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THE PRIME GEODESIC THEOREM IN SQUARE MEAN

ANTAL BALOG, ANDRÁS BIRÓ, GERGELY HARCOS, AND PÉTER MAGA

Abstract. We strengthen the recent result of Cherubini–Guerreiro on the square mean of the error term
in the prime geodesic theorem for PSL2(Z). We also develop a short interval version of this result.

1. Introduction

The aim of this note is to provide a new upper bound for the square mean error in the classical prime
geodesic theorem. For a brief introduction, let Γ := PSL2(Z) be the modular group, and let

ΨΓ(X) :=
∑

NP6X

Λ(P )

denote the usual Chebyshev-like counting function for the closed geodesics on the modular surface Γ\H.
That is, logNP is the length of the closed geodesic P , and Λ(P ) = logNP0 is the length of the underlying
prime closed geodesic P0. The closed geodesic P (resp. P0) is understood without orientation, hence it
corresponds bijectively to an unordered pair of hyperbolic (resp. primitive hyperbolic) conjugacy classes in
Γ which are reciprocals of each other (cf. [Sa1, Sa2]). In an original breakthrough, Iwaniec [Iw1] proved that

ΨΓ(X) = X +Oε(X
35/48+ε)

for any ε > 0, the important point being that 35/48 in the exponent is less than 3/4. This constant
was subsequently lowered to 7/10 by Luo–Sarnak [LuSa], 71/102 by Cai [Ca], and 25/36 by Soundararajan–
Young [SoYo]. For the last mentioned result, Balkanova–Frolenkov [BaFr] provided a new proof very recently.
It is conjectured that the exponent 2/3+ ε or perhaps even 1/2+ ε is admissible (in which case it would be
optimal). Our main result states that the exponent 7/12 + ε is valid in a square mean sense.

Theorem 1. Let A > 2. Then, for any ε > 0 we have

1

A

∫ 2A

A

|ΨΓ(X)−X |2 dX ≪ε A
7/6+ε.

This estimate improves on the result of Cherubini–Guerreiro [ChGu, Th. 1.4], where the right hand side
was A5/4+ε, and in fact our analysis is based on theirs. Incidentally, the exponents 7/12+ ε and 5/8+ ε also
occur in the recent works of Petridis–Risager [PeRi] and Biró [Bi] on the hyperbolic circle problem, although
their averages are not fully analogous to ours.

Theorem 1 has the following simple consequence for short intervals. For 0 6 η 6 1 we have

1

A

∫ 2A

A

|ΨΓ(X)−ΨΓ(X − ηX)− ηX |2 dX ≪ε A
7/6+ε,

that is, the approximation ΨΓ(X)−ΨΓ(X − ηX) ≈ ηX is valid with error term X7/12+ε in a square mean
sense. For η > A−1/6, this is the best we can say at the moment. However, for smaller η, we can obtain an
improvement by tailoring our analysis to the present problem, with an average error term tending to X1/2+ε

as η gets close to A−1/2.
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Theorem 2. Let A > 2. Then, for any ε > 0 and A−1/2 log2 A 6 η < A−1/6 we have

1

A

∫ 2A

A

|ΨΓ(X)−ΨΓ(X − ηX)− ηX |2 dX ≪ε A
5/4+εη1/2.

Remark 1. Theorem 2 can be improved for very small η by employing [BaFr, Th. 8.3]. Specifically, on the
right hand side of the bound, A1+ε is admissible for A−1/2 log2 A 6 η < A−4/9, and A5/3+εη3/2 is admissible
for A−4/9 6 η < A−5/12. See also Remark 2 below Theorem 3.

The paper is structured as follows. The overall strategy is already present in Iwaniec’s seminal paper
[Iw1], but we also rely crucially on the work of Cherubini–Guerreiro [ChGu] and Luo–Sarnak [LuSa]. In
Section 4, we reduce Theorems 1 and 2 to the estimation of a certain spectral exponential sum. This reduction
ultimately follows from Selberg’s trace formula, although we do not invoke it explicitly. In Section 3, we
prove Theorem 3, which contains the necessary bounds for the spectral exponential sum. This proof is
ultimately an application of Kuznetsov’s trace formula, which again remains in the background, however.
Section 2 prepares the scene, incorporating a key idea of Iwaniec [Iw1].

