
ar
X

iv
:1

70
4.

02
59

5v
4 

 [
m

at
h.

D
S]

  7
 M

ar
 2

01
8

Uniformly recurrent subgroups and simple

C∗-algebras∗
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Abstract

We study uniformly recurrent subgroups (URS) introduced by Glasner
and Weiss [18]. Answering their query we show that any URS Z of a
finitely generated group is the stability system of a minimal Z-proper
action. We also show that for any sofic URS Z there is a Z-proper action
admitting an invariant measure. We prove that for a URS Z all Z-proper
actions admits an invariant measure if and only if Z is coamenable. In the
second part of the paper we study the separable C

∗-algebras associated
to URS’s. We prove that if a URS is generic then its C∗-algebra is simple.
We give various examples of generic URS’s with exact and nuclear C

∗-
algebras and an example of a URS Z for which the associated simple
C

∗-algebra is not exact and not even locally reflexive, in particular, it
admits both a uniformly amenable trace and a nonuniformly amenable
trace.
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1 Introduction

Let Γ be a countable group and Sub(Γ) be the compact space of all subgroups
of Γ. The group Γ acts on Sub(Γ) by conjugation. Uniformly recurrent

subgroups (URS) were defined by Glasner and Weiss [18] as closed, invariant
subsets Z ⊂ Sub(Γ) such that the action of Γ on Z is minimal (every orbit is
dense). Now let (X,Γ, α) be a Γ-system (that is, X is a compact metric space
and α : Γ → Homeo(X) is a homomorphism). For each point x ∈ X one can
define the topological stabilizer subgroup Stab0α(x) by

Stab0α(x) = {γ ∈ Γ | γ fixes some neighborhood of x} .
Let us consider the Γ-invariant subset X0 ⊆ X such that x ∈ X0 if and only if
Stabα(x) = Stab0α(x) . The closure of the invariant subset Stabα(X

0) ⊂ Sub(Γ)
is called the stability system of (X,Γ, α) (see also [21],[23]). If the action is
minimal, then the stability system of (X,Γ, α) is a URS. Glasner and Weiss
proved (Proposition 6.1,[18]) that for every URS Z ⊂ Sub(Γ) there exists a
topologically transitive (that is there is a dense orbit) system (X,Γ, α) with Z
as its stability system. They asked (Problem 6.2., [18]), whether for any URS Z
there exists a minimal system (X,Γ, α) with Z as its stability system. Recently,
Kawabe [21] gave an affirmative answer for this question in the case of amenable
groups.

Definition 1.1. Let Γ be a countable group and Z ⊂ Sub(Γ) be a URS.
A system (X,Γ, α) is Z-proper if for any x ∈ X Stabα(x) = Stab0α(x) and
Stabα(X) ∈ Z.

Before stating our first result we prove a lemma for the sake of completeness.

Lemma 1.1. If (X,Γ, α) is a Z-proper system, then the map Stabα : X →
Sub(Γ) is continuous.

Proof. Let {xn}∞n=1 be a sequence in X converging to an element x ∈ X . We
need to show that γ ∈ Stabα(x) if and only if there exists some constant Nγ > 0
such that if n ≥ Nγ then γ ∈ Stabα(xn). Clearly, if γ ∈ Stabα(xn), then by
the continuity of α, γ ∈ Stabα(x) for large enough n. In other words, for any
Γ-system (X,Γ, α) the map Stabα : X → Sub(Γ) is upper-semicontinuous. It is
important to note that for Γ-systems in general the map Stabα is not necessarily
continuous at all points x ∈ X . Let (X,α,Z) be the standard Bernoulli shift.
That is, X = {0, 1}Z and α is the left translation by Z. Let xn ∈ X be defined
the following way. For n ≥ 1, let xn(k) = 1 if |k| ≤ n and let xn(k) = 0,
otherwise. Also, let x(k) = 1 for any k ∈ Z. Then, xn → x. On the other hand,
Stabα(xn) = {0} for all n ≥ 1 and Stabα(x) = Z. Now, if (X,α,Γ) is Z-proper
for some URS Z and γ ∈ Stabα(x), then γ ∈ Stabα(y) for some neighborhood
x ∈ U ⊂ X . Hence, there exists some constant Nγ > 0 such that γ ∈ Stabα(xn)
provided that n ≥ Nγ . Therefore our lemma follows.

Theorem 1. If Γ is a finitely generated group and Z ⊂ Sub(Γ) is a URS,
then there exists a minimal Z-proper system (X,Γ, α) (that is, Z is the stability
system of (X,Γ, α)).
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In fact, we will show that X can be chosen as a Z-proper minimal Bernoulli
subshift (see Definition 2.1). In the proof we will use the Lovász Local Lemma
technique of Alon, Grytczuk, Haluszczak and Riordan [3] to construct a minimal
action on the space of rooted colored Γ-Schreier graphs. This approach has
already been used to construct free Γ-Bernoulli subshifts by Aubrun, Barbieri
and Thomassé [2] . Very recently, Matte Bon and Tsankov [24] completely
answered the query of Glasner and Weiss for uniformly recurrent subgroups of
discrete and locally compact groups. The next result of the paper is about the
existence of invariant measures on Z-proper Bernoulli subshifts. For a long time
all finitely generated groups that had been known to have free Bernoulli subshifts
were residually-finite. Then Dranishnikov and Schroeder [15] constructed a free
Bernoulli subshift for any torsion-free hyperbolic group. Somewhat later Gao,
Jackson and Seward proved that any countable group has free Bernoulli subshifts
[16], [17]. On the other hand, Hjorth and Molberg [20] proved that for any
countable group Γ there exists a free continuous action of Γ on a Cantor set
admitting an invariant probability measure. We will prove the following result.

Theorem 2. Let Γ be a finitely generated group and Z ⊂ Sub(Γ) be a sofic URS
(see Definition 4.1) then there exists a Z-proper Bernoulli shift with an invariant
probability measure. In particular, for every finitely generated sofic group Γ there
exists a free Bernoulli subshift with an invariant probability measure.

Immediately after the first version of our paper appeared, using a measurable
version of the Local Lemma, Bernhsteyn [5] proved that free Bernoulli subshift
admitting an invariant probability measure exists for any countable group. He
also noted that this result follows from a deep theorem of Seward and Tucker-
Drob [26]. We can actually characterize those uniformly recurrent subgroups Z
for which all the Z-proper actions admit invariant probability measures (Theo-
rem 6).

The second part of the paper is about C∗-algebras. For any finitely generated
group Γ and uniformly recurrent subgroup Z ⊂ Sub(G), we associate a separable
C∗-algebra C∗r (Z). For any group Γ, if Z = {1}, the associated C∗-algebra
C∗r (Z) is just the reduced C∗-algebra of the group. It is known that the reduced
C∗-algebra of a group Γ is simple if and only if the group admits no non-trivial
amenable uniformly recurrent subgroups [22]. We prove (Theorem 7) that if
the URS Z is generic (see Subsection 2.3) then the C∗-algebra C∗r (Z) is always
simple. Using the coloring scheme developed in the first part of the paper, we
will show how to construct generic URS’s from a single infinite graph of bounded
vertex degrees. By this construction we obtain examples of generic URS’s with
nuclear (Theorem 8) and exact( but not nuclear) C∗-algebras (Proposition 7.1).
Finally, we will construct a generic URS Z for which the simple C∗-algebra
C∗r (Z) is not locally-reflexive (hence not exact). In fact, this algebra C∗r (Z)
admits both a uniformly amenable and a non-uniformly amenable trace. We
will see that the URS above is not Borel equivalent to a free minimal action of
any countable group.
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2 Schreier graphs

2.1 The space of rooted Schreier graphs

Let Γ be a finitely generated group with a generating system Q = {γi}ni=1. Let
H ∈ Sub(Γ). Then the Schreier graph associated to H is constructed as follows.

• The vertex set of the Schreier graph of H is the coset space Γ/H (that is
the group Γ acts on the vertex set of the Schreier graphs on the left).

• The vertices corresponding to the cosets aH and bH are connected by
a directed edge labeled by the generator γi if γiaH = bH , or by γ−1i

if γibH = aH (note that we allow loops and multiply labeled directed
edges).

The coset class of H is called the root of the Schreier graph associated to H .
The set of all rooted Schreier graphs will be denoted by SchQΓ . So, we have

a map SQ
Γ : Sub(Γ) → SchQΓ such that SQ

Γ (H) is the rooted Schreier graph
associated to the subgroup H . We will consider the usual shortest path distance
on the graph SQ

Γ (H) and denote the ball of radius r around the root H by

Br(S
Q
Γ (H), H) . Note that Br(S

Q
Γ (H), H) is a rooted edge-labeled graph. The

space of all Schreier graphs SchQΓ is a compact metric space, where

dSchQ

Γ

(SQ
Γ (H1), S

Q
Γ (H2)) = 2−r ,

if r is the largest integer for which the r-balls Br(S
Q
Γ (H1), H1) and

Br(S
Q
Γ (H2), H2) are rooted-labeled isomorphic. We can define the action of the

group Γ on the compact metric space SchQΓ in the following way. If γ ∈ Γ and
H ∈ Sub(Γ), then

γ(SQ
Γ (H)) = SQ

Γ (γHγ−1) .

The graph SQ
Γ (γHγ−1) can be regarded as the same graph as SQ

Γ (H) with the

new root γH . We will use the root-change picture of the Γ-action on SchQΓ later

in the paper. If S = SQ
Γ (H) is a Schreier graph and x = γH is another vertex

of S, then (SQ
Γ (H), x) will denote the Schreier graph with underlying labeled

graph S and root x. In this case (SQ
Γ , x) is isomorphic to SQ

Γ (γHγ−1) as rooted

Schreier graphs. Clearly, SQ
Γ : Sub(Γ)→ SchQΓ , is a homeomorphism commuting

with the Γ-actions defined above. Let Z ⊂ Sub(Γ), then SQ
Γ (Z) ⊂ SchQΓ is a

closed Γ-invariant subspace of rooted Schreier graphs.

2.2 Schreier graphs and uniformly recurrent subgroups

Proposition 2.1. Let Γ and Z be as above, H ∈ Z and SQ
Γ (H) be the corre-

sponding rooted Schreier graph. Then for any x ∈ V (SQ
Γ (H)) and R > 0 there

exists Sx,R > 0 such that for any y ∈ V (SQ
Γ (H)), there is a z ∈ V (SQ

Γ (H)) so
that
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• dSQ
Γ
(H)(y, z) ≤ Sx,R

• The rooted labeled balls BR(S
Q
Γ (H), x) and BR(S

Q
Γ (H), z) are isomorphic.

