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BALL CHARACTERIZATIONS

IN SPACES OF CONSTANT CURVATURE

J. Jerónimo-Castro*, E. Makai, Jr.**

Abstract. High proved the following theorem. If the intersections of any two con-
gruent copies of a plane convex body are centrally symmetric, then this body is a

circle. In our paper we extend the theorem of High to spherical, Euclidean and hy-

perbolic spaces, under some regularity assumptions. Suppose that in any of these
spaces there is a pair of closed convex sets of class C2

+
with interior points, different

from the whole space, and the intersections of any congruent copies of these sets are

centrally symmetric (provided they have non-empty interiors). Then our sets are
congruent balls. Under the same hypotheses, but if we require only central symme-

try of small intersections, then our sets are either congruent balls, or paraballs, or
have as connected components of their boundaries congruent hyperspheres (and the

converse implication also holds).

Under the same hypotheses, if we require central symmetry of all compact inter-
sections, then either our sets are congruent balls or paraballs, or have as connected

components of their boundaries congruent hyperspheres, and either d ≥ 3, or d = 2

and one of the sets is bounded by one hypercycle, or both sets are congruent paral-
lel domains of straight lines, or there are no more compact intersections than those

bounded by two finite hypercycle arcs (and the converse implication also holds).
We also prove a dual theorem. If in any of these spaces there is a pair of smooth

closed convex sets, such that both of them have supporting spheres at any of their

boundary points — for Sd of radius less than π/2 — and the closed convex hulls of any
congruent copies of these sets are centrally symmetric, then our sets are congruent

balls.

1. Introduction

We will investigate closed convex sets with non-empty interior in Sd (d-dimen-
sional sphere), Rd, Hd (d-dimensional hyperbolic space).

R. High proved the following theorem.

Theorem. ([H]) Let K ⊂ R2 be a convex body. Then the following statements are
equivalent:

(1) All intersections (ϕK)∩(ψK), having interior points, where ϕ, ψ : R2 → R2

are congruences, are centrally symmetric.
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2 J. JERÓNIMO-CASTRO, E. MAKAI, JR.

(2) K is a circle. �

It seems that his proof gives the analogous statement, when ϕ, ψ are only allowed
to be orientation preserving congruences.

Problem. Describe the pairs of closed convex sets with interior points, in Sd, Rd
andHd, different from the whole space, whose any congruent copies have a centrally
symmetric intersection, provided this intersection has interior points, or have a
centrally symmetric closed convex hull of their unions. Evidently, two congruent
balls (for Sd of radii at most π/2), or two parallel slabs in Rd, have a centrally
symmetric intersection, provided this intersection has a non-empty interior, and
have a centrally symmetric closed convex hull of their unions.

The authors are indebted to L. Montejano (Mexico City) and G. Weiss (Dresden)
for having turned their interest to characterizations of pairs of convex bodies with
all translated (for Rd) or congruent copies having a centrally or axially symmet-
ric intersection or convex hull of the union, respectively, or with other symmetry
properties, e.g., having some affine symmetry.

Central symmetry of a set X ⊂ Sd with respect to a point O ∈ Sd is equivalent to
central symmetry of X with respect to the point −O antipodal to O. However, the
two transformations: central symmetry with respect to O, and central symmetry
with respect to −O, coincide. In all our theorems, for the case of Sd, we will
investigate sets X ⊂ Sd contained in an open hemisphere, say the southern one.
Such a set cannot have a center of symmetry on the equator, but it may have
one in the open southern or in the open northern hemisphere, and then it has
two antipodal centres of symmetry, one in the open southern, and one in the open
northern hemisphere. In such case we will use the one in the southern hemisphere.

The aim of our paper will be to give partial answers to these problems. To
exclude trivialities, we always suppose that our sets are different from the whole
space, and also we investigate only such cases, when the intersection has interior
points. For Sd, Rd and Hd, where d ≥ 2, we prove the analogue of the above
theorem under some regularity assumptions (C2 for Sd, C2 and having an extreme
point for Rd, and C2

+ for Hd, respectively).