2. Reduction to Kuznetsov’s trace formula

Let {uj} be an orthonormal Hecke eigenbasis of the space of Maass cusp forms on Γ\H. Denoting by
1/4 + t2j the Laplace eigenvalue of uj with the sign convention tj > 0, we have the Fourier decomposition

uj(x+ iy) =
√
y
∑

n6=0

ρj(n)Kitj (2π|n|y)e(nx).

The Fourier coefficients ρj(n) are proportional to the Hecke eigenvalues λj(n),

(1) ρj(n) = ρj(1)λj(n).

The Hecke eigenvalues are real, and they satisfy the multiplicativity relations

λj(m)λj(n) =
∑

d|gcd(m,n)

λj

(mn

d2

)

.

In particular, the symmetric square L-function of uj satisfies

(2) L(s, sym2 uj) = ζ(2s)

∞
∑

n=1

λj(n
2)

ns
=

ζ(2s)

ζ(s)

∞
∑

n=1

λj(n)
2

ns
, ℜs > 1,

in the region of absolute convergence of both Dirichlet series.
Concerning the distribution of Laplace eigenvalues, we record Weyl’s law as (cf. [Iw2, (11.5)])

(3) #{j : tj 6 T } =
T 2

12
+O(T logT ).

In fact a finer asymptotic expansion is available, see [He, Ch. 11, (2.12)] or [Ve, Th. 7.3].
With Kuznetsov’s trace formula in mind, we introduce the harmonic weights

(4) αj :=
|ρj(1)|2
cosh(πtj)

=
2

L(1, sym2 uj)
,

which by [Iw2, Th. 8.3] and [HoLo, Th. 0.2] satisfy the convenient bounds

(5) t−ε
j ≪ε αj ≪ε t

ε
j .

For arbitrary X,T > 2, we borrow from [DeIw, Lemma 7] the test function (see also [LuSa, p. 234] and
[BaFr, Lemma 2.2])

ϕ(x) :=
sinhβ

π
x exp(ix coshβ) with β :=

logX

2
+

i

2T
,

whose Bessel transform

ϕ̂(t) :=
πi

2 sinh(πt)

∫ ∞

0

(

J2it(x)− J−2it(x)
)

ϕ(x)
dx

x
2



satisfies

(6) ϕ̂(t) =
sinh(πt+ 2βit)

sinh(πt)
= X ite−t/T +O

(

e−πt
)

.

Following [Iw1, LuSa], we consider the spectral-arithmetic average (cf. (2))

∑

j

αjϕ̂(tj)
∑

n

h(n)λj(n)
2 =

∑

j

αjϕ̂(tj)
1

2πi

∫

(2)

h̃(s)
ζ(s)

ζ(2s)
L(s, sym2 uj) ds,

where h : (0,∞) → R is a smooth compactly supported function with holomorphic Mellin transform h̃ :
C → C. We choose h such that it is supported in some dyadic interval [N, 2N ] for N > 1, and it satisfies

h(j) ≪j N
−j and h̃(1) = N . Then also

(7) h̃(s) =
(−1)j

s(s+ 1) . . . (s+ j − 1)

∫ ∞

0

h(j)(x)xs+j dx

x
≪σ,j

Nσ

(1 + |s|)j , ℜ(s) = σ,

where the implied constant depends continuously on σ. More precisely, the identity is meant for s outside
{0,−1,−2, . . .}, but the inequality holds even at these exceptional points. Shifting the contour, we obtain
by the residue theorem and (4),

∑

j

αjϕ̂(tj)
∑

n

h(n)λj(n)
2 =

12N

π2

∑

j

ϕ̂(tj) +
∑

j

αjϕ̂(tj)
1

2πi

∫

(1/2)

h̃(s)
ζ(s)

ζ(2s)
L(s, sym2 uj) ds.

Using also the approximation (6), we obtain after some rearrangement,

∑

j

X itje−tj/T = O(1) +
π2

12N

∑

n

h(n)
∑

j

αjϕ̂(tj)λj(n)
2

− π2

12N

1

2πi

∫

(1/2)

h̃(s)
ζ(s)

ζ(2s)

∑

j

αjϕ̂(tj)L(s, sym
2 uj) ds.

