Qn. For all events E ⊂ Ω,

Qn[E] = Pn[E | X = nk] = Pn[E ∩ {X = nk}]
Pn[X = nk] .

Consequently, our strategy of proof for Theorem 1.1 is to establish first a
strong limit shape result for the distribution Pn and then use this relation
with E = {dist( 1

nT, T0) > ε} to get the result for Qn. This deduction will
only be possible if we show that Pn[X = nk] is not too small.

In comparison with Qn, the distribution Pn has a much simpler proba-
bilistic structure. It is a product distribution on Ω since, by definition of
X,

e−βnu·X(ω) =
∏

x∈Pd∩C
e−βnω(x)u·x.

Thus, the family of random variables (ω(x))x∈Pd∩C is independent under
Pn. In addition, one can see that for all x ∈ Pd ∩ C, the integer-valued
random variable ω(x) has geometric distribution with parameter e−βnu·x

(failure probability), that is to say

(4.4) Pn[ω(x) = i] = (1− e−βnu·x) e−iβnu·x, i ∈ Z+.

These two facts lead to a remarkable factorization of Zn as convergent prod-
uct which is similar to Euler’s formula,

Zn =
∏

x∈Pd∩C

1
1− e−βnu·x .

Taking logarithms, we obtain finally a series expansion for logZn,

(4.5) logZn =
∑

x∈Pd∩C

∑
r≥1

e−rβnu·x

r
.

The same expression is used in [1] and [13].

4.2. Asymptotic behaviour after rescaling. In this section, we inves-
tigate the asymptotic distribution of the random vector X. It turns out
that, after a proper rescaling, it can described completely by the Laplace
transform (also called a characteristic function in [8]) of the cone C, which
is defined by

ΛC(v) =
∫
C
e−v·x dx, v ∈ C◦.

When there is no risk of confusion with another cone, we write Λ = ΛC .

Proposition 4.1. Let µn and Γn denote respectively the mean value and
the covariance matrix of the random vector X under the distribution Pn.
Then

(4.6) lim
n→+∞

1
n

µn = −∇Λ(u) = k, and lim
n→+∞

n−
d+2
d+1 Γn = ∇2Λ(u),

where ∇Λ and ∇2Λ denote respectively the gradient and the Hessian matrix.
Moreover, the distribution of X satisfies a central limit theorem in the

sense that
Γ−1/2
n (X− µn) law−−−−−→

n→+∞
N (0, Id).
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Proof. We introduce a function Z : C◦ → R+ such that Zn = Z(βnu). It is
defined for all v ∈ C◦ by

Z(v) =
∑
ω∈Ω

e−v·X(ω).

Let β = βn in the proof. We start with the statement about µn. It is
a well known fact that in such an exponential model, the first moments of
X are given by the logarithmic derivatives of the function Z. In the case of
the mean value, it results from the following simple computation:

µn = En[X] =
∑
ω∈Ω

e−βu·X(ω)

Z(βu) X(ω) = −∇Z(βu)
Z(βu) = −∇ logZ(βu).

Now, a straightforward generalization of formula (4.5) to the function Z
leads to a series expansion of ∇ logZ, namely

−∇ logZ(βu) =
∑
r≥1

∑
x∈Pd∩C

e−rβu·xx.

For every index r less than 1/β, we approximate the summation on Pd ∩ C
with the corresponding d-dimensional integral by using Proposition A.1.
Since the terms with r > 1/β contribute only O(1/β), we obtain after sum-
mation

µn = 1
βd+1

ζ(d+ 1)
ζ(d)

∫
C
e−u·xx dx +O

( 1
βd

)
in the limit β → 0. The integral here is obviously −∇Λ(u). We need check
that it is also equal to k. This is done by applying the fundamental theorem
of calculus and the Fubini-Tonelli theorem:∫

C
e−u·xx dx =

∫
C

∫ ∞
u·x

e−t dtx dx =
∫ ∞

0
e−t

∫
C(u≤t)

x dx dt.

An homothetic change of variable yields therefore by homogeneity:∫
C
e−u·xx dx =

[∫ ∞
0

td+1e−t dt

] ∫
C(u≤1)

x dx = (d+ 1)!
∫
C(u≤1)

x dx = k.

So the first part of the proposition is finally proven by replacing β with its
expression as a function of n.

The proof of the asymptotic behaviour of the covariance matrix Γn is
entirely similar except that we consider the second order derivatives of the
logarithmic partition function. We omit the details.

We now turn to the central limit result. Recall that the random variables
ω(x) are independent and each ω(x) follows the geometric distribution with
parameter e−βu·x. In particular, Γ−1/2

n (X−µn) is the sum of the independent
random variables (ω(x) − E[ω(x)]) Γ−1/2

n x of mean value 0. We are going
to check the classical Lyapunov condition on third moments, which implies
the central limit theorem for independent, but not necessarily identically
distributed, summands. We must show that

Ln =
∑

x∈Pd∩C
E
[∥∥∥(ω(x)− E[ω(x)]) Γ−1/2

n x
∥∥∥3
]
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goes to 0 as n tends to +∞. Elementary computations on the geometric
distribution yield, for all x ∈ Pd ∩ C,

E[ω(x)] = e−βu·x

1− e−βu·x , and E
[
|ω(x)− E[ω(x)]|3

]
≤ 3 e−βu·x

(1− e−βu·x)3 .