Conversely, if H ∈ Sub(Γ) has the repetition property as above, then its orbit
closure in Sub(Γ) is a uniformly recurrent subgroup.

Proof. We proceed by contradiction. Suppose that there is some x ∈ V (SQ
Γ (H))

such that for all n ≥ 1 there exists yn ∈ V (SQ
Γ (H)) such that if dSQ

Γ
(H)(y, z) ≤ n,

then BR(S
Q
Γ (H), x) and BR(S

Q
Γ (H), z) are not isomorphic. Let S ∈ SchQΓ be

a rooted Schreier graph that is a limitpoint of the sequence of rooted Schreier
graphs {SQ

Γ (H), yn}∞n=1. Then, if q ∈ V (S), the rooted balls BR(S
Q
Γ (H), x) and

BR(S, q) are not isomorphic. Hence, the orbit closure of S in the Γ-space SchQΓ
does not contain the Schreier graph SQ

Γ (H) in contradiction with the minimality
of Z.
Now we prove the converse. Let H ∈ Sub(Γ) be a subgroup satisfying the
condition of our lemma. Let K,L ∈ Sub(Γ) be elements of the orbit closure of
H . It is enough to show that the orbit closure of K contains L. Let R > 0
be an integer. We need to show that there exists x ∈ V (SQ

Γ (K)) such that

BR(S
Q
Γ (K), x) is rooted-labeled isomorphic to BR(S

Q
Γ (L), L)) . Since L is in the

orbit closure of H , we have y ∈ V (SQ
Γ (H)) such that BR(S

Q
Γ (H), y) is rooted-

labeled isomorphic to BR(S
Q
Γ (L), L)) . By our condition, if K is in the orbit

closure ofH , there exists x ∈ V (SQ
Γ (K)) so that BR(S

Q
Γ (K), x) is rooted-labeled

isomorphic to BR(S
Q
Γ (H), y). This finishes the proof of our proposition.

2.3 Genericity

Let Γ be as above and Z ⊂ Sub(Γ) be a URS. We say that Z is generic if
for every H ∈ Z, the coset space Γ/H and the orbit of H in Sub(Γ) are Γ-
isomorphic sets under the map φ : Γ/H → Orb(H), φ(gH) = gHg−1. That
is, all the elements of Z are self-normalizing subgroups. We will give several
examples of generic URS’s in Section 5.

Proposition 2.2. Let Z be a generic URS of Γ. Then for each H ∈ Z,
Stab0α(H) = Stabα(H) = H . That is, (Z,Γ, α) is a Z-proper system, where
α is the conjugation action of Γ on Z. Hence, the stability system of a generic
URS is itself.

Proof. Let H ∈ Z. Then by genericity, Stabα(H) is the stabilizer of the root in

SQ
Γ (H), that is, Stabα(H) = H. Also, if h ∈ H , then h fixes the root of every

element of SchQΓ that is close enough to SQ
Γ (H), hence Stab0α(H) = Stabα(H) .

Proposition 2.3. The uniformly recurrent subgroup Z is generic if and only
if the following statement holds. For any R > 0 there exists S > 0 such that

6



if H ∈ Z, x, y ∈ V (SQ
Γ (H)), 0 < dSQ

Γ
(H)(x, y) ≤ R, then the rooted balls

BS(S
Q
Γ (H), x) and BS(S

Q
Γ (H), y) are not rooted-labeled isomorphic.

Proof. Suppose that for any n ≥ 1, there exists Hn ∈ Z and xn, yn ∈ Γ/Hn

such that

• 0 < dΓ/Hn
(xn, yn) ≤ R .

• the n-balls around xn and yn are rooted-labeled isomorphic.

Let (SQ
Γ (H), H) be a limitpoint of the sequence {(SQ

Γ (Hn), xn)}∞n=1 in SQ
Γ .

Then, there exists γ ∈ Γ, γ /∈ H , so that (SQ
Γ (H), H) and (SQ

Γ (H), gH) are
rooted-labeled isomorphic. Hence φ : Γ/H → Orb(H) is not a bijective map.
On the other hand, it is clear that if the condition of our proposition is sat-
isfied for any H ∈ Z, then φ : Γ/H → Orb(x) is always bijective, hence Z is
generic.

2.4 The Bernoulli shift space of uniformly recurrent sub-

groups

Let Γ, Q be as in the previous subsection, H ∈ Sub(Γ) and let K be a finite
alphabet. A rooted K-colored Schreier graph of H is the rooted Schreier graph
SQ
Γ (H) equipped with a vertex-coloring c : Γ/H → K. Let SchK,Q

Γ be the
set of all rooted K-colored Schreier-graphs. Again, we have a compact, metric
topology on SchK,Q

Γ :
dSchK,Q

Γ

(S, T ) = 2−r ,

if r is the largest integer such that the r-balls around the roots of the graphs
S and T are rooted-colored-labeled isomorphic. We define dSchK,Q

Γ

(S, T ) = 2 if

the 1-balls around the roots are nonisomorphic and even the colors of the roots
are different. Again, Γ acts on the compact space SchK,Q

Γ by the root-changing

map. Hence, we have a natural color-forgetting map F : SchK,Q
Γ → SchQΓ that

commutes with the Γ-actions. Notice that if a sequence {Sn}∞n=1 ⊂ SchK,Q
Γ

converges to S ∈ SchK,Q
Γ , then for any r ≥ 1 there exists some integer Nr ≥ 1

such that if n ≥ Nr then the r-balls around the roots of the graph Sn and the
graph S are rooted-colored-labeled isomorphic. Let H ∈ Sub(Γ) and c : Γ/H →
K be a vertex coloring that defines the element SH,c ∈ SchK,Q

Γ . Then of course,
γ(SH,c) = SH,c if γ ∈ H . On the other hand, if γ(SH,c) = SH,c and γ /∈ H then
we have the following lemma that is immediately follows from the definitions of
the Γ-actions.

Lemma 2.1. Let γ /∈ H and γ(SH,c) = SH,c. Then there exists a colored-labeled
graph-automorphism of the K-colored labeled graph SH,c moving the vertex rep-
resenting H to the vertex representing γ(H) 6= H.

7



Note that we have a continuous Γ-equivariant map π : SchK,Q
Γ → Sub(Γ), where

π(t) = (SQ
Γ )−1 ◦F(t). Let Z be a URS of Γ. We say that the element t ∈ SchK,Q

Γ

is Z-regular if π(t) = H ∈ Z and Stabα(t) = H , where α is the left action

of Γ on SchK,Q
Γ . Note that if H ∈ Z and t is a K-coloring the Schreier graph

SQ
Γ (H), then by Lemma 2.1, t is Z-regular if and only if there is no non-trivial

colored-labeled automorphism of t.

Proposition 2.4. Let Y ⊂ SchK,Q
Γ be a closed Γ-invariant subset consisting of

Z-regular elements. Let (M,Γ, α) ⊂ (Y,Γ, α) be a minimal Γ-subsystem. Then
M is Z-proper, that is, for any m ∈ M , Stab0α(m) = Stabα(m) ∈ Z. Also,
π(M) = Z.

Proof. Let h ∈ Stabα(m). Then by Z-regularity h fixes the root ofm. Therefore,
h fixes the root of m′ provided that dSchK,Q

Γ

(m,m′) is small enough. Thus,

h ∈ Stab0α(m). Since π is a Γ-equivariant continuous map and M is a closed
Γ-invariant subset, π(M) = Z.

Definition 2.1. Let Z be as above and K be a finite alphabet. Let BK(Z)

be the Γ-invariant subset of all elements S of SchK,Q
Γ such that the underlying

Schreier graph is in SchQΓ (Z). We call BK(Z) the K-Bernoulli shift space of Z.
A closed Γ-invariant subset of BK(Z) is called a Bernoulli subshift of Z.

Note that if Z = {1}, then Z-properness is just the classical notion of Γ-freeness,
and the Z-subshifts are the Bernoulli subshifts of Γ.

3 Lovász’s Local Lemma and the proof of The-

orem 1

Let Z be a URS of Γ. By Proposition 2.4, it is enough to construct a closed
Γ-invariant subset Y ⊂ SchK,Q

Γ for some alphabet K such that all the elements
of Y are Z-proper. This will give us a bit more than just a continuous action
having stability system Z, Y will be a minimal Z-proper Bernoulli subshift. It
is quite clear that the stability system of a minimal Z-proper Bernoulli subshift
is always Z itself. Let H ∈ Z and consider the Schreier graph S = SQ

Γ (H).
Following [2] and [3] we call a coloring c : Γ/H → K nonrepetitive if for any path
(x1, x2, . . . , x2n) in S there exists some 1 ≤ i ≤ n such that c(xi) 6= c(xn+i) .
We call all the other colorings repetitive.

Theorem 3. [Theorem 1 [3]] For any d ≥ 1 there exists a constant C(d) > 0
such that any graph G (finite or infinite) with vertex degree bound d has a
nonrepetitive coloring with an alphabet K, provided that |K| ≥ C(d).

Proof. Since the proof in [3] is about edge-colorings and the proof in [2] is in
slightly different setting, for completeness we give a proof using Lovász’s Local
Lemma, that closely follows the proof in [3]. Now, let us state the Local Lemma.
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Theorem 4 (The Local Lemma). Let X be a finite set and Pr be a probability
distribution on the subsets of X. For 1 ≤ i ≤ r let Ai be a set of events, where
an “event” is just a subset of X. Suppose that for all A ∈ Ai, Pr(Ai) = pi. Let
A = ∪ri=1Ai. Suppose that there are real numbers 0 ≤ a1, a2, . . . , ar < 1 and
∆ij ≥ 0, i, j = 1, 2, . . . , r such that the following conditions hold:

• for any event A ∈ Ai there exists a set DA ⊂ A with |DA ∩Aj | ≤ ∆ij for
all 1 ≤ j ≤ r such that A is independent of A\(DA ∪ {A}),
• pi ≤ ai

∏r
j=1(1− aj)

∆ij for all 1 ≤ i ≤ r .

Then Pr(∩A∈AA) > 0.

Let G be a finite graph with maximum degree d. It is enough to prove our
theorem for finite graphs. Indeed, if G′ is a connected infinite graph with vertex
degree bound d, then for each ball around a given vertex p we have a nonrepet-
itive coloring. Picking a pointwise convergent subsequence of the colorings we
obtain a nonrepetitive coloring of our infinite graph G′.
Let C be a large enough number, its exact value will be given later. Let X
be the set of all random {1, 2, . . . , C}-colorings of G. Let r = diam(G) and for
1 ≤ i ≤ r and for any path P of length 2i − 1 let A(P ) be the event that P is
repetitive. Set

Ai = {A(P ) : P is a path of length 2i− 1 in G} .