(8)

This formula is equivalent to [BaFr, (3.8)], and we have included the proof for the sake of completeness. We
stress that the spectral weights ϕ̂(tj) depend on the parameters X,T > 2.

3. Spectral exponential sums in square mean

We shall estimate the spectral exponential sum (8), in square mean over A 6 X 6 2A, by combining (8)
with the analysis of Cherubini–Guerreiro [ChGu] and Luo–Sarnak [LuSa]. Specifically, on the right hand
side of (8), the square mean of the first j-sum can be estimated via Kuznetsov’s formula and the Hardy–
Littlewood–Pólya inequality (cf. [ChGu, Lemma 4.2]), while the square mean of the second j-sum can be
estimated in terms of the spectral second moment of symmetric square L-functions (cf. [LuSa, (33)]). This
way we obtain the following improvement of [ChGu, Prop. 4.5].

Theorem 3. Let A > 2. Then, for any ε > 0 we have

(9)
1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

tj6T

X itj

∣

∣

∣

∣

∣

2

dX ≪ε (AT )
ε











T 3, 0 < T 6 A1/6;

A1/4T 3/2, A1/6 < T 6 A1/2;

T 2, A1/2 < T.

In particular, the left hand side can always be bounded as ≪ε (AT )
εA1/6T 2.

Remark 2. Theorem 3 can be refined in the medium range by employing [BaFr, Th. 8.3]. Specifically,
A1/4T 3/2 can be improved to A1/2+θT 1/2 for A1/4+θ < T 6 A1/3+2θ/3, and to T 2 for A1/3+2θ/3 < T 6 A1/2.
Note that for θ any value exceeding 1/6 is admissible by the celebrated work of Conrey–Iwaniec [CoIw,
Cor. 1.5].
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Following the proof of [ChGu, Prop. 4.5], which is based on [LuSa, pp. 235–236], we see that (9) can be
deduced from the following smoothened variant, itself a strengthening of [ChGu, Lemma 4.4]:

(10)
1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

j

X itje−tj/T

∣

∣

∣

∣

∣

2

dX ≪ε (AT )
ε











T 3, 0 < T 6 A1/6;

A1/4T 3/2, A1/6 < T 6 A1/2;

T 2, A1/2 < T.

We shall assume here that T > 2, since otherwise (10) is trivial. As a first step for the proof of (10), we change
in (8) the second occurrence of ϕ̂(tj) to X itje−tj/T , and we restrict the integration to |ℑ(s)| 6 T ε. The error
resulting from this change is Oε(1) by (7) and standard bounds for the symmetric square L-function and the
Riemann zeta function. Then, applying the Cauchy–Schwarz inequality multiple times and standard bounds
for the Riemann zeta function, we arrive at

∣

∣

∣

∣

∣

∑

j

X itje−tj/T

∣

∣

∣

∣

∣

2

≪ε 1 +
1

N

∑

N6n62N

∣

∣

∣

∣

∣

∑

j

αjϕ̂(tj)λj(n)
2

∣

∣

∣

∣

∣

2

+
T ε

N

∫ T ε

−T ε

∣

∣

∣

∣

∣

∑

j

αjX
itje−tj/TL(1/2 + iτ, sym2 uj)

∣

∣

∣

∣

∣

2

dτ.

We abbreviate

Lj(τ) := L(1/2 + iτ, sym2 uj),

and we average over A 6 X 6 2A. Applying [ChGu, Lemma 4.2]1 for the contribution of the n-sum on the
right hand side, we obtain

1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

j

X itje−tj/T

∣

∣

∣

∣

∣

2

dX ≪ε (NA1/2 + T 2)(ANT )ε

+
T ε

N

∫ T ε

−T ε

1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

j

αjX
itje−tj/TLj(τ)

∣

∣

∣

∣

∣

2

dX dτ.

We apply the Cauchy–Schwarz inequality one more time to facilitate the upcoming analysis. Specifically,
we distribute the spectral parameters tj on the right hand side into intervals of length T , and this way we
get

∣

∣

∣

∣

∣

∑

j

αjX
itje−tj/TLj(τ)

∣

∣

∣

∣

∣

2

≪
∞
∑

m=1

m2

∣

∣

∣

∣

∣

∑

(m−1)T6tj<mT

αjX
itje−tj/TLj(τ)

∣

∣

∣

∣

∣

2

.