Letting ‖Γ−1/2
n ‖ denote the operator norm, we obtain therefore,

Ln ≤ 3‖Γ−1/2
n ‖3

∑
x∈Pd∩C

‖x‖3e−βu·x

(1− e−βu·x)3 .

From the first part of the proposition, we already know that ‖Γ−1/2
n ‖ is of

order n−
1
2 (d+2)/(d+1). Moreover, Proposition A.1 shows that

∑
x∈Pd∩C

‖x‖3e−βu·x

(1− e−βu·x)3 and n
d+3
d+1

∫
C
‖x‖3e−u·xdx

are of the same order of magnitude as n tends to +∞. Accordingly, Ln
is at most of order n−d/(2d+2), hence tends to 0 and we can indeed apply
Lyapunov’s central limit theorem. The proof is complete. �

Letting σn = n
d+2

2d+2 , the central limit theorem of Proposition 4.1 can now
be stated as

(4.7) X− nk
σn

law−−−→
n→∞

N (0,∇2Λ(u)).

The proof of the next proposition will use this fact.

Proposition 4.2 (Weak local limit estimate).

Pn[X = nk] = e−o(n
d/(d+1))

Proof. We begin with the following simple remark: if m ∈ Zd ∩ C and
n ∈ Zd ∩ C satisfy n −m ∈ C, then p(C,n) ≥ p(C,m). This explains the
introduction of the following set,

An = {m ∈ Zd ∩ C | nk−m ∈ C and u · (nk−m) ≤ σn}.

As a consequence of (4.7), there exists c > 0 such that Pn[X ∈ An] ≥ c for
all n large enough. In addition, equation (4.3) and the remark above imply
that

Pn[X ∈ An] =
∑

m∈An

p(C,m)e−βnu·m

=
∑

m∈An

p(C,m)
p(C, nk)e

βnu·(nk−m) Pn[X = nk]

≤ |An|eβnσn Pn[X = nk].

Since σn = n(d+2)/(2d+2), the factor |An| = O(σdn) grows only as a power of n
while eβnσn = eO(nd/(2d+2)). Since Pn[X ∈ An] ≥ c, the result is proven. �
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4.3. The number of generators of T ∈ T (C, nk). Zonotopes in T (C, nk)
have been identified with functions ω : Pd ∩ C → Z+ with finite support.
The generators of T ∈ T (C, nk) are those x ∈ Pd for which ω(x) > 0,
we write G(T ) for the set of generators of T . Using the method of the
previous subsection we determine the expected number µn of the number of
generators of T ∈ T (C, nk), under the distribution Pn. By Proposition 4.2,
it will also lead to an estimate under the uniform distribution Qn on T (Cnk).
Lemma 4.3.

µn = E[|G(T )|] = 1
ζ(d)βdn

ΛC(u)(1 +O(βn)).

Proof. Let β = βn in the proof. Formula (4.4) implies that
Pn[ω(x) > 0] = e−βu·x.

A consequence of Proposition A.1 is that∣∣∣∣∣∣
∑

x∈Zd∩C
e−βu·x − 1

ζ(d)

∫
C
e−βu·xdx

∣∣∣∣∣∣ ≤ cd
βd−1 ,

for some constant cd > 0 depending on the dimension. Here∫
C
e−βu·xdx = 1

βd

∫
C
eu·xdx = 1

βd
ΛC(u),

and so
µ = 1

ζ(d)βdΛC(u)(1 +O(β)).

�

As β−dn = Θ
(
nd/(d+1)

)
follows from the definition of β, the order of

magnitude of µ is nd/(d+1).
We will need a similar result for the number of generators lying in a

hyperplane H.
Lemma 4.4. Assume H is a hyperplane in Rd containing the origin. Then

µH = E[|G(T ) ∩H|] = O(n(d−1)/(d+1)),
where the implicit constant in O(·) is independent of H.
Proof. Let β = βn in the proof. Following the above argument, we have

µH = E[|G(T ) ∩H|] =
∑

x∈Zd∩C∩H
e−βu·x.

The one-sided estimate of Lemma A.4 gives now that∑
x∈Zd∩C∩H

e−βu·x ≤ ζ(d)−1
∫
C∩H

e−βu·xdx + cd−1
βd−2 .

Here ∫
C∩H

e−βu·xdx = 1
βd−1

∫
C∩H

eu·xdx.

Thus indeed

µH ≤
1 + o(1)
ζ(d)βd−1

∫
C∩H

e−u·xdx = O(n(d−1)/(d+1)).