Then pi = C−i. The number of paths of length 2j − 1 that intersects a given
path of length 2i − 1 is less or equal than 4ijd2j . So, we can set ∆ij = 4ijd2j.
Let ai =

1
2id2i . Since ai ≤ 1

2 , we have that (1− ai) ≥ exp(−2ai). In order to be
able to apply the Local Lemma, we need that for any 1 ≤ i ≤ r

pi ≤ ai

r
∏

j=1

exp(−2aj∆ij) .

That is

C−i ≤ ai

r
∏

j=1

exp(−8ijajd2j) ,

or equivalently

C ≥ 2d2 exp



8
r
∑

j=1

j

2j



 .

Since the infinite series
∑∞

j=1
j
2j converges to 2, we obtain that for large enough

C, the conditions of the Local Lemma are satisfied independently on the size of
our finite graph G. This ends the proof of Theorem 3.

Let |K| = C(|Q|) and let c : Γ/H → K be a nonrepetitive K-coloring that gives

rise to an element y ∈ SchK,Q
Γ . The following proposition finishes the proof of

Theorem 1.
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Proposition 3.1. All elements of the orbit closure Y of y in SchK,Q
Γ are Z-

regular.

Proof. Let x ∈ Y with underlying Schreier graph SQ
Γ (H ′) and coloring c′ :

Γ/H ′ → K. Since Z is a URS, H ′ ∈ Z. Indeed, π−1(Z) is a closed Γ-
invariant set and y ∈ π−1(Z). Clearly, α(γ)(x) = x if γ ∈ H ′. Now suppose
that α(γ)(x) = x and γ /∈ H ′ (that is x is not Z-proper). By Lemma 2.1,
there exists a colored-labeled automorphism θ of the graph x moving root(x) to
α(γ)(root(x)) 6= root(x). Note that if a is a vertex of x, then θ(a) 6= a. Indeed,
if a labeled automorphism of a Schreier graph fixes one vertex, it must fix all the
other vertices as well. Now we proceed similarly as in the proof of Lemma 2 [3]
or in the proof of Theorem 2.6 [2]. Let a ∈ V (x) be a vertex such that there is no
b ∈ x such that distx(b, θ(b)) < distx(a, θ(a)). Let (a = a1, a2, . . . , an+1 = θ(a))
be a shortest path between a and θ(a). For 1 ≤ i ≤ n, let α(γki

)(ai) = ai+1 .
Then let an+2 = α(γk1

)(an+1), an+3 = α(γk2
)(an+2), . . . , a2n = α(γkn

)(a2n−1) .
Since θ is a colored-labeled automorphism, for any 1 ≤ i ≤ n

c(ai) = c(ai+n) . (1)

Lemma 3.1. The walk (a1, a2, . . . , a2n) is a path.

Proof. Suppose that the walk above crosses itself, that is for some i, j, aj = an+i.
If (n+1)−j ≥ (n+i)−(n+1) = i−1 , then distx(a2, θ(a2)) = distx(a2, an+2) <
distx(a, θ(a)) . On the other hand, if (n+1)− j ≤ (n+ i)− (n+1) = i− 1 , then
distx(an, θ(an)) = distx(an, a2n−1) < distx(a, θ(a)) . Therefore, (a1, a2, . . . , a2n)
is a path.

By (1) and the previous lemma, the K-colored Schreier-graph x contains a
repetitive path. Since x is in the orbit closure of y, this implies that y contains
a repetitive path as well, in contradiction with our assumption.

4 Sofic groups, sofic URS’s and invariant mea-

sures

4.1 Sofic groups

First, let us recall the notion of a finitely generated sofic group. Let Γ be
a finitely generated infinite group with a symmetric generating system Q =
{γi}ni=1 and a surjective homomorphism κ : Fn → Γ from the free group Fn

with generating system Q = {ri}ni=1 mapping ri to γi. Let Cay
Q
Γ be the Cayley

graph of Γ with respect to the generating system Q, that is the Schreier graph
corresponding to the subgroup H = {1Γ}. Let {Gk}∞k=1 be a sequence of finite
Fn-Schreier graphs. We call a vertex p ∈ V (Gk) a (Γ, r)-vertex if there exists a
rooted isomorphism

Ψ : Br(Gk, p)→ Br(Cay
Q
Γ , 1Γ)
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such that if e is a directed edge in the ball Br(Gk, p) labeled by ri, then the
edge Ψ(e) is labeled by γi. We say that {Gk}∞k=1 is a sofic approximation of

CayQΓ , if for any r ≥ 1 and a real number ε > 0 there exists Nr,ε ≥ 1 such
that if k ≥ Nr,ε then there exists a subset Vk ⊂ V (Gk) consisting of (Γ, r)-
vertices such that |Vk| ≥ (1 − ε)|V (Gk)|. A finitely generated group Γ is called
sofic if the Cayley-graphs of Γ admit sofic approximations. Sofic groups were
introduced by Gromov in [19] under the name of initially subamenable groups,
the word “sofic” was coined by Weiss in [30]. It is important to note that all the
amenable, residually-finite and residually amenable groups are sofic, but there
exist finitely generated sofic groups that are not residually amenable (see the
book of Capraro and Lupini [14] on sofic groups). It is still an open question
whether all groups are sofic.

4.2 Sofic URS’s and the proof of Theorem 2

We can extend the notion of soficifty from groups to URS’s in the following way.
Let Γ,Q, κ : Fn → Γ be as above and let Z ⊂ Sub(Γ) be a uniformly recurrent
subgroup. Again, let {Gk}∞k=1 be a sequence of finite Fn-Schreier graphs. We
call a vertex p ∈ V (Gk) be a (Z, r)-vertex if there exists a rooted isomorphism

Ψ : Br(Gk, p) → Br(S
Q
Γ (H), H), where H ∈ Z such that if e is a directed

edge in the ball Br(Gk, p) labeled by ri, then the edge Ψ(e) is labeled by γi.
Similarly to the case of groups, we say that {Gk}∞k=1 is a sofic approximation
of the uniformly recurrent subgroup Z if or any r ≥ 1 and a real number ε > 0
there exists Nr,ε ≥ 1 such that if k ≥ Nr,ε then there exists a subset Vk ⊂ V (Gk)
consisting of (Z, r)-vertices such that |Vk| ≥ (1− ε)|V (Gk)|.
Definition 4.1. A uniformly recurrent subgroup is sofic if it admits a sofic
approximation system (note that soficity does not depend upon the choice of
the generating system)

In Section 5 we will construct a large variety of generic and non-generic URS’s.
The rest of this subsection is devoted to the proof of Theorem 2. Let Z be
a sofic URS and {Gk}∞k=1 be a sofic approximation of Z. Using Theorem 3,
for each k ≥ 1 let us choose a nonrepetitive coloring ck : V (Gk) → K, where
|K| ≥ C(|Q|). We can associate a probability measure µk on the space of K-

colored Fn-Schreier graphs Sch
Q,K
Fn

, where Q = {ri}ni=1 is the generating system
of the free group Fn. Note that the origin of this construction can be traced
back to the paper of Benjamini and Schramm [7]. For a vertex p ∈ V (Gk)
we consider the rooted K-colored Schreier graph (Gck

k , p). The measure µk is
defined as

µk =
1

|V (Gk)|
∑

p∈V (Gk)

δ(Gck
k , p) ,

where δ(Gck
k , p) is the Dirac-measure on SchQ,K

Fn
concentrated on the rooted

K-colored Schreier graph (Gck
k , p). Clearly, µk is invariant under the action of

Fn. Since the space of Fn-invariant probability measures on the compact space

11



SchQ,K
Fn

is compact with respect to the weak-topology, we have a convergent
subsequence {µnk

}∞k=1 converging weakly to some probability measure µ. We
consider the K-Bernoulli shift space BK(Z) as an Fn-space, where for h ∈ Fn

and f ∈ BK(Z)
β(h)(f) = β(κ(h))(f) ,

where β is the left Γ-action on BK(Z). Hence, we have an injective Γ-equivariant

map Φκ : BK(Z)→ SchQ,K
Fn

.

Lemma 4.1. The probability measure µ is concentrated on the Fn-invariant
closed set Ω of nonrepetitive K-colorings in Φκ(B

K(Z)).

Proof. Let Ur ⊂ SchQ,K
Fn

be the clopen set of K-colored Schreier graphs
G such that the ball Br(G, root(G)) is not rooted-labeled isomorphic to

Br(S
Q
Γ (H), H) for some H ∈ Z. By our assumptions on the sofic approxi-

mations, limk→∞ µk(Ur) = 0 , hence µ(Ur) = 0 . Now let Vr ⊂ SchQ,K
Fn

be the
clopen set of K-colored Schreier graphs G such that the ball Br(G, root(G))
contains a repetitive path. By our assumptions on the colorings ck, µk(Vr) = 0
for any k ≥ 1. Hence µ(Vr) = 0. Therefore µ is concentrated on Ω.

Now we can finish the proof of Theorem 2. We can identify Ω with a Γ-invariant
closed subset Ω of BK(Z) on which the Γ-action is Z-proper by Proposition 3.1.
That is, our construction gave rise to a Z-proper Bernoulli subshift with an
invariant measure.
Note that we have a Γ-equivariant continuous map from the Z-proper space
above to Z itself mapping x into Stab(x). Recall that a Γ-invariant measure on
Sub(Γ) is called an invariant random subgroup.

Proposition 4.1. Any sofic URS admits an invariant measure.

Recall that a Γ-invariant measure on Sub(Γ) is called an invariant random sub-
group [1]. Example 3.3 in [18] shows that there exists a uniformly recurrent
subgroups Z ⊂ Sub(F2) that does not admit invariant random subgroups, hence
Z is not sofic. In Section 5, we provide further examples of uniformly recurrent
subgroups that does not carry invariant measures.

5 Coamenable uniformly recurrent subgroups

5.1 Colored graphs

Let Γk be the k-fold free product of cyclic groups of rank 2, with free generators
A = {ai}ki=1. Let G be an arbitrary infinite, simple connected graph of bounded
vertex degrees and a proper edge-coloring by k-colors {c1, c2, . . . , ck}. Observe
that the edge-coloring of G (and picking an arbitrary root) gives rise to a Γk-
Schreier graph (S, x). The action of Γk on V (G) is defined the following way. If
x ∈ V (G) and 1 ≤ i ≤ k, then

• If there is no ci-colored edge adjacent to x, then ai(x) = x.

12



• If there there exists an edge (x, y) colored by ci, then ai(x) = y.