Therefore, with the notation

(11) I(T,A,m, τ) :=
1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

(m−1)T6tj<mT

αjX
itje−tj/TLj(τ)

∣

∣

∣

∣

∣

2

dX,

we infer

(12)
1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

j

X itje−tj/T

∣

∣

∣

∣

∣

2

dX ≪ε (NA1/2 + T 2)(ANT )ε +
T ε

N
sup

|τ |6T ε

∞
∑

m=1

m2 I(T,A,m, τ).

1The definitions of νj(n) and φ̂(t) in [ChGu, LuSa] are slightly in error, in particular their ρj(n) = νj(n) cosh(πtj/2) should

really be ρj(n) = νj(n) cosh(πtj )1/2. With this correction, |νj(n)|2 in [ChGu, LuSa] agrees with our αjλj(n)2, thanks to (1)

and (4). For precise versions of the relevant Kuznetsov formula, see [Ku, Th. 2] and [Iw2, Th. 9.5].
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We bound I(T,A,m, τ) by squaring out the j-sum in (11), then integrating explicitly in X , and finally using
(5) for αj :

I(T,A,m, τ) ≪ε T
εe−2m

∑

(m−1)T6tj ,tk<mT

|Lj(τ)Lk(τ))|
1 + |tj − tk|

6
T εe−2m

2

∑

(m−1)T6tj,tk<mT

|Lj(τ)|2 + |Lk(τ)|2
1 + |tj − tk|

= T εe−2m
∑

(m−1)T6tj<mT

|Lj(τ)|2
∑

(m−1)T6tk<mT

1

1 + |tj − tk|
.

By the Weyl law (3), the last k-sum is

(13)
∑

(m−1)T6tk<mT

1

1 + |tj − tk|
6

⌈T⌉
∑

ℓ=1

1

ℓ

∑

(m−1)T6tk<mT
ℓ−16|tj−tk|<ℓ

1 ≪ε (mT )1+ε

⌈T⌉
∑

ℓ=1

1

ℓ
≪ε (mT )1+2ε,

whence

I(T,A,m, τ) ≪ε (mT )1+ε e−2m
∑

(m−1)T6tj<mT

|Lj(τ)|2 .

For the last sum, we apply the spectral second moment bound of Luo–Sarnak [LuSa, (33)], obtaining

I(T,A,m, τ) ≪ε (mT )3+ε(1 + |τ |)5+ε e−2m.

In combination with (12), this yields

1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

j

X itje−tj/T

∣

∣

∣

∣

∣

2

dX ≪ε (NA1/2 + T 2)(ANT )ε +
T 3+ε

N
.

The last bound improves on the display before [ChGu, Prop. 4.5] in that we have T 3+ε in place of T 4+ε.
We optimize by setting N := A−1/4T 3/2, which exceeds 1 if and only if T > A1/6. Assuming this, we
obtain (10) readily. For T 6 A1/6 we estimate the left hand side of (10) more directly but along the same
ideas. Specifically, let us distribute the spectral parameters tj into intervals of length T as before, apply the
Cauchy–Schwarz inequality for the resulting m-sum, square out the various j-subsums, integrate explicitly
in X , and then apply the Weyl law (3). We obtain (cf. (13))

1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

j

X itje−tj/T

∣

∣

∣

∣

∣

2

dX ≪
∞
∑

m=1

m2e−2m
∑

(m−1)T6tj ,tk<mT

1

1 + |tj − tk|

≪ε

∞
∑

m=1

m2e−2m(m1+εT 2)(mT )1+ε ≪ε T
3+ε,

which is equivalent to (10) for T 6 A1/6. The proof of Theorem 3 is complete.

4. Prime geodesic error terms in square mean

In this section, we deduce Theorem 1 and 2 from Theorem 3. For both theorems, we shall assume (without
loss of generality) that A > 100.