For Sd, Rd and Hd, under the above mentioned regularity assumptions, we
have the following. If all sufficiently small intersections of congruent copies of
two closed convex sets K and L with interior points, having a non-empty interior,
are centrally symmetric, then all connected components of the boundaries of the
two sets are congruent spheres, paraspheres or hyperspheres. (“Sufficiently small”
means here: of sufficiently small diameter.) Under the same regularity assumptions,
if all intersections of congruent copies of two closed convex sets with interior points,
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having a non-empty interior, are centrally symmetric, then they are congruent
balls. There is a question “between” the above two questions. Suppose the same
regularity assumptions, and also that all compact intersections are centrally sym-
metric. Then there are several possibilities for K and L, and there is a complete
description also for this case.

The dual question is the question of centrally symmetric closed convex hull of
any congruent copies of K and L. Under the hypotheses that both K and L are
smooth and at any of their boundary points have supporting spheres, for Sd of radii
less than π/2, the only case is two congruent balls, for Sd of radii less than π/2.
Observe that for Sd, Rd and Hd the hypotheses imply that any existing sectional
curvature of K and L is positive, positive, or greater than 1, in the three cases,
respectively.

Surveys about characterizations of central symmetry, for convex bodies in Rd,
cf. in [BF], §14, pp. 124-127, and, more recently, in [HM], §4.

In later papers we will give sharper theorems on the one hand about Rd (for
d ≥ 2), and on the other hand about S2 and H2.

In Rd we will describe all pairs of closed convex sets with interior points, different
from Rd, without any additional hypotheses, whose any congruent copies have a
centrally symmetric intersection (provided this intersection has interior points). For
d ≥ 2 these are: (1) two congruent balls, or (2) two (incongruent) parallel slabs.
(Observe that in Theorem 2 of this paper the hypothesis about the existence of an
extreme point of K or L excludes the case of two parallel slabs.)

For the dual question, we will describe in Rd all pairs of closed convex sets
with interior points, different from Rd, without any additional hypotheses, whose
any congruent copies have a union with a centrally symmetric closed convex hull.
For d ≥ 2 these are: (1) K and L are infinite cylinders over balls of dimensions
2 ≤ i, j ≤ d, having equal radii (this includes the case of two congruent balls). (2)
one of K and L is an infinite cylinder with dimension of axis 0 ≤ i ≤ d−1 and with
base compact, and the other one is a slab (this includes the case of two slabs). The
methods applied for Rd are completely different from those in this paper. They use
some theorems of V. Soltan in [So05], [So06], and some other considerations, even
for the case of intersections.

Further, in S2, R2 and H2 we will even describe the pairs of closed convex sets
with interior points, different from the entire space, whose any congruent copies
have a (1) centrally, or (2) axially symmetric intersection (provided this intersection
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has interior points), under the hypothesis that (1) for the case of H2, if all
connected components of the boundaries both of K and L are straight lines, then
their numbers are finite, or (2) for the case of H2, the numbers of the connected
components both of K and L are finite.

Suppose (1). Then K and L are congruent circles, or, for R2, two (incongruent)
parallel strips. (The case of R2 here also follows from the case of Rd above.)

Suppose (2). Then, for S2, K and L are (incongruent) circles. For R2 there
are five cases, each satisfying that any of K and L is a circle, a parallel strip or
a half-plane. For H2 there are a large number of such cases, each satisfying that
all connected components of the boundaries both of K and L are cycles or straight
lines, their curvatures depending on the component (this being true already if all
intersections of a sufficiently small diameter are centrally symmetric, also for S2

and R2 — in some analogy with our Theorem 1). Furthermore, if none of K and
L is a circle, then the boundaries of both of them have at most two hypercycle or
straight line connected components, and moreover, if either for K or for L there are
two such components, then the respective set is a parallel domain of a straight line.
Some cases are: (a) two (incongruent) circles, (b) two paracycles, (c) two congruent
closed convex sets, each bounded by one hypercycle, (d) two half-planes, (e) two
congruent parallel domains of lines. The methods applied for S2, R2 and H2 are
refined versions of the methods applied in this paper.

Still we remark that for the dual problem we cannot give better results for d = 2
than Theorem 4 in this paper for d ≥ 2.