Let X be the orbit closure of the rooted Schreier graph (S, x) above. Then it

contains a minimal system (M,Γk, β). Then (SQ
Γk
)−1(M) is a uniformly recur-

rent subgroup, where SQ
Γk

: Sub(Γk) → SchQΓk
is the map defined in Subsection

2.1.

Proposition 5.1. For any infinite simple, connected graph G of bounded vertex
degree, there exists k > 0 and a edge-coloring of G with k colors such that all
the uniformly recurrent subgroups that can be obtained as above are necessarily
generic.

Proof. First, consider an arbitrary proper edge-coloring c : E(G) → L and a
proper nonrepetitive vertex-coloring ρ : V (G)→ D by some finite sets L and D
(the product of a nonrepetitive and a proper vertex-coloring is always a proper
nonrepetitive vertex-coloring). Now we construct a new proper edge-coloring ζ
of G by the set D2 × L, where D2 is the set of 2-elements subset of D. Let
ζ(e) = {ρ(x), ρ(y)} × c(e), where x, y are the endpoints of e. Since ρ is proper,
ρ(x) 6= ρ(y). Hence we obtain a Schreier graph T ∈ SchAΓk

, where k = |D2 × L|
and A = {a1, a2, . . . , ak}. Let (M,Γk, β) be a minimal subsystem in the orbit
closure of T . By Proposition 2.3, it is enough to show that if T ′ ∈ M and
x 6= y ∈ V (T ′), then (T ′, x) and (T ′, y) are not rooted-labeled isomorphic. We
construct a nonrepetitive vertex-coloring ρ′ : V (T ′) → D in the following way.
If deg(z) > 1, let ρ′(z) = d, where d is the unique element in the intersection of
the D2-components of the edges adjacent to z. If deg(z) = 1, then let ρ′(z) = d,
where the D2-component of z is {d, d′} and ρ′(z′) = d′, for the only neighbour
of z. Since T ′ is in the orbit closure of T , the coloring ρ′ is nonrepetitive, hence
by Proposition 3.1, T ′(x) and T ′(y) are not rooted-labeled isomorphic. .

5.2 Coamenability

Let Γ be a finitely generated group and H ∈ Sub(Γ). Recall that H is coa-

menable if the action of Γ on Γ/H is amenable. That is, there exists a sequence
of finite subsets {Fk}∞k=1 ⊂ Γ/H such that for any g ∈ Γ,

lim
n→∞

|gFk ∪ Fk|
|Fk|

= 1 .

We call a URS Z ⊂ Sub(Γ) coamenable if for all H ∈ Z, H is coamenable.

Proposition 5.2. Let Z ⊂ Sub(Γ) be a URS such that there exists H ∈ Z so
that H is coamenable. Then Z is coamenable.

Proof. Fix a generating system Q = {γi}ni=1 for Γ. Let {Fk}∞k=1 be finite subsets

in Γ/H such that for any g ∈ Γ, limn→∞
|gFk∪Fk|
|Fk| = 1 . Let xk ∈ Fk and

l(k) > 0 such that if y ∈ Fk then Bl(k)(Γ/H, xk) contains Bk(Γ/H, y) . Let
K ∈ Z. Since Z is a URS, for any k ≥ 1, there exists x′k ∈ Γ/K such that
Bl(k)(Γ/H, xk) is rooted-labeled isomorphic to Bl(k)(Γ/K, x′k). For k ≥ 1, let
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F ′k ⊂ Γ/K be the image of Fk by the isomorphism above. If g ∈ Γ then
gF ′k ⊂ Bl(k)(Γ/K, x′k) provided that k is large enough (depending on g). Hence,

limk→∞
|gF ′

k∪F ′

k|
|F ′

k
| = 1 .

Let G be an arbitrary graph that is amenable in the sense that there exists a

sequence of subsets {Fk}∞k=1 such that limk→∞
|B1(Fk)|
|Fk| = 1 , where x ∈ B1(Fk)

if either x ∈ Fk or there exists y ∈ Fk adjacent to x. Repeating the proof
of the previous proposition one can immeadiately see that all the Γk-URS’s
constructed from G as in Subsection 5.1 are coamenable. Barlow [Proposition
4.[4]] has shown that for any α ≥ 1 there exists a bounded degree infinite graph
Gα and positive constants C1

α and C2
α such that

C1
αr

α ≤ Br(Gα, x) ≤ C2
αr

α (2)

holds for all x ∈ V (Gα). Such graphs are clearly amenable. Hence we can
see that as opposed to finitely generated group case, for any α ≥ 1 there exist
generic coamenable uniformly recurrent subgroups Z ⊂ Sub(Γk) so that the
volume growth rate of the individual Schreier graphs SA

Γk
(H), H ∈ Z are always

α.

5.3 Coamenable uniformly recurrent subgroups are sofic

The following theorem (or rather the construction in the proof) will be crucial
in Section 9.

Theorem 5. Let Γ be a finitely generated group and Z ⊂ Sub(Γ) be a coa-
menable URS. Then Z is sofic.

Proof. Fix a generating system Q = {γi}ni=1. Again, let Fn be the free group
with free generating system Q = {ri}ni=1 and κ : Fn → Γ be the corresponding
quotient map. Every continuous action α of Γ can be regarded as a Fn-action

α ◦ κ. In particular, we have a Fn-invariant embedding λ : SQ
Γ (Z) → SchQ

Fn
.

Now let H ∈ Z and consider the Schreier graph SQ
Γ (H). Since Z is coamenable,

the isoperimetric constant of SQ
Γ (H) is zero, that is, we have a sequence of finite

induced subgraphs {Hk}∞k=1 ⊂ SQ
Γ (H) so that

lim
k→∞

|∂Hk|
|V (Hk)|

= 0 ,

where ∂Hk is the set of vertices in Hk for which there exists
y ∈ V (SQ

Γ (H))\V (Hk) with γix = y or γiy = x for some 1 ≤ i ≤ n. Now we
construct a sequence of Fn-Schreier graphs {Gk}∞k=1 that form a sofic approxi-
mation of Z:

• V (Gk) = V (Hk).

• If γix = y for some x, y ∈ V (Hk), then rix = y.
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• Then the action of ri is extended to the set V (Gk) arbitrarily.

Let Wr(Gk) ⊂ V (Gk) = V (Hk) be the set of vertices p for which dGk
(p, ∂Hk) >

r. Clearly, if p ∈ Wr(Gk) then Br(W (Gk), p) is rooted-labeled isomorphic to

Br(S
Q
Γ (H), p). That is, all the vertices of Wr(GK) are (Z, r)-vertices. Since,

|∂Hk|
|V (Gk)| → 0, we have that |Wr(Gk)|

|V (Gk)| = 1. Hence the Schreier graphs {Gk}∞k=1

form a sofic approximation of the URS Z.

As in Subsection 4.2, for each k ≥ 1 we have an Fn-invariant probability measure

on SchQ
Fn

µk =
1

|V (Gk)|
∑

p∈V (Gk)

δ(Gk, p) .

Let {µnk
}∞l=1 be a weakly convergent sequence converging to an Fn-invariant

measure µ on SchQ
Fn
. By our previous lemma, the measure µ is concentrated on

λ(SQ
Γ (Z)). Note that the probability measure µ depends only on the sequence of

subgraphs {Hkl
}∞l=1. We say that the sequence of subgraphs {Hl}∞l=1 is conver-

gent in the sense of Benjamini and Schramm if the associated probability
measures {µl}∞l=1 converge to some invariant measure µ on λ(SQ

Γ (Z)). In this
case the measure preserving action (Z,Γ, λ−1(µ)) is called the limit of the se-
quence {Hl}∞l=1. Also note, that if Z is a generic URS, then (Z,Γ, λ−1(µ)) is a
totally nonfree action in the sense of Vershik [29].

5.4 A characterization of coamenability

As in the previous sections let Γ be a finitely generated group with generating
system Q = {γi}ri=1 and Z ⊂ Sub(Γ) be a URS. The goal of this subsection is
to prove the following characterization of coamenability.

Theorem 6. The URS Z is coamenable if and only if every Z-proper continuous
action of Γ admits an invariant measure.

Proof. First, let Z be coamenable and α : Γ y X be a continuous Z-proper
action. Let x ∈ X and Stabα(x) = H ∈ Z . Then the orbit graph of x is

isomorphic to SQ
Γ (H). Let {Fk}∞k=1 ⊂ Γ/H be a sequence of finite sets such

that for any g ∈ Γ,

lim
k→∞

|gFk ∪ Fk|
|Fk|

= 1 . (3)

Now we proceed in exactly the same way as in the proof of the classical Krylov-
Bogoliubov Theorem. Fix an ultrafilter ω on the natural numbers and let limω

be the corresponding ultralimit. We define a bounded linear functional T :
C[X ]→ C in the following way. For a continuous function f : X → C set

T (f) = lim
ω

∑

γ∈Fk
f(γx)

|Fk|
.
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Then, by (3), T (γ(f)) = T (f) for all γ ∈ Γ, T (1) = 1, therefore T : C[X ]→ C is
a Γ-invariant bounded functional associated to a Γ-invariant Borel probability
measure µ. Now, let Z be a URS that is not coamenable and let H ∈ Z. Then
the graph SQ

Γ (H) has positive isoperimetric constant so by Theorem 3.1 [9], we
have maps φ1 : Γ/H → Γ/H , φ2 : Γ/H → Γ/H so that φ1(Γ/H)∩φ2(Γ/H) = ∅
and there exists a positive constant C > 0 so that for all p ∈ Γ/H

dSQ
Γ
(H)(φ1(p), p)) < C and dSQ

Γ
(H)(φ2(p), p)) < C .

Now we build a vertex-coloring for the graph SQ
Γ (H) to encode φ1 and φ2. First,

we pick a nonrepetitive coloring c1 : Γ/H → D, whereD is some finite set. Then
we choose a coloring c2 : Γ/H → E for some finite set E so that c2(p) 6= c2(q),
whenever

0 < dSQ

Γ
(H)(p, q) ≤ 3C .

We need two more colorings of the vertices of SQ
Γ (H):

c3 : Γ/H → {E × {1}} ∪ {∗}

and
c4 : Γ/H → {E × {2}} ∪ {∗}

satisfying the following properties. If there exists p ∈ Γ/H so that φ1(p) = q
and c2(p) = e, then c3(q) = e × {1}. If such p does not exist, set c3(q) = ∗. If
there exists p ∈ Γ/H so that φ2(p) = q and c2(p) = e, then c4(q) = e × {2}. If
such p does not exist, set c4(q) = ∗. Let M = D × E × {{E × {1}} ∪ {∗}} ×
{{E × {2}} ∪ {∗}}. Our final coloring c : Γ/H →M is defined by

c(p) = c1(p)× c2(p)× c3(p)× c4(p) .