Our deduction of Theorem 1 follows almost verbatim the argument of Cherubini–Guerreiro right after
the proof of [ChGu, Prop. 4.5]. We reproduce this argument (with small corrections), because we shall
use certain steps from it in the proof of Theorem 2. Our starting point is the explicit formula for ΨΓ(X)
established by Iwaniec [Iw1, Lemma 1],

(14) ΨΓ(X) = X +
∑

|tj |6T

X1/2+itj

1/2 + itj
+O

(

X

T
log2 X

)

, 2 < T 6
X1/2

log2 X
.
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Here the notation |tj | 6 T means that the sum runs through the spectral parameters ±tj with tj 6 T (recall
our sign convention tj > 0). With the notation

R(X,T ) :=
∑

tj6T

X itj ,

the spectral sum in the explicit formula can be expressed as twice the real part of

∑

tj6T

X1/2+itj

1/2 + itj
= X1/2 R(X,T )

1/2 + iT
+ iX1/2

∫ T

1

R(X,U)

(1/2 + iU)2
dU.

We specify T := A1/2/ log2 A, and we note that T 6 X1/2/ log2 X holds for any X > A by the assumption
A > 100. Applying the Cauchy–Schwarz inequality several times,

1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

tj6T

X1/2+itj

1/2 + itj

∣

∣

∣

∣

∣

2

dX ≪
∫ 2A

A

∣

∣

∣

∣

R(X,T )

1/2 + iT

∣

∣

∣

∣

2

dX +

∫ 2A

A

∣

∣

∣

∣

∣

∫ T

1

R(X,U)

(1/2 + iU)2
dU

∣

∣

∣

∣

∣

2

dX

≪ 1

T 2

∫ 2A

A

|R(X,T )|2dX + logT

∫ T

1

(

∫ 2A

A

|R(X,U)|2dX
)

dU

U3
.

On the right hand side, the first term is Oε(A
1+ε) and the second term is Oε(A

7/6+ε) by Theorem 3. Noting
also that the error term in (14) is Oε(A

1/2+ε), we obtain the bound in Theorem 1.
Now we prove Theorem 2. We specify T := A1/2/ log2 A as before. The condition A−1/2 log2 A 6 η <

A−1/6 then yields T−1 6 η < 1/2. By the explicit formula (14),

ΨΓ(X)−ΨΓ(X − ηX)− ηX =
∑

|tj|6T

X1/2+itj
1− (1− η)1/2+itj

1/2 + itj
+Oε(A

1/2+ε),

and we need to estimate the square mean of this expression over A 6 X 6 2A. It suffices to do this with
the restriction tj > 0 on the right hand side, since the original sum over |tj | 6 T is twice the real part of the
new sum over tj 6 T . The contribution of the spectral parameters tj 6 1/η can be rewritten and bounded
by the Cauchy–Schwarz inequality as

1

A

∫ 2A

A

∣

∣

∣

∣

∣

∫ 1

1−η

(

X

ξ

)1/2

R(Xξ, 1/η) dξ

∣

∣

∣

∣

∣

2

dX 6

(
∫ 1

1−η

dξ

ξ

)

(

∫ 1

1−η

∫ 2A

A

|R(Xξ, 1/η)|2 dX dξ

)

.

The X-integral is Oε(A
5/4+εη−3/2) by Theorem 3, hence the right hand side is Oε(A

5/4+εη1/2). The contri-
bution of the spectral parameters 1/η < tj 6 T is bounded by

(15)
1

A

∫ 2A

A

∣

∣

∣

∣

∣

∑

1/η<tj6T

X1/2+itj

1/2 + itj

∣

∣

∣

∣

∣

2

dX +
1

B

∫ 2B

B

∣

∣

∣

∣

∣

∑

1/η<tj6T

X1/2+itj

1/2 + itj

∣

∣

∣

∣

∣

2

dX,

where B abbreviates (1 − η)A. These integrals are very similar to the one we encountered in the proof
of Theorem 1, so we can be brief. The first integral in (15) can be bounded by partial summation, the
Cauchy–Schwarz inequality, and Theorem 3 as

≪ η2
∫ 2A

A

|R(X, 1/η)|2 dX +
1

T 2

∫ 2A

A

|R(X,T )|2 dX + log(ηT )

∫ T

1/η

(

∫ 2A

A

|R(X,U)|2 dX
)

dU

U3

≪ε A
5/4+εη1/2 +A1+ε +A5/4+ε

∫ T

1/η

U−3/2 dU ≪ A5/4+εη1/2.

Similarly, the second integral in (15) is Oε(B
5/4+εη1/2), hence also Oε(A

5/4+εη1/2). Finally, the contribution
of the error term in (14) is Oε(A

1+ε). The proof of Theorem 2 is complete.
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