2. New results

Let d ≥ 2 be an integer. We investigate the spaces of constant curvature Sd,
Rd and Hd. Actually our proofs use absolute geometry, i.e., are independent of
the parallel axiom. In particular, the case of Rd in our Theorem 1 is not simpler
than the general case. Theorem 2 follows from Theorem 1. There the case of Hd

requires some additional considerations.
As usual, we write conv (·), aff (·), diam (·), cl(·), int (·), bd(·), and rel bd (·)

for the convex hull, affine hull, diameter, closure, interior, boundary and relative
boundary (provided it is understood in which subspace do we consider it) of a set.
Further, dist(·, ·) denotes distance.

As general hypotheses in all our statements we use

(*)





X will be Sd, Rd or Hd, for d ≥ 2, and K,L $ X will be closed

convex sets with interior points, and ϕ, ψ : X → X, sometimes

with indices, will be orientation preserving congruences.
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Further, we will need the following weakening of the C2 property.

(A)





Let for each x ∈ bdK, and each y ∈ bdL, there exist an ε1(x) > 0,

and an ε1(y) > 0, such that K and L contain balls of radius ε1(x)

and ε1(y), containing x and y in their boundaries, respectively.

Moreover, we will need the following property, which together with (A) is a weak-
ening of the C2

+ property.

(B)





Let for each x ∈ bdK, and each y ∈ bdL, there exist an

ε2(x) > 0 and ε2(y) > 0, such that the set of points of K

and L, lying at a distance at most ε2(x) and ε2(y) from x

and from y, is contained in a ball B (for X = Sd, Rd) or
in a convex set B bounded by a hypersphere (for X = Hd),

with bdB having sectional curvatures at least ε2(x) and

ε2(y), and with bdB containing x or y, respectively.

Clearly (A) implies smoothness and (B) implies strict convexity, respectively. Ob-
serve that both in (A) and (B) εi(x) > 0 and εi(y) > 0 can be decreased, and then
(A) and (B) remain valid.

The following Theorem 1 will be the basis of our considerations for the case of
intersections. Observe that in Theorem 1, (2), for Rd and Hd, hyperplanes cannot
occur, by the hypothesis about the existence of an extreme point of K or L, and
by C2

+ (or by (B)), respectively. By the same reason, in Theorem 2, for Rd parallel
strips cannot occur.

Theorem 1. Let X be Sd, Rd or Hd, and let K,L and ϕ, ψ be as in (*). Let us
assume C2 for K and L (actually C2 can be weakened to (A)). For X = Rd assume
additionally that one of K and L has an extreme point. For X = Hd assume C2

+

for K and L (actually C2
+ can be weakened to (A) and (B)). Then the following

statements are equivalent.

(1) There exists some ε = ε(K,L) > 0, such that for each ϕ, ψ, for which int
((ϕK) ∩ (ψL)) 6= ∅ and diam ((ϕK) ∩ (ψL)) < ε, we have that (ϕK)∩ (ψL)
is centrally symmetric.
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(2) The connected components of the boundaries of both K and L are congruent
spheres (for X = Sd of radius at most π/2), or paraspheres, or congruent
hyperspheres (for Rd and Hd degeneration to hyperplanes being not admit-
ted). For the case of congruent spheres or paraspheres we have that either
K and L are congruent balls (for X = Sd of radius at most π/2), or they
are paraballs.

Theorem 2. Let X be Sd, Rd or Hd, and let K,L and ϕ, ψ be as in (*). Let us
assume C2 for K and L (actually C2 can be weakened to (A)). For X = Rd assume
additionally that one of K and L has an extreme point. For X = Hd assume C2

+

for K and L (actually C2
+ can be weakened to (A) and (B)). Then the following

statements are equivalent.

(1) For each ϕ, ψ, for which int((ϕK) ∩ (ψL)) 6= ∅ (here we may suppose ad-
ditionally that (ϕK) ∩ (ψL) has at most one infinite point), we have that
(ϕK) ∩ (ψL) is centrally symmetric.

(2) K and L are two congruent balls, and, for X = Sd, their common radius is
at most π/2.

Observe that in Theorem 1, (1) we considered only small intersections with non-
empty interiors, in Theorem 2, (1) all intersections with non-empty interiors (or in
brackets, additionally having at most one infinite point). There is a third possibility,
a condition “between” these two conditions: namely all compact intersections. This
will be done in the following theorem.