�
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4.4. Limit shapes. In this section, we are going to show the existence of a
limit shape for random zonotopes drawn under the uniform distribution on
the set of all lattice zonotopes in the cone C with endpoint nk.

For every convex compact subset A of Rd, the support function of A is
the continuous function hA : Rd → R defined by

hA(w) = sup{v ·w, v ∈ A}, w ∈ Rd.

Let T0 = T0(C,k) be the zonoid defined in Section 3.

Theorem 4.5. For all v ∈ Rd and for all ε > 0,

lim
n→+∞

Qn

[
|h 1

n
T (v)− hT0(v)| > ε

]
= 0.

Proof. Again, the proof of this theorem is based on the probabilistic model
of Section 4. It depends on the fact that, conditional on the event X = nk,
the distribution of a random zonotope under Pn is uniformly distributed on
the set T (C, nk). In particular,

Qn

[
|h 1

n
T (v)− hT0(v)| > ε

]
= Pn

[
|h 1

n
T (v)− hT0(v)| > ε | X = nk

]
≤

Pn
[
|h 1

n
T (v)− hT0(v)| > ε

]
Pn [X = nk] .

Hence, we only need to prove that the right-hand side of this inequality goes
to 0. It is natural to consider only v ∈ Sd−1, the unit sphere of Rd. Using
Proposition 4.2, we see that the theorem follows from the result of the next
proposition. �

Proposition 4.6. For all ε > 0 there exists c > 0 such that for all v ∈ Sd−1

and for all n large enough,

Pn
[
|h 1

n
T (v)− hT0(v)| > ε

]
≤ exp{−c nd/(d+1)}.

Proof. It is evident that for a zonotope T (ω) generated by the vectors x ∈
Pd ∩ C with multiplicities ω(x) the support function is

hT (v) =
∑

x∈Pd∩C
ω(x) x · v 1{x·v≥0} =

∑
x∈Pd∩C(v≥0)

ω(x) x · v.

In the proof of Proposition 4.1, we could replace C with the smaller cone
C(v ≥ 0) and we would obtain

1
n

En[hT (v)] = ΛC(v≥0)(u) · v +O(n−1/(d+1)) = hT0(v) + o(1).

Since 1
nhT = h 1

n
T , this already shows that the limit shape appears in expec-

tation.
We will now bound the probability for a large deviation from the mean

using the so-called Chernoff method. Let us consider the exponential gen-
erating function of hT (v)

E[eθhT (v)] =
∏

x∈Pd∩C(v≥0)

1− e−βu·x

1− e−(βu−θv)·x =
ZC(v≥0)(βu− θv)
ZC(v≥0)(βu)
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which is well defined for all θ small enough with respect to β. Consider
now the centered random variable Y = h 1

n
T (v) − E[h 1

n
T (v)]. The cen-

tral limit part of Proposition 4.1 applies to the cone C(v ≥ 0) with k′ =
−∇ΛC(v≥0)(u). Thus by second order Taylor approximation, we obtain for
some constant c(u,v) > 0 involving the Hessian matrix of ΛC(v≥0) at u,

log E[eθY ] ∼ c(u,v) θ
2

2 n
−d/(d+1)

as long as θ
n goes to 0. But for all θ > 0, the Markov inequality yields

Pn[Y > ε] = Pn[θY ≥ θε] ≤ e−θε E[eθY ]

This bound is approximately optimized for θ = c(u,v)−1 ε nd/(d+1) and it
leads to

Pn[Y > ε] ≤ exp
(
−1

2c(u,v)−1ε2nd/(d+1)(1 + o(1))
)

A similar bound holds for Pn[−Y > ε], hence for Pn[|Y | > ε]. The conclusion
follows. �

4.5. The number of zonotopes. This section is devoted to the proof of
Theorem 1.2, which states that

log p(C, nk)
n

d
d+1

−−−→
n→∞

cd q(C,k), where cd = d+1

√
ζ(d+ 1)
ζ(d) (d+ 1)!

and where q(C,k) is defined in Section 3 as the minimal volume of a cap of
the cone C having k as its center of gravity.

The starting point of the proof is the equation (4.3) established earlier
which links the number log p(C,k) with the probability distribution Pn in
the following way:

log p(C,k) = logZn + nβnu · k + log Pn[X = nk].
The value of βn was given explicitly by (4.2) and it shows that nβn is of order
nd/(d+1). On the other hand, we know by Proposition 4.2 that log Pn[X =
nk] is negligible compared to nd/(d+1).

It only remains to estimate the term logZn. This is done by using the
series expansion (4.5) and applying Proposition A.1 from the appendix in
the same lines as the first part of the proof of Proposition 4.1. This leads to

logZn = ζ(d+ 1)
ζ(d)

1
βdn

(Λ(u) + o(1)),

which is again of order nd/(d+1). A simple computation based on the defini-
tion of βn and of the constant cd yields therefore

log p(C, nk)
n

d
d+1

−−−→
n→∞

cd
d+1
√

(d+ 1)!
(Λ(u) + u · k).