Let X be the orbit closure of the M -colored graph SQ,c
Γ (H) in the space SchM,Q

Γ .
Observe that c is nonrepetitive since even its first component is nonrepetitive,
that is the action β on X is Z-proper. Now we need to show that β admits
no Γ-invariant measure. We define continuous injective maps Φ1 : X → X and
Φ2 : X → X such that

• Φ1(X) ∩ Φ2(X) = ∅

• For each x ∈ X , Φ1(x),Φ2(x) ∈ Orb(x) .

Thus the equivalence relation defined by the action is compressible, so it cannot
admit an invariant measure [10]. The construction of Φ1 and Φ2 goes as follows.
If x ∈ X , then c(x) = (c1(x), c2(x), c3(x), c4(x)) is well-defined and there exist
a unique y ∈ X and a unique z ∈ X such that

• c2(x) × 1 = c3(y), c2(x)× 2 = c4(z)

• dOrb(x)(x, y) ≤ C, dOrb(x)(x, z) ≤ C.
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We set Φ1(x) = y, Φ2(x) = z, Clearly, Φ1 and Φ2 are continuous and Φ1(X) ∩
Φ2(X) = ∅ .

Let Γ be as above and Z ⊂ Sub(Γ) be a URS that is not coamenable and X
is a Z-proper action without invariant measure as above. Let Y ⊂ X be a
minimal Z-proper M -Bernoulli subshift. Let ΓM be the M -fold free product of
the finite group of two elements with free generator system {am}m∈M . Then
we can associate to Y a nonsofic generic URS Z ⊂ Sub(Γ ∗ΓM ) in the following

way. Let S = SM,Q
Γ (H) be an element of Y . Let V = V (S)× {0, 1}. We define

an action of the group Γ ∗ ΓM as follows. The group Γ acts on V (S) ⋆ {0} as
Γ acts on V (S). Also, the group Γ acts on V (S) ⋆ {1} trivially. If x ∈ V (S),
c(x) = m, then am(x× {0}) = x× {1} and am(x× {1}) = x× {0}. Otherwise,
let am(x × {0}) = x × {0} and am(x × {1}) = x × {1}. It is not hard to see
that the resulting (Γ∗ΓM )-Schreier graph satisfies the conditions of Proposition
2.1 and 2.3, hence the associated URS is generic and does not admit invariant
measures.

6 The C∗-algebras of uniformly recurrent sub-

groups

6.1 The algebra of local kernels

Let Γ be a finitely generated group with generating system Q = {γi}ni=1 and

Z ⊂ Sub(Γ) be a URS of Γ. Let H ∈ Z and S = SQ
Γ (H) be the Schreier graph

of H . A local kernel is a function K : Γ/H×Γ/H → C satisfying the following
properties.

• There exists an integer R > 0 (depending on K) such that K(x, y) = 0 if
dS(x, y) > R.

• If BR(S, y) is rooted-labeled isomorphic to BR(S, z) then K(y, γy) =
K(z, γz) provided that dS(y, γy) = dS(z, γz) ≤ R.

We will call the smallest R satisfying the two conditions above the width of K.
It is easy to see that the local kernels form a unital ∗-algebra CZ with respect
to the following operations:

• (K + L)(x, y) = K(x, y) + L(x, y)

• KL(x, y) =
∑

z∈Γ/H K(x, z)L(z, y)

• K∗(x, y) = K(y, x).

By minimality, the algebra CZ does not depend on the choice of H or the gen-
erating system Q only on the URS Z itself. We will call the concrete realization
of the algebra of local kernels az above the representation of CZ on CΓ/H . One
can observe that if Z consists only of the unit element, then CZ is the complex
group algebra of Γ.
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6.2 The construction of C∗

r
(Z)

Let Γ be a finitely generated group (with a fixed generating system Q = {γi}ni=1)
and Z ⊂ Sub(Γ) be a URS. Let H ∈ Z and consider the algebra CZ as above
represented on the vector space C

Γ/H . The we have a bounder linear represen-
tation of CZ on l2(Γ/H) by

K(f)(x) =
∑

K(x, y)f(y) ,

where f ∈ l2(Γ/H).

Definition 6.1. The C∗-algebra of Z, C∗r (Z) is defined as the norm closure of
CZ in B(l2(Γ/H)).

Note that we used a specific subgroup H in order to equip the algebra CZ with
a norm. However, we have the following proposition.

Proposition 6.1. The norm on CZ and hence the definition of C∗r (Z) does not
depend on the choice of the subgroup H.

Proof. Let K ∈ CZ be a local kernel of width R and let H,L ∈ Z. Let KH

respectively KL be the representation of K on l2(Γ/H) respectively on l2(Γ/L).
We need to show that ‖KH‖ = ‖KL‖ . Let ε > 0 and f ∈ l2(Γ/H), ‖f‖ = 1 such

that f is supported on a ball BT (S
Q
Γ (H), x) and ‖KH(f)‖ ≥ ‖KH‖−ε . Observe

that KH(f) is supported on the ball BT+R(S
Q
Γ (H), x) and ‖KH(f)‖ ≥ ‖KH‖−

ε . By Proposition 2.1, there exists y ∈ Γ/L such that the balls BT+R(S
Q
Γ (H), x)

and BT+R(S
Q
Γ (L), y) are rooted-labeled isomorphic. Hence, there exists f ′ ∈

l2(Γ/L) supported on BT (S
Q
Γ (L), y), ‖f ′‖ = 1 such that ‖KH(f)‖ = ‖KL(f

′)‖ .
Therefore, ‖KH‖ ≤ ‖KL‖. Similarly, ‖KL‖ ≤ ‖KH‖, that is, ‖KH‖ = ‖KL‖.

6.3 The C∗-algebras of generic URS’s are simple

The goal of this section is to prove the following theorem.

Theorem 7. Let Γ be as above and Z ⊂ Sub(Γ) be a generic URS. Then the
C∗-algebra C∗r (Z) is simple.

Proof. Let H ∈ Z. For each r ≥ 1 we define an equivalence relation on Γ/H

in the following way. If p, q ∈ Γ/H , then p ≡r q if the balls Br(S
Q
Γ (H), p)

and Br(S
Q
Γ (H), q) are rooted-labeled isomorphic. The following lemma is a

straightforward consequence of Proposition 2.1 and Proposition 2.3.

Lemma 6.1. Let ≡r be the equivalence relation as above. Then:

1. For any n ≥ 1 there exists rn such that if p 6= q and p ≡rn q, then
dSQ

Γ
(H)(p, q) ≥ n .
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2. For every r ≥ 1 there exists tr such that for any p ∈ Γ/H the ball

Btr (S
Q
Γ (H), p) intersects all the equivalence classes of Er (in particular,

the number of equivalence classes is finite).

3. If r ≤ s, then p ≡s q implies p ≡r q.

4. Let Er denote the classes of ≡r. Then we have an inverse system of
surjective maps

E1 ← E2 ← . . .

and a natural homeomorphism ιH : lim←Er → Z, between the compact
space lim←Er and the uniformly recurrent subgroup Z.

Note that if α ∈ Er, then ιH(α) is the clopen set of Schreier graphs SQ
Γ (L),

L ∈ Z, such that the ball Br(S
Q
Γ (L), L) is rooted-labeled isomorphic to the ball

Br(S
Q
Γ (H), x), where x ∈ α .

Now let us consider the commutative C∗-algebra l∞(Γ/H). For any r ≥ 1 and
α ∈ Er we have a projection eα ∈ l∞(Γ/H), where eα(x) = 1 if x ∈ α and
zero otherwise. The projections {eα}r≥1,α∈Er

generates a *-subalgebra A in
l∞(Γ/H) and by the previous lemma the closure of A in l∞(Γ/H) is isomorphic
to C[Z] (the C∗-algebra of continuous complex-valued functions on the compact
metrizable space Z). Indeed, under this isomorphism λH : A → C[Z], λH(eα)
is the characteristic function of the clopen set ιH(α). It is easy to see that the
isomorphism λH : A → C[Z] commutes with the respective Γ-actions. Now
let us consider the representation of C∗r (Z) on l2(Γ/H). For K ∈ C∗r (Z) let
K(x, y) = 〈K(δy), δx〉, be the kernel of K. We have a bounded linear map
Qr : C

∗
r (Z)→ C∗r (Z) given by

Qr(K) =
∑

α∈Er

eαKeα .

Lemma 6.2. For any r ≥ 1, ‖Qr‖ ≤ 1 .

Proof. Let h ∈ l2(Γ/H), ‖h‖ = 1. For any K ∈ C∗r (Z) we have that

‖(Qr(K))(h)‖2 = ‖
∑

α∈Er

eαKeα(h)‖2 =
∑

α∈Er

‖eαKeα(h)‖2 ≤

≤ ‖K‖2
∑

α∈Er

‖eα(h)‖2 = ‖K‖2 .

Therefore ‖QrK‖ ≤ ‖K‖ .
Observe that we have a natural injective homomorphism ρ : A → CZ defined
in the following way.

• ρ(a)(x, x) = a(x) .

• ρ(a)(x, y) = 0 if x 6= y.
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Clearly, ρ is preserving the norm, so we can extend it to a unital embedding
ρ : A → C∗r (Z) . Also, we have a map κ : Γ → C∗r (Z) such that κ(g)(x, y) = 1,
whenever g−1x = y and κ(g)(x, y) = 0 otherwise.

Lemma 6.3. For any g, h ∈ Γ, κ(g)κ(h) = κ(gh) .

First, we have that

κ(g)κ(h)(x, y) =
∑

z∈Γ/H
κ(g)(x, z)κ(h)(z, y) .

Hence, κ(g)κ(h)(x, y) = 1 if y = h−1g−1x and κ(g)κ(h)(x, y) = 0 otherwise.
Therefore, κ(g)κ(h) = κ(gh) .

Lemma 6.4. For any g ∈ Γ and a ∈ A

ρ(g(a)) = κ(g)ρ(a)κ(g−1) .

Proof. On one hand, ρ(g(a))(x, y) = a(g−1(x)) if x 6= y,
otherwise ρ(g(a))(x, y) = 0 . On the other hand,

κ(g)ρ(a)κ−1(g)(x, x) =
∑

y∈Γ/H
κ(g)(x, y)ρ(a)(y, y)κ−1(g)(y, x) = a(g−1(x)) .

Also, κ(g)ρ(a)κ−1(g)(x, y) = 0 if x 6= y.