The final step is to express Λ(u) + u · k in terms of q(C,k). Recall that
u is defined by (4.2) and that we have shown in Proposition 4.1 that

k = (d+ 1)!
∫
C(u≤1)

x dx =
∫
C

xe−u·x dx.
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The computation of Λ(u)+u ·k is thus simply a matter of integral calculus.
Using the fundamental theorem of calculus and the Fubini-Tonelli theorem,
we obtain:

Λ(u) + u · k =
∫
C

(1 + u · x)e−u·x dx

=
∫
C

∫ ∞
u·x

t e−t dt dx

=
∫ ∞

0
te−t VolC(u ≤ t) dt

= (d+ 1)! VolC(u ≤ 1)

Finally, the definition (4.2) of u and the considerations of volumes in Sec-
tion 3 show that

VolC(u ≤ 1) = q(C, 1
(d+1)!k) =

[ 1
(d+ 1)!

] d
d+1

q(C,k).

The proof is complete.

Remark. Although we did not use it directly, it appears above that u is
actually the unique minimizer of the quantity Λ(v) + v · k for v ∈ C◦. This
fact can be used to prove Gigena’s Theorem 3.1.

5. Number of vertices of a random zonotope

In this section we determine the order of magnitude of the expected num-
ber of faces of each dimension and towers of a random zonotope. A tower
(or flag) of a zonotope T is a chain F0 ⊂ F1 ⊂ . . . ⊂ Fd−1, where Fi is an
i-dimensional face of T . We denote by fi(T ) the number of i-dimensional
faces and by F (T ) the number of towers of T .

Theorem 5.1. There are constants c1, c2 not depending on n such that

lim
n→+∞

Qn

{
T ∈ T (C, nk) | c1 <

fi(T )
nd(d−1)/(d+1) < c2

}
= 1,

lim
n→+∞

Qn

{
T ∈ T (C, nk) | c1 <

F (T )
nd(d−1)/(d+1) < c2

}
= 1.

As Qn is the uniform distribution on T (C, nk) the above theorem says
that, as n→∞, for the overwhelming majority of the zonotopes in T (C, nk)
the face numbers fi(T ) and F (T ) are of order nd(d−1)/(d+1). It is shown in
[4, 12] that for any integer lattice polytope P with volP > 0,

F (P ) = O
(
(volP )(d−1)/(d+1)

)
.

The same upper bound for each fi(P ) follows immediately. Combined with
the previous result on the volume of a random zonotope, this establishes the
upper bounds of Theorem 5.1. It only remains to show the lower bounds.

5.1. Generators of a random zonotope. Let Tε(C, nk) consist of all
zonotopes T ∈ T (C, nk) such that

|G(T )| ≥ (1− ε)ζ(d)−1ΛC(βu),
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and the number of generators of T that are contained in any single hyper-
plane is at most εΛC(βu). Our goal in this section is to prove all except for
a minute fraction of the zonotopes in T (C, nk) belong to Tε(C, nk).

Proposition 5.2.
lim

n→+∞
Qn[Tε(C, nk)] = 1.

Proof. This is quite easy. We rely on the two lemmas in Subsection 4.3 and
on the following rough form of the Chernoff bounds:

Proposition 5.3 (Chernoff bounds). Let X1, . . . , Xn be independent Bernoulli
random variables, let X = X1 + . . .+Xn, and let µ = E[X]. For any δ > 0,

P[X ≥ (1 + δ)µ] ≤ e−δ2µ/3, 0 < δ < 1,

P[X ≥ (1 + δ)µ] ≤ e−δµ/3, 1 ≤ δ,

P[X ≤ (1− δ)µ] ≤ e−δ2µ/2, 0 < δ < 1.

By Lemma 4.3 µ = E[|G(T )|] is of order nd/(d+1), and so an application
of the Chernoff bound gives, that for any 0 < ε < 1

Pn [|G(T )| ≤ (1− ε)µ] ≤ e−ε2µ/2 = exp{−cnd/(d+1)}
where c > 0 is a constant independent of n.

Next, we bound the probability that a hyperplane H with 0 ∈ H contains
more than a constant fraction of the expected number of generators of a
zonotope in T (C, nk). According to Lemma 4.4, µH = E[|G(T ) ∩ H|] ≤
cn(d−1)/(d+1) with c not depending on H and n. Applying the Chernoff
bound with γ > 1, we have

Pn [|G(T ) ∩H| ≥ (1 + γ)µH ] ≤ e−γµH/3.

In particular,
Pn [|G(T ) ∩H| ≥ εΛC(βu)] ≤ exp{−cnd/(d+1)}

for some c > 0 depending on ε.
Note finally that the total number of hyperplanes (containing the ori-

gin) spanned by the generators of a zonotope with O(nd/(d+1)) generators is
bounded by O(nd(d−1)/(d+1)). Since this is polynomial in n, a union bound
proves Proposition 5.2. �

5.2. Faces of a random zonotope. In this section, we show that the zono-
topes in Tε(C, nk) have at least the number of i-dimensional faces prescribed
by Theorem 5.1; the same lower bound for towers is an immediate corollary.

We rely on the following well-known duality between zonotopes and hy-
perplane arrangements. An arrangement of hyperplanes is a finite collection
of affine hyperplanes, together with their subdivision of Rd into relatively
open cells. A central hyperplane arrangement is the decomposition of Rd
induced by linear hyperplanes. For a d-dimensional zonotope T with gen-
erators {v1, . . . ,vm}, let Ac(T ) be the central arrangement of hyperplanes
with this set of normal vectors. The number of k-dimensional cells of Ac(T )
is equal to the number of d − k faces of T (see, e.g., [6, Prop. 2.2.2]). Let
A(T ) be the (d−1)-dimensional arrangement of affine hyperplanes obtained
as the intersection of Ac(T ) with a generic hyperplane. Clearly, the number
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of (k − 1)-dimensional cells of A(T ) is a lower bound on the number of k-
dimensional cells of A(T ) for k ∈ [1, d]. We note that twice this lower bound
is an upper bound on the number in question as the cells of Ac(T ) come in
pairs C,−C except C = {0}.

Proposition 5.4. There is a constant c independent of n such that for all
ε ∈ (0, c) and T ∈ Tε(C, nk), we have fi(T ) = Ω(nd(d−1)/(d+1)) for each
0 ≤ i ≤ d− 1.

Proof. If a single line {λv | λ ∈ R} is incident to k hyperplanes of Ac(T ),
then the vector v is orthogonal to k generators of T . Since at most (ε/(1−
ε))|G(T )| of the generators of T lie in the hyperplane v⊥ (for any v), the
same bound applies to the maximum number of hyperplanes of A(T ) that
are incident to any single point. Hence, we can apply the following theorem
of Beck [5] to bound the number of vertices of A(T ).

Lemma 5.5. There is a constant c depending on dimension such that the
following holds. Let A be an arrangement of m hyperplanes in Rd−1. Then
either

(1) a single vertex of A is incident to cm hyperplanes of A, or
(2) the total number of vertices in A is Ω(md−1).

Since A(T ) is an arrangement of nd/(d+1) hyperplanes, this implies that,
for ε sufficiently small, the number of vertices of A(T ) is Ω(nd(d−1)/(d+1)).

Designate a generic direction w in Rd−1 to be “up”. Clearly, each (d− 1)-
dimensional region of A(T ) that is bounded from below has a bottom vertex.
We claim that each vertex ofA(T ) is the bottom vertex of at least one region.
Let p be an arbitrary vertex of A(T ). At least d − 1 hyperplanes having
linearly independent normals are incident to p. Let S be an arbitrary set
of d − 1 such hyperplanes. At least one (d − 1) dimensional region R of
A(T ) is above each of these hyperplanes with respect to w, and p is the
bottom vertex of each such region. In addition, p is the bottom vertex of
each j-dimensional region that is contained in a hyperplane of S and that
bounds R, for 1 ≤ j ≤ d − 2. Hence, the number of j-dimensional regions
that are bounded below in A(T ) is at least the number of vertices of A(T ),
which is Ω(nd(d−1)/(d+1)).

Since the j-dimensional regions of A(T ) are in bijection with the (d− j)-
dimensional faces of T , this completes the proof of the proposition. �

5.3. A short digression. This proof method has an interesting conse-
quence about hyperplane (or rather subspace) arrangements that seems to
be new. Recall first that if A is a central arrangement of m general position
hyperplanes in Rd, then fi(A) is known precisely for all i:

fi(A) =
k∑

k=d−i

(
k

d− i

)(
m

k

)
see for instance Buck [7] and Zaslavski [16]. Moreover, this function is an
upper bound on the number of i-dimensional cells of every central arrange-
ment of m linear hyperplanes in Rd. Define Acr as the collection of all
d − 1-dimensional subspaces of the form z⊥ where z ∈ Zd has Euclidean
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length at most r. We could not find the following result anywhere in the
literature or in folklore.

Theorem 5.6. The number of i-dimensional cells for all i = 1, . . . , d and
the number of towers of Ar is Θ(rd(d−1)).

Proof. It follows from the result of Beck [5] cited above that the number of
one-dimensional cells of Acr is Θ(rd(d−1)). The same estimate is also implied
by Theorem 3 of [3].

Let Ar be the (d− 1)-dimensional arrangement of affine hyperplanes ob-
tained as the intersection of Acr with a general position hyperplane H the
same way as above. The previous proof applies word by word. �

6. Integral zonotopes in convex bodies

As it is mentioned in the introduction, for d = 2 Theorem 1.1 follows
from the results of Bárány [2]. In fact, more is true. We set up the question
more generally. Assume K ⊂ Rd a convex body (i.e., convex compact set
with non-empty interior) and write P(K,n) for the collection of all convex
1
nZ

d-lattice polytopes contained in K, P(K,n) is a finite set. It is proved in
[2] that, when d = 2, the polygons in P(K,n) have a limit shape as n→∞:

Theorem 6.1. For every convex body K in R2 there is a convex body K0 ⊂
K such that, as n → ∞, the overwhelming majority of the polygons in
P(K,n) are very close to K0. More precisely for every ε > 0

lim
n→∞

card {P ∈ P(K,n) | dist(P,K0) > ε}
cardP(K,n) = 0.