Let us consider the linear operator D : C∗r (Z)→ C∗r (Z) such that for x ∈ Γ/H
D(K)(x, x) = K(x, x), D(K)(x, y) = 0 if x 6= y. The operator D is bounded
with norm 1 since

‖D(K)‖ = sup
x∈Γ/H

|K(x, x)| = sup
x∈Γ/H

|〈K(δx), δx〉| .

Lemma 6.5. Let K ∈ CZ. Then Qr(K) = D(K) provided that r is large
enough.

Proof. Let s > 0 be the width of K and let r > 0 be so large that if p ≡r q and
p 6= q, then dSQ

Γ
(H)(p, q) > s. Then, if α ∈ Er we have that (eαKeα)(x, y) = 0

if x 6= y or x /∈ α, otherwise (eαKeα)(x, x) = K(x, x). Therefore, Qr(K) =
D(K).

Lemma 6.6. Let K ∈ C∗r (Z). Then limr→∞Qr(K) = D(K) .

Proof. Let Kn → K such that Kn ∈ CZ. Then, by the previous lemma
‖Qr(K) − D(Kn)‖ ≤ ‖K − Kn‖, provided that r is large enough. Since
D(Kn)→ D(K), we have that limr→∞Qr(K) = D(K) .

Lemma 6.7. Let I⊳C∗r (K) be a closed ideal. Suppose that I∩D(C∗r (Z)) 6= {0}.
Then I = C∗r (K).
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Proof. Recall that D(C∗r (Z)) = ρ(A), so by Lemma 6.4 we have a nonzero,
Γ-invariant closed ideal in A ∼= C[Z]. However, any Γ-invariant closed ideal in
A ∼= C[Z] is in the form of I(Y ), where Y is a Γ-invariant closed set in Z and
I(Y ) is the set of continuous functions vanishing at Y . By minimality, Y must
be empty, hence I contains the unit, that is, I = C∗r (K).

Now, we finish the proof of our theorem. Let I be a closed ideal of C∗r (Z) and 0 6=
K ∈ I. Then K∗K ∈ I and D(K∗K) 6= 0. Since D(K∗K) = limr→∞Qr(K

∗K)
and Qr(K

∗K) ∈ I for any r ≥ 1, we have that 1 ∈ I.

Remark Let Z ⊂ Sub(Γ) be a not necessarily generic URS, where Γ is a finitely

generated group as above. Let Y ⊂ SK,Q
Γ (Z) be a minimal Z-proper Bernoulli

subshift. Then the local kernels on Y can be defined using the rooted-labeled-
colored neighborhoods and the resulting C∗-algebra is always simple.

7 Exactness and nuclearity

7.1 Property A vs. Local Property A

First let us recall the notion of Property A from [25]. Let G be an infinite
graph of bounded vertex degrees. We say the G has Property A if there exists
a sequence of maps {ςn : V (G)→ l2(V (G)}∞n=1 such that

• Each ςnx has length 1.

• If dG(x, y) ≤ n, then ‖ςnx − ςny ‖ ≤ 1
n .

• For any n ≥ 1 we have Rn > 0 such that the vector ςnx is supported in the
ball BRn

(G, x).

We also need the notion of the uniform Roe algebra of the graph G. First,
we consider the ∗-algebra of bounded kernels K : V (G)× V (G)→ C, that is

• there exists some positive integer R depending onK such that K(x, y) = 0
if dG(x, y) > R,

• there exists some positive integer M depending on K such that
|K(x, y)| < M .

The uniform Roe algebra C∗u(G) is the norm closure of the bounded kernels in
B(l2(V (G))). Observe that if Z ⊂ Sub(Γ) is a unformly recurrent subgroup and

H ∈ Z, S = SQ
Γ (H), then C∗r (Z) ⊂ C∗u(S). According to Proposition 11.41 [25],

if G has Property A then the algebra C∗u(G) is nuclear. All C∗-subalgebras of
a nuclear C∗-algebra are exact, hence we have the following proposition.

Proposition 7.1. Let Z ⊂ Sub(Γ) and H ∈ Z as above, such that SQ
Γ has

Property A. Then C∗r (Z) is exact.
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Example: Let G be the underlying graph of the Cayley graph of an exact group
(say, a hyperbolic group or an amenable group) and let S be a colored graph
associated to a generic URS Z as in Proposition 5.1. Then by the previous
proposition, Cr(Z) is a simple exact C∗-algebra.

Now we introduce the notion of Schreier graphs with Local Property A.

Definition 7.1. Let S = SQ
Γ (H) be a Schreier graph. We say that S has Local

Property A, if the sequence {ςn}∞n=1 can be chosen locally, that is for any n ≥ 1,
there exists Sn > Rn so that for x, y ∈ V (G) the balls BSn

(G, x) and BSn
(G, y)

are rooted-labeled isomorphic under the map θ : BSn
(G, x) → BSn

(G, y), then
ςny = θ(ςnx ).

The main result of this section is the following theorem.

Theorem 8. Let Γ be a finitely generated group, Z ⊂ Sub(Γ) a uniformly

recurrent subgroup and H ∈ Z so that SQ
Γ (H) has local Property A. Then C∗r (Z)

is nuclear.

Proof. We closely follow the proof of Proposition 11.41 [25]. The nuclearity of
the uniform Roe algebra for a graph S having Property A has been proved the
following way (we will denote by X the vertex set of S). First, a sequence of uni-
tal completely positive maps Φn : C∗u(S)→ l∞(X)⊗MNn

(C) were constructed,
where MNn

(C) is the algebra of Nn ×Nn-matrices. Then, a sequence of unital
completely positive maps Ψn : l∞(X)⊗MNn

→ C∗u(S) were given in such a way
that {Ψn ◦Φn}∞n=1 tends to the identity in the point-norm topology. Hence, the
nuclearity of the uniform Roe algebra C∗u(S) follows. It is enough to see that
Φn maps the subalgebra C∗r (Z) ⊂ C∗u(S) into C[Z]⊗MNn

⊂ l∞(X)⊗MNn
and

Ψn maps C[Z]⊗MNn
into C∗r (Z). Then the nuclearity of C∗r (Z) automatically

follows. So, let us examine the maps Φn,Ψn. For each n ≥ 1, we choose Nn > 0
such that |BRn

(S, x)| ≤ Nn for all x ∈ V (S) = X . Then, for each x ∈ X we
choose a subset Hn

x ⊃ BRn
(S, x) of size Nn “locally”. That is, if BSn

(S, x) and
BSn

(S, y) are rooted-labeled isomorphic under the map θ, then θ(Hn
x ) = Hn

y .
Now for each x ∈ X let Pn(x) : l

2(X) → l2(Hn
x ) be the orthogonal projection.

We set
Φn : C∗u(S)→ l∞(X)⊗MNn

(C)

by mapping T to {Pn(x)TPn(x)}x∈X in the same way as in [25]. The only
difference between the approach of us and the one of [25] is the local choice of the
projections Pn. Clearly, if T ∈ CZ is a local kernel, then Φn(T ) ∈ A⊗MNn

(C),
where A is the algebra defined in Subsection 6.3. Hence, Φn maps the algebra
C∗r (Z) into C[Z]⊗MNn

(C).
The maps Ψn : l∞(X) ×MNn

(C) → C∗u(X) are defined by mapping {Tx}x∈X ,
Tx ∈ B(l2(Hn

x ))
∼= MNn

(C) to
∑

xMn(x)
∗TxMn(x), where Mn(x) denotes the

operator of pointwise multiplication by the function y → ςny (x). By the defini-
tion of Local Property A, the vectors ςny are a priori locally defined, hence Ψn

maps A ⊗MNn
(C) into CZ. That is, Ψn maps C[Z] ⊗MNn

(C) into C∗r (Z).
Now our theorem follows.
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7.2 Two examples for Local Property A

A tracial example. Let Z be the generic URS constructed at the end of
Subsection 5.2. That is, if H ∈ Z, then S = SQ

Γk
(H) is a colored graph satisfying

C1
αr

α ≤ Br(S, x) ≤ C2
αr

α (4)

uniformly for some positive constants C1
α and C2

α.

Proposition 7.2. The graph S has Local Property A.

Proof. For a fixed vertex w ∈ V (S) the unit vector ςkw is defined the following
way.

• ςkw(z) =
1√

|Bk(S,w)|
if z ∈ Bk(S,w).

• ςkw(z) = 0 otherwise.

Lemma 7.1. Let x, y ∈ V (S) be arbitrary adjacent vertices. Then ‖ςky − ςkx‖2 ≤
2dρ+

(

1√
2ρd+1

− 1
)2

.

Proof. Let d be a bound for the vertex degrees of S and let

ρ =
|∂Bk(S, x)|
|Bk(S, x)|

.

We can suppose that |Bk(S, x)| ≤ |Bk(S, y)|. Then we have that

‖ςky − ςkx‖2 ≤ 2d
|∂Bk(S, x)|
|Bk(S, x)|

+ |Bk(S, x)|
(

1
√

|Bk(S, y)
− 1
√

|Bk(S, x)

)2

.

Now, |Bk(S, x)| ≤ |Bk(S, y)| ≤ (2ρd+ 1)|Bk(S, x)|. Therefore,
(

1
√

|Bk(S, y)
− 1
√

|Bk(S, x)

)2

≤ 1

|Bk(S, x)|

(

1√
2ρd+ 1

− 1

)2

,

hence our lemma follows.

Thus, in order to prove our proposition, it is enough to show that for every
ε > 0, there exists K > 0 such that for each x ∈ V (S)

|∂Bk(S, x)|
|Bk(S, x)|

≤ ε . (5)

Note that (4) implies that S has the doubling condition, hence (5) follows from
Theorem 4 [28].

A non-tracial example. Let T be a 3-regular tree. It is well-known that T
has Property A. The construction goes as follows. First, we pick an infinite ray
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R = (x0, x1, . . . ) towards the infinity. Then for each t ∈ T , there is a unique
adjacent vertex φ(t) towards R (if t = xi, φ(t) = xi+1). Then for a vertex s, we
choose the path

Pn
s = (s, φ(s), φ2(s), . . . , φn2−1(s)) .

The unit vector ςns is associated to the path Pn
s as above, that is ςns (z) =

1
n if

z ∈ Ps and ςns (z) = 0 otherwise.

Proposition 7.3. One can properly color T by finitely many colors to obtain a
Schreier graph of Local Property A that generates a generic URS.