The distinguishing property of K0 is that its affine perimeter (for the
definition see [2]) is maximal among all convex subsets of K. It is also
shown there that such a K0 is unique. The analogous question in higher
dimension is wide open. Even the case when K is the cube [−1, 1]3 is not
known.

Question 1. Assume K ⊂ Rd is a convex body and d > 2. Is there a
limit shape to the convex polytopes in P(K,n)?

Define, similarly, F(K,n) as the collection of all convex 1
nZ

d-lattice zono-
topes contained in K, F(K,n) is again a finite set.

Question 2. Assume K ⊂ Rd is a convex body and d ≥ 2. Is there a
limit shape to the convex zonotopes in F(K,n)?

We can answer this question when d = 2. Informally stating, for every
convex body K in the plane there is a zonoid K0 contained in K such
that, as n → ∞, the overwhelming majority of the polygons in F(K,n)
are very close to K0. The proof follows the method of [2] so we only give
a sketch. Note that in the plane a zonoid is always a centrally symmetric
convex body and vice versa. The first thing to show is that K contains a
centrally symmetric convex body that maximizes the affine perimeter among
all centrally symmetric convex subsets of K. This follows from the fact that
the affine perimeter is upper semi-continuous. The next step is to prove
that the maximizer is unique. Here one uses the fact that, for all t ∈ [0, 1],
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if A,B ⊂ K are centrally symmetric convex bodies, then so is tA+ (1− t)B
which is a subset of K, again. The affine perimeter is a concave functional,
that is, writing AP (S) for the affine perimeter of the convex body S we have

AP (tA+ (1− t)B) ≥ tAP (A) + (1− t)AP (B).

This shows that if A and B are both maximizers, then so is tA+(1− t)B for
all t ∈ [0, 1]. Next one proves that A ⊂ B cannot happen. Then A and B are
both maximizers not only for K but also for the convex body Conv(A∪B).
Then A = B follows more or less the same way as in [2]. The proof that the
unique maximizer is the limit shape in P(K,n) goes analogously to [2].

We can also answer Question 2 when the convex body K is the cube
Q = Qd = [−1, 1]d for all d ≥ 2. To describe the limiting zonoid in this case,
set t = d+1

√
(d+ 1)!21−d and define the octahedron

Od = tConv{±e1, . . . ,±ed}.

With this notation the support function of the limiting zonoid Q0 is given
by

hQ0(v) = 1
2

∫
Od
|x · v|dx.

Theorem 6.2. With the above notation for every d ≥ 2 and for every η > 0

lim
n→∞

card
{
P ∈ F(Qd, n) | dist(P,Q0) > η

}
cardF(Qd, n) = 0.

Proof. The coordinate hyperplanes xi = 0 for i = 1, . . . , d split Rd into 2d
open cones; each corresponds to a sign pattern ε = (ε1, . . . , εd) ∈ {−1, 1}d.
Extend the cone with sign pattern ε to another cone, to be denoted by Cε
so that these 2d cones form a partition of Rd. This is clearly possible.

As we have seen in Section 2 for every zonotope T ∈ P(Q,n) there is a
unique multiset W ⊂ 1

nP
d such that T = T (W ). Define W ε = W ∩ Cε for

every ε and set kε =
∑
w∈W ε w. Then T ε = T (W ε) is a zonotope in the

cone Cε with endpoint kε and containing the origin. Moreover, T =
∑
ε T

ε.
As T ⊂ Q, the conditions

(6.1)
∑
ε:εi=1

kεi ≤ 1 and
∑

ε:εi=−1
kεi ≥ −1

are satisfied for every i = 1, . . . , d.
A fixed kε ∈ Cε ∩ 1

nZ defines a family F(kε) consisting of all zonotopes
in Cε that contain the origin and whose endpoint is kε. Given kε ∈ Cε for
all ε we write k = (kε : all ε) which is in fact a d× 2d matrix. Let F(k) be
the collection of all zonotopes T ∈ F(Q,n) for which the endpoint of T ε is
kε for all ε.

After these preparation here is the plan of the proof. We show that the
contribution to |F(Q,n)| of F(k) is minute unless |kεi −εi21−d| is very small
for all ε and all i. This will prove that for most zonotopes T ∈ F(Q,n) and
for all ε the endpoint of T ε is very close to the vector (ε121−d, . . . , εd21−d).
The limit shape of these zonotopes is very close to the limiting zonoid of
the zonotopes in Cε with endpoint (ε121−d, . . . , εd21−d) which is known from
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Example 1. Finally, the sum of the limiting zonoids is Q0 as one can check
easily.