Proof. Our goal is to choose a coloring that encodes φ. First, pick any finite
proper coloring c : E(T ) → K for some finite set K such that c(e) 6= c(f) if
e 6= f and the distance of e and f is less than 3. Now we recolor the edge
(a, φ(a)) by c(a, φ(a)) × c(φ(a), φ2(a)). Hence, we obtained a proper coloring
c′ : E(T )→ K ×K such that φ is encoded in the coloring so the paths Pn

s (and
thus the unit vectors ςns ) can be chosen locally. Now let m : E(T )→ A be the
coloring given in Proposition 5.1. Then m× c′ : E(T )→ A×K ×K provides a
proper coloring of T , such that the resulting Schreier graph has Local Property
A and generates a generic URS.

8 The Feldman-Moore construction revisited

Let α : Γ→ (X,µ) be a measure preserving action of a finitely generated group
Γ on a standard probability measure space (X,µ). The following construction
is due to Feldman and Moore [13]. We call a bounded measurable function
K : X ×X → C an FM -kernel if

• K(x, y) 6= 0 implies that x and y are on the same orbit.

• There exists a constant wK such that if x and y are on the orbit graph S,
then dS(x, y) > wK implies that K(x, y) = 0 .

The FM -kernels for the unital ∗-algebra FM(α), where

• (K + L)(x, y) = K(x, y) + L(x, y) .

• KL(x, y) =
∑

z∈X K(x, z)L(z, y) .

• K∗(x, y) = K(y, x) .

The trace function Trα is defined on FM(α) by

Trα(K) =

∫

X

K(x, x)dµ(x) .

Then, by the GNS-construction we can obtain a tracial von Neumann-algebra
FM(α) ⊂ M(α) in such a way that the trace on M(α) is the extension of
Trα. Let us very briefly recall the construction. We define a pre-Hilbert space
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structure on FM(α) by 〈A,B〉 = Trα(B
∗A). Then LA(B) = AB defines a map

of LM(α) into B(FM(α)). Then M(α) is the weak closure of the image. In
particular, {Kn}∞n=1 ⊂ M(α) converges to K ∈ M(α) weakly if and only if for
any A,B ∈ LM(α), limn→∞Tr(AKnB) = Tr(AKB). Now, let Z ⊂ Sub(Γ)
be a URS and µ be a Γ-invariant Borel probability measure on Z. Again, β
denotes the Γ-action on Z. By definition, we have a natural homomorphism:
φβ : CZ →M(β).

Proposition 8.1. The map φβ is injective and φβ(CZ) is weakly dense in the
von Neumann algebra M(β). Furthermore, the map φβ extends to a continuous
embedding φβ : C∗r (Z)→M(β).

Proof. First note, that if K : X × X → C is an FM -kernel, then K can be
written as

∑t
i=1 MfiKgi , where

• For any 1 ≤ i ≤ t, fi is a bounded µ-measurable function.

• Mfi ∈ FM(β) is supported on the diagonal and Mfi(x, x) = fi(x).

• gi ∈ Γ and Kgi(x, y) = 1 if β(gi)(y) = x, otherwise Kgi(x, y) = 0.

Let 0 6= K ∈ CZ. In order to prove that φβ is injective, it is enough to show
that Trβ(φβ(K

∗K)) 6= 0. Let

U = {x ∈ X | K∗K(x, x) 6= 0} .

Then U is a nonempty open set, so by minimality of the action β, µ(U) > 0 since
µ is Γ-invariant. Therefore, Trβ(φβ(K

∗K)) 6= 0. Now we show that φβ(CZ) is
weakly dense in the von Neumann algebra M(β).

Lemma 8.1. Let Kn ∈ FM(β), K ∈ FM(β) such that

• supx,y∈X |Kn(x, y)| <∞ ,

• supn≥1 wkn
<∞ ,

• For µ-almost every x, Kn(x, y)→ K(x, y) for all y ∈ Orb(x).

then Trβ(AKB) = limn→∞ Trβ(AKnB) holds for any pair A,B ∈ FM(β),
hence by the GNS-construction {Kn}∞n=1 weakly converges to K.

Proof. Recall that

Trβ(AKB) =

∫

X

∑

y,z∈Orb(x)

A(x, y)K(y, z)B(z, x) dµ(x) .

By our condition, for almost every x ∈ X ,

lim
n→∞

∑

y,z∈Orb(x)

A(x, y)Kn(y, z)B(z, x) =
∑

y,z∈Orb(x)

A(x, y)K(y, z)B(z, x) ,
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hence by Lebesgue’s Theorem

Trβ(AKB) = lim
n→∞

Trβ(AKnB) .

Now, let K ∈ FM(β). We need to find a sequence {Kn}∞n=1 ⊂ φβ(CZ) that

weakly converges to K. Let K =
∑t

i=1 MfiKγi
. By Lemma 6.1, for every

α ∈ Er we have a clopen set Wα ⊂ Z such that χWα
∈ CZ and ∪α∈Er

Wα forms
a partition of Z. Furthermore, if U ∈ Z is an open set, then we have a sequence
{QA

r ⊂ Er} so that
∪α∈QA

1

Wα ⊂ ∪α∈QA
2

Wα ⊂ . . .

and ∞
⋃

r=1

(∪α∈QA
r Wα

) = U . (6)

Since Z is homeomorphic to the Cantor set and µ is a Borel measure, for any
µ-measurable set A ⊂ Z we have a sequence of open sets {Un}∞n=1 ⊂ Z such
that

{χUn
}∞n=1 → µA (7)

µ-almost everywhere. Therefore, by (6) and (7), for any 1 ≤ i ≤ t, we
have a uniformly bounded sequence of functions {gij}∞j=1 tending to fi al-
most everywhere, such that for any i, j ≥ 1, gij ∈ A. For r ≥ 1, let

Kr =
∑t

i=1 MgirKγi
∈ φβ(CZ) . Then for µ-almost every x ∈ X

lim
r→∞

Kr(x, y) = K(x, y)

provided that y ∈ Orb(x). Therefore by Lemma 8.1, {Kr}∞r=1 weakly con-
verges to K. Hence, φβ(CZ) is weakly dense in LM(β) and thus φβ(CZ) is
weakly dense in M(β) as well. Now we prove that φβ extends to C∗r (Z) . First
note that Trβ(K) =

∫

K(x, x) dµ(x) is a continuous trace on C∗r (Z) extending
Trβ . Indeed, Trβ(K) ≤ supx∈X |K(x, x)| ≤ ‖K‖ . Let N be the von Neumann
algebra obtained from C∗r (Z) by the GNS-construction using the continuous
trace Trβ. The weak closure of CZ in N is isomorphic to Mβ, hence it is
enough to prove that φβ(CZ) is weakly dense in C∗r (Z). Let A,B,K ∈ C∗r (Z),
{Kn}∞n=1 ⊂ CZ, such that Kn → K in norm. Then by the continuity of the
trace, limn→∞ Trβ(AKnB) = Trβ(AKB). Hence CZ is in fact weakly dense in
C∗r (Z).

9 Coamenability and amenable traces

9.1 Amenable trace revisited

First, let us recall the notion of amenable traces from [6]. Let A be a C∗-algebra
of bounded operators on the standard separable Hilbert space H. Let {Pn}∞n=1

be a sequence of finite dimensional projections in H such that
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• For any a ∈ A
lim
n→∞

‖APn − PnA‖HS

‖Pn‖HS
= 0 .

•
τ(A) = lim

n→∞
〈APn, Pn〉HS

‖Pn‖2HS

defines a continuous trace on A, where 〈A,B〉HS = Tr(B∗A) for Hilbert-
Schmidt operators.

Then τ is called an amenable trace. Now let Γ be a finitely generated group as
above and Z ⊂ Sub(Γ) be a coamenable generic URS. Let H ∈ Z, and consider
the usual representation of C∗r (Z) on l2(Γ/H) by kernels. Let {Tn}∞n=1 be a

sequence of induced subgraphs in S = SQ
Γ (H) such that limn→∞

|∂Tn|
|V (Tn)| = 0 .

Also, let us suppose that the sequence {Tn}∞n=1 is convergent in the sense of
Benjamini and Schramm as defined in Subsection 5.3. Observe that convergence
means that for any r ≥ 1 and α ∈ Er

lim
n→∞

|V (Tn) ∩ α|
|V (Tn)|

= t(α)

exists and t(α) = µ(λH(α)) (see Subsection 6.3) , where the Γ-invariant prob-
ability measure µ on Z is the limit of the sequence {Tn}∞n=1. We define the
amenable trace τ similarly as in [11]. For n ≥ 1, let Pn : l2(Γ/H)→ l2(V (Tn)) ⊂
l2(Γ/H) be the orthogonal projection.

Proposition 9.1. For any K ∈ C∗r (Z)

τ(K) = lim
n→∞

〈APn, Pn〉HS

‖Pn‖2HS

exists and τ(K) = Trµ(K) (as defined in Subsection 8). Also, for any K ∈
C∗r (Z),

lim
n→∞

‖KPn − PnK‖HS

‖Pn‖HS
= 0 ,

hence τ is an amenable trace.

Proof. Let us start with a simple observation.

Lemma 9.1. Let {Hn : Γ/H × Γ/H → C}∞n=1 be a sequence of maps such that

• There exists K > 0, |Hn(x, y)| ≤ K, for any n ≥ 1 and x, y ∈ Γ/H.

• limn→∞
|Qn|
|V (Tn)| = 0 , where

Qn = {(x, y) ∈ Γ/H × Γ/H | Hn(x, y) 6= 0} .

27



Then limn→∞
|Tr(Hn)|
‖Pn‖2HS

= 0.

Lemma 9.2. Let K ∈ CZ. Then

lim
n→∞

‖KPn − PnK‖2HS

dimPn
= 0 .

Proof. First we have that

‖KPn − PnK‖2HS = Tr((PnK
∗ −K∗Pn)(KPn − PnK)) = Tr(PnK

∗KPn)−

−Tr(K∗PnKPn)− Tr(PnK
∗PnK) + Tr(K∗PnK) .

For n ≥ 1, let Kn : Γ/H → Γ/H → C be defined in the following way.
Kn(x, y) = K(x, y) if x, y ∈ V (Tn), otherwise, Kn(x, y) = 0 . That is, for
any n ≥ 1, Kn is a trace-class operator. Now, we have that

Tr(PnK
∗KPn) = Tr(PnK

∗
nKnPn) + Tr(Pn(K −Kn)

∗KnPn)+

+Tr(PnK
∗(K −Kn)Pn) .

Sublemma 9.1. Both the sequences

{PnK
∗(K −Kn)Pn}∞n=1 and {Pn(K −Kn)

∗KnPn}∞n=1

satisfy the conditions of our Lemma 9.1.

Proof. Notice that

(PnK
∗(K −Kn)Pn)(x, y) =

∑

z∈Γ/H
Pn(x, x)K

∗(x, z)(K −Kn)(z, y)Pn(y, y) .