It follows from Theorem 1.2 and Example 1 that

log |F(kε)| = cd

(
(d+ 1)d

d!

d∏
1
|kεi |

)1/(d+1)

nd/(d+1)(1 + o(1)).

Since log |F(k)| =
∑
ε log |F(kε)| we will have to deal with the expression

S(k) :=
∑
ε

(
d∏
1
|kεi |

)1/(d+1)

.

Writing c′d = cd
d+1
√

(d+1)d

d! , we have

logF(k) = c′dS(k)nd/(d+1)(1 + o(1)).

Our first task is to show that

(6.2) S(k) ≤ d

d+ 122d/(d+1)(1 + 21−d) =: Dd.

To see this it is convenient to define kε0 = 21−d. Then, using the inequality
between the arithmetic and geometric means 2d times and the conditions
(6.1)

S(k) = 2(d−1)/(d+1)∑
ε

(
d∏
0
|kεi |

)1/(d+1)

≤ 2(d−1)/(d+1) 1
d+ 1

∑
ε

(
d∑
0
|kεi |

)

= 2(d−1)/(d+1) 1
d+ 1

d∑
0

(
∑
ε

|kεi |) ≤ 2(d−1)/(d+1) 2
d+ 1

d∑
0

(1 + 21−d)

= d

d+ 122d/(d+1)(1 + 21−d) = Dd.

Note that equality holds throughout if all kεi = ±21−d, so maxS(k) = Dd.
Here kε can be chosen in at most (n + 1)d ways, so k can take at most

(n+ 1)d2d values. Then

|F(Q,n)| =
∑

k
exp{c′dS(k)nd/(d+1)(1+o(1))} ≤ exp{c′dDdn

d/(d+1)(1+o(1))}.

We are to use a strengthening of the inequality between the arithmetic
and geometric means. Let t1, . . . , tm be non-negative reals (not all zero) and
let Am resp. Gm denote their arithmetic and geometric mean. Then, for
any i, j in {1, . . . ,m}

(6.3) (ti − tj)2

2m2Am
≤ Am −Gm.

For the reader’s convenience we prove this inequality at the end of this
section.

Assume next that |kεj − εj21−d| ≥ δ for some ε and for some j = 1, . . . , d
where δ > 0. Then using (6.3) in the above application of the inequality
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between the arithmetic and geometric means in the term corresponding to
this ε we have can add an extra term, namely

(
d∏
0
|kεi |)1/(d+1) ≤ 1

d+ 1
∑
ε

(
d∑
0
|kεi |)−

(kεj − εj21−d)2

2(d+ 1)2(1 + 21−d)

≤ 1
d+ 1

∑
ε

(
d∑
0
|kεi |)−

δ2

3(d+ 1)2 .

Here we used the fact that
∑d
j=0 k

ε
j ≤ 1 + 21−d. This implies that when

|kεi − εi21−d| ≥ δ for some positive δ, then

S(k) ≤ Dd −
δ2

3(d+ 1)2 .

This shows in turn that the contribution of the F(k) with all such k to
|F(Q,n)| is only

exp{c′d(Dd − δ2/3(d+ 1)2)nd/(d+1)(1 + o(1))},

much smaller than |F(Q,n)| as long as δ2nd/(d+1) is larger than any fixed
positive constant, say η2. Thus, for all δ > 0, as n → ∞, all but a small
fraction of the zonotopes in F(Q,n) satisfy |kεi−εi21−d| ≤ δ for all ε and all i.
Theorem 1.1 and Example 1 show that, again, all but a small fraction of the
zonotopes in F(kε) are very close to the limiting zonoid in Cε corresponding
to kε = (ε121−d, . . . , εd21−d). �

Proof of (6.3). We may assume that i = 1 and j = 2. Suppose m ≥ 3
and let Am−1 resp. Gm−1 denote the arithmetic and geometric mean of
t1, . . . , tm−1. Richard Rado [10, Theorem 60] proved the inequality

(m− 1)(Am−1 −Gm−1) ≤ m(Am −Gm),
which is, of course, a strengthening of the inequality between the arithmetic
and geometric means. Then for m ≥ 2

m(Am −Gm) ≥ 2(A2 −G2) = (
√
t1 −

√
t2)2 = (t1 − t2)2

(
√
t1 +

√
t2)2

≥ (t1 − t2)2

2(t1 + t2) ≥
(t1 − t2)2

2mAm
.

�

Appendix A. Discrete sums and integrals on cones

The aim of this section is to establish the following proposition.

Proposition A.1. Let d ≥ 3 and let Pd = {x ∈ Zd | gcd(x1, . . . , xd) = 1}
denote the set of primitive vectors. Let f : C → R be continuously differen-
tiable and positively homogeneous of degree h, that is to say f(λx) = λhf(x)
for all x ∈ C and λ ≥ 0. For every u ∈ Int(C◦),

(A.1) βd+h ∑
x∈C∩Pd

f(x)e−βu·x =
β↓0

1
ζ(d)

∫
C
f(x)e−u·xdx +O(β).
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We start the proof by a standard lemma dealing with the approximation
of integrals on a convex body by Riemann sums.