Observe that (K − Kn)(z, y)Pn(y, y) 6= 0 implies that y ∈ V (Tn), z /∈ V (Tn),

dSQ

Γ
(H)(z, y) ≤ wK . Since limn→∞

|∂Tn|
|V (Tn)| = 0 , our sublemma immediately

follows.

Repeating the arguments of our sublemma it follows that

lim
n→∞

‖KPn − PnK‖2HS

dimPn
=

=
Tr(PnK

∗
nKnPn)− Tr(K∗nPnKnPn)

dimPn
+

+
Tr(K∗nPnPnKn)− Tr(PnK

∗
nKnPn)

dimPn
= 0

since Kn, Pn are trace-class operators.
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Now let K ∈ C∗(Z) and ε > 0. Let L ∈ CZ such that ‖K − L‖ < ε. By the
previous lemma, there exists N > 0 such that if n ≥ N , then ‖LPn−PnL‖HS <
ε‖Pn‖HS . We have that

‖KPn − LPn‖HS ≤ ‖K − L‖‖Pn‖HS

and
‖PnK − PnL‖HS ≤ ‖K − L‖‖Pn‖HS .

Therefore, if n ≥ N , ‖KPn − PnK‖HS < 3ε‖Pn‖HS . Hence our proposition
follows.

9.2 Uniformly amenable traces

Recall from [6] that an amenable trace τ is uniformly amenable if the re-
sulting von Neumann algebra πτ (A)′′ is hyperfinite. Let α : Γ y (Z, µ) be the
Benjamini-Schramm limit of the graph sequence {V (Tn)}∞n=1 as in the previous
subsection. Since C∗r (Z) is dense in M(α), τ is a uniformly amenable trace if
and only if the equivalence relation generated by the action α is hyperfinite.
By Theorem 1. [12], the equivalence relation above is hyperfinite if and only if
{Tn}∞n=1 is a hyperfinite graph sequence. That is, for any ε > 0 there exists
K > 0 such that for any n ≥ 1 one can remove from the graph Tn ε|V (Tn)|
edges in such a way that all the components of the remaining graph has at most
K elements. Therefore we have the following proposition.

Proposition 9.2. Let Z ⊂ Sub(Γ) be a generic URS and H ∈ Z. If SQ
Γ (H)

admits a convergent hyperfinite sequence of finite subgraphs {Tn}∞n=1 such that
|∂Tn|
|V (Tn)| → 0, then C∗r (Z) has a uniformly amenable trace. If SQ

Γ (H) admits

a convergent nonhyperfinite sequence of finite subgraphs {Tn}∞n=1 such that
|∂Tn|
|V (Tn)| → 0, then C∗r (Z) has a non-uniformly amenable trace, that is, by Theo-

rem 4.3.3. C∗r (Z) is not locally reflexive, hence it is a nonexact C∗-algebra.

10 A nonexact example

10.1 The construction

In Section 4.3.3 of [8], we constructed a Schreier graph S = SQ
Γ (H) of a group

Γ such that that the orbit closure of S is a generic URS. Also, S contains a

convergent, hyperfinite sequence of finite subgraphs {Tn}∞n=1 with |∂Tn|
|V (Tn)| → 0

and a convergent nonhyperfinite sequence of finite subgraphs {Wn}∞n=1 with
|∂Wn|
|V (Wn)| → 0. Let Z be the orbit closure of H in Sub(Γ). Then by Proposition

9.2, C∗r (Z) is not a locally reflexive (hence nonexact) simple, unital separable
C∗-algebra with both uniform amenable and non-uniform amenable traces. For
completeness, we present a somewhat slicker construction, that is very similar
to the one given in [8]

29



Step 0. For n ≥ 1, let Cn be the cycle of length 2n+1. Let Γ3 be the free group
of three cycle groups of rank 2. Let Γ3 ⊂M1 ⊃ M2 ⊃ . . . ,∩∞n=1Mn = {1} be a
sequence of finite index normal subgroups. For n ≥ 1 let Vn be the underlying
graph of the Cayley-graph of Γ3/Mn. That is, the sequence {Vn}∞n=1 itself is a
convergent nonhyperfinite sequence of finite graphs.

Step 1. Let G1 = C1 and H1 = C2.

Step n. Let us suppose that the graphs G2 ⊂ G4 ⊂ · · · ⊂ G2n−2, G1 ⊂ G3 ⊂
· · · ⊂ G2n−1 and {Hi}2n−1i=1 are already defined in such a way that

• If 1 ≤ i ≤ n − 1, then H2i = Vki
for some ki > 0, H2i+1 = Cli for some

li > 0.

• For any 1 ≤ i ≤ n− 1 we have disjoint subsets
{Rj

2i}ij=1 ⊂ H2i, {Rj
2i+1}ij=1 ⊂ H2i+1 so that

|Rj
2i||V (Gj)| ≤

1

10j
|V (H2i)| , |Rj

2i+1||V (Gj)| ≤
1

10j
|V (H2i+1)| .

• We have positive integers T1 < T2 < . . . Tn−1 such that for any 1 ≤ j ≤
i ≤ n− 1

Rj
2i ∩BTj

(H2i, x) 6= ∅, Rj
2i+1 ∩BTj

(H2i+1, y) 6= ∅ ,

for all x ∈ V (H2i), y ∈ V (H2i+1) .

• The graph G2i is constructed in such a way that for any 1 ≤ j ≤ i a copy
of Gj is connected to all the vertices of Rj

2i ⊂ V (H2i). The graph G2i+1 is
constructed in such a way that for any 1 ≤ j ≤ i a copy of Gj is connected

to all the vertices of Rj
2i+1 ⊂ V (H2i+1). Connecting a graph A to a graph

B means that we add a disjoint copy of A to B plus an extra edge beween
a vertex of A and a vertex of B.

Now we construct the graphs G2n and G2n+1. We pick a graph H2n = Vkn
and

H2n+1 = Cln in such a way that

|V (Gn)| ≤
1

10n
|V (H2n)| , |V (Gn)| ≤

1

10n
|V (H2n+1)| .

We define Tn as the maximum of the diameters of the graphs H2n and H2n+1.
Now we use the fact that we have normal covering maps ζ2n : H2n → H2n−2
and ζ2n+1 : H2n+1 → H2n−1. For 1 ≤ j ≤ n − 1, set Rj

2n = ζ−12n (Rj
2n−2) and

Rj
2n+1 = ζ−12n+1(R

j
2n−1). That is,

|Rj
2n||V (Gj)| ≤

1

10j
|V (H2n)| , |Rj

2n+1||V (Gj)| ≤
1

10j
|V (H2n+1)| .

Now for any 1 ≤ j ≤ n−1, we connect a copy of Gj to the vertices of Rj
2n and a

copy of Gj to the vertices of Rj
2n+1. Finally, we connect a copy of Gn to a single
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vertex a of V (H2n) not covered by any Rj
2n and a copy of Gn to a single vertex

b of V (H2n+1) not covered by any Rj
2n+1. Then we set a = Rn

2n, b = Rn
2n+1.

Then, for any 1 ≤ j ≤ n, Rj
2n∩BTj

(H2n, x) 6= ∅ and Rj
2n+1∩BTj

(H2n+1, y) 6= ∅,
for all x ∈ V (H2n) and y ∈ V (H2n+1). Also, we have that

|Rn
2n||V (Gn)| ≤

1

10n
|V (H2n| , |Rn

2n+1||V (Gn)| ≤
1

10n
|V (H2n+1| .

Now, we have graphs G1 ⊂ G3 ⊂ G5 ⊂ . . . and set G = ∪∞i=1G2i−1. By the
self-similar nature of our construction, it is easy to see that for any x ∈ V (G)
and r ≥ 1, there exists Nx,r > 0 such that if y ∈ V (G), then there is a z ∈
BNx,r

(G, y) such that Br(G, x) and Br(G, z) are isomorphic as rooted graphs.
Notice that G1 ⊂ G3 ⊂ . . . are forming a hyperfinite sequence of subgraphs.

so that
|∂Gki

|
|V (Gki

)| → 0. Also, we have subgraphs G2, G4,. . . connected by one

single edge to H2n+1, that are forming such a sequence of finite graphs that no

subsequence of them is hyperfinite and |∂G2i|
|V (G2i)| → 0. Indeed, in the construction

H2n ⊂ G2n, |V (H2n)| > |V (G2n)|/2 and the sequence of finite graphs {H2n}∞n=1

is a large girth graph sequence so no subsequence of {G2n}∞n=1 can be hyperfinite
(since that would mean that a subsequence of {H2n}∞n=1 is hyperfinite as well).
Now we can apply the coloring construction of Proposition 5.1 to obtain the
colored graph S (and hence a URS Z ⊂ Sub(Γk) we are sought of. In the
graph S there is a convergent hyperfinite sequence of finite subgraphs {Tn}∞n=1

with |∂Tn|
|V (Tn)| → 0 and there is a convergent nonhyperfinite sequence of finite

subgraphs {T ′n}∞n=1 with
|∂T ′

n|
|V (T ′

n)|
→ 0

10.2 Two more interesting properties of the nonexact

URS

Let Z ⊂ Sub(Γ) be the generic URS constructed above.

Proposition 10.1. There is no free continuous action of any countable group
that is Borel orbit equivalent to Z.

Proof. Suppose that Z is Borel orbit equivalent to a free continuous action θ
of the countable group ∆. If ∆ is amenable, then any invariant measure of the
action θ makes the equivalence relation hyperfinite. However, Z admits invariant
measure that makes it a nonhyperfinite measurable equivalence relation. If ∆ is
nonamenable then all the invariant measures make the equivalence relation of
the action θ nonhyperfinite. However, Z has an invariant measure that makes
its equivalence relation hyperfinite (see also [20] for a minimal action of a group
that is not Borel equivalent to a free continuous action).

If K1,K2 ∈ Z then their Schreier graphs are locally indistinguishable. However,
it is possible that their Schreier graphs look globally quite different.

Proposition 10.2. There exists K1,K2 ∈ Z such that SQ
Γ (K1) is one-ended

and SQ
Γ (K2) is two-ended.
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Proof. Clearly, there must be an element K1 in Z such that the underlying
graph of SQ

Γ (K1) is isomorphic to the graph G in our construction and G is
clearly one-ended. Now we pick a sequence of points xn ∈ H2n+1. Consider a
limitpoint T = SQ

Γ (K2) of the rooted Schreier graphs {(SQ
Γ (K1), xn)}∞n=1 in the

compact space SchQΓ . It is easy to see that T has multiple ends.
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