Lemma A.2. Let L > 0, and let K be a compact convex subset of the
hypercube [−L

2 ,
L
2 ]d. For every Lipschitz continuous function f : K → R

with Lipschitz constant M > 0,

(A.2)

∣∣∣∣∣∣
∑

x∈K∩Zd

f(x)−
∫
K
f(x) dx

∣∣∣∣∣∣ ≤M
√
d

2 Ld + 4d!(L+ 1)d−1 sup
K
|f |.

Proof. For all x in Zd, let us consider the (hyper)cube Q(x) = x + [−1
2 ,

1
2 ]d

of unit volume. These cubes are of three types: those that are contained
in K, those that cross the boundary of K, and those that have no point in
common with K. The idea of the proof is to approximate the integral by
considering in first approximation only the reunion of the cubes of the first
kind. For each cube Q(x) contained in K,∣∣∣∣∣f(x)−

∫
Q(x)

f(y)dy
∣∣∣∣∣ ≤

∫
Q(x)
|f(x)− f(y)| dy ≤M

√
d

2 .

Moreover, the number of cubes contained in K is at most Ld. This already
yields the first term in the right-hand side of (A.2).

We also have to deal with the cubes that cross the boundary of K. Since
K is convex, it is easily seen by induction on d that the number of such
cubes is at most 2d!(L + 1)d−1. Bounding f by supK |f | on Q(x) ∩K, we
obtain (A.2). �

Corollary A.3. Let f : C → R be continuously differentiable and positively
homogeneous of degree h, that is to say f(λx) = λhf(x) for all x ∈ C and
λ ≥ 0. Let A be a compact subset of C◦. There exists cA,f,d > 0 such that
for all β ∈ (0, 1],

(A.3) sup
u∈A

∣∣∣∣∣∣
∑

x∈C∩Zd

f(x)e−βu·x −
∫
C
f(x)e−βu·xdx

∣∣∣∣∣∣ ≤ cA,f,d
βd+h−1 .

Proof. Since A is compact, we can find L > 0 such that for all u ∈ A, the
truncated cone Cu = {x ∈ C | u · x ≤ 1} is contained in [−L

2 ,
L
2 ]d. For all

t > 0, an application of Lemma A.2 to the compact convex subset tCu of
[− tL

2 ,
tL
2 ]d implies

sup
u∈A

∣∣∣∣∣∣
∑

x∈tCu∩Zd

f(x)−
∫
tCu

f(x)dx

∣∣∣∣∣∣�f,A,d (1 + t)d+h−1 .

By integration over [0,+∞), we obtain therefore for all β > 0,

sup
u∈A

∫ ∞
0

∣∣∣∣∣∣
∑

x∈tCu∩Zd

f(x)−
∫
tCu

f(x)dx

∣∣∣∣∣∣βe−βtdt�f,A,d
1

βd+h−1 .

This concludes the proof since the Fubini theorem yields∫ ∞
0

 ∑
x∈C∩Zd

f(x)1{u·x≤t}

βe−βtdt =
∑

x∈C∩Zd

f(x)e−βu·x
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and similarly ∫ ∞
0

[∫
tCu

f(x)dx
]
βe−βtdt =

∫
x∈C

f(x)e−βu·x.

�

Proof of Proposition A.1. This follows from Corollary A.3 and the fact that
the subset Pd of Zd has asymptotic density 1/ζ(d), which is a well known
consequence of the Möbius inversion formula [11]. �

Here comes the one-sided inequality needed in the proof of Theorem 5.1.

Lemma A.4. Let L > 0, let H be a hyperplane containing the origin. Let
K be a compact convex subset of the hypercube [−L/2, L/2]d ∩H. For every
Lipschitz continuous function f : K → R with Lipschitz constant M > 0,∑

x∈K∩Zd

f(x)−
∫
K
f(x)dx ≤M

√
d

2 Ld−1 + 4(d− 1)!(L+ 1)d−2 sup
K
|f |.

Proof. For x ∈ Zd ∩ H, let Q(x) = x + [−1/2, 1/2]d be the hypercube of
unit volume centered at x. A theorem of Vaaler [14] establishes that the
(d− 1)-dimensional volume of H ∩Q(x) is at least 1; let Q′(x) be a subset
of Q(x) of volume 1.

For Q′(x) contained in K,∣∣∣∣∣f(x)−
∫
Q′(x)

f(y)dy
∣∣∣∣∣ ≤

∫
Q′(x)

|f(x)− f(y)| ≤M
√
d/2.

The other error term comes from a bound on the number of cubes that
intersect the boundary of K, and the proof is exactly as in the proof of
Lemma A.2.

We do not have a two-sided inequality as in Lemma A.2, since the union
of Q does not contain the intersection K ∩H, and we have also lost some of
the mass by passing from Q to Q′. �
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