Theorem 3. Let X be Sd, Rd or Hd, and let K,L and ϕ, ψ be as in (*). Let us
assume C2 for K and L (actually C2 can be weakened to (A)). For X = Rd assume
additionally that one of K and L has an extreme point. For X = Hd assume C2

+

for K and L (actually C2
+ can be weakened to (A) and (B)). Then the following

statements are equivalent.

(1) For each ϕ, ψ, for which int((ϕK) ∩ (ψL)) 6= ∅ and (ϕK)∩(ψL) is compact,
we have that (ϕK) ∩ (ψL) is centrally symmetric.

(2) K and L are either
(a) two congruent balls, and, for X = Sd, their common radius is at most
π/2, or
(b) two paraballs, or
(c) the connected components of the boundaries of both K and L are con-
gruent hyperspheres (degeneration to hyperplanes being not admitted), and
either

(α) d ≥ 3, or
(β) d = 2, and either
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(β′) one of K and L is bounded by one hypercycle, or
(β′′) K and L are congruent parallel domains of straight lines, or
(β′′′) there are no more compact intersections (ϕK)∩ (ψL) than those

bounded by two finite hypercycle arcs.

We observe that given K and L we cannot in general decide whether (β′′′) holds
for them or not. So this is not such an explicit description as the other cases in
Theorem 3, (2).

As an example, suppose that both K and L have two connected components of
their boundaries, K1, K2, and L1, L2, say. Let K1, K2, and L1, L2 have no common
infinite points (they have no common finite points). Let the first and last points of
K1, in the positive sense, be k11 and k12, and those of K2 be k21 and k22. Then the
straight lines k11k21 and k12k22 intersect each other at a point OK ∈ H2, and these
lines make two opposite angles αK ∈ (0, π), with their respective angular domains
containing K1 and K2. (Then K1∪K2 is centrally symmetric with respect to OK .)
In an analogous way we define the angle αL. Then we claim that

(C) αK + αL > π =⇒ ¬(β′′′)

In fact, we may choose ϕOK = ψOL = 0. Then ϕ and ψ are determined up to
some rotations, which we can choose so that the images by ϕ and by ψ of the above
described, altogether four, open angular domains of angles αK and αL cover S1.
Then (ϕK) ∩ (ψL) is compact and is not bounded by two finite hypercycle arcs.
Hence (β′′′) does not hold, and (C) is shown. Maybe in (C) we have actually an
equivalence?

Observe that the hypotheses of the following Theorem 4 imply compactness of
K and L. Moreover, for Sd, Rd, or Hd they imply that any existing sectional
curvature both of K and of L is greater than 0, 0, or 1, respectively, which for Hd

is a serious geometric restriction.
The convex hull of a set Y ⊂ Hd is defined as for Rd (or one can use the collinear

model). For Y ⊂ Sd, since we will use only sets Y with interior points, we will call
Y convex, if for any two non-antipodal points of Y the unique smaller great circle
arc connecting them belongs to Y . Then for any two antipodal points ±x ∈ Y
there is a point y ∈ Y such that y 6= ±x, and then the smaller large circle arcs x̂y

and (̂−x)y lie in Y . So also in the antipodal case there is at least one half large
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circle arc connecting x and −x in Y . The convex hull, or closed convex hull of a
set Y ⊂ Sd is defined using this definition of convexity in Sd. For X being Sd, Rd
or Hd, and Y ⊂ X , we write conv Y and cl conv Y for the convex hull, and for the
closed convex hull of Y , respectively.

We say that a set Y in Sd, Rd or Hd has at its boundary point x a supporting
sphere if there exists a ball containing Y , for Sd of radius at most π/2, such that x
belongs to the boundary of this ball, which boundary is called the supporting sphere.

Theorem 4. Let X be Sd, Rd or Hd, and let K, L and ϕ, ψ be as in (*). Let
K and L be smooth, and let both K and L have supporting spheres at any of their
boundary points, for Sd of radius less than π/2. Then the following two statements
are equivalent:

(1) For each ϕ, ψ, we have that cl conv ((ϕK) ∪ (ψL)) (where for Sd we may
additionally suppose that diam [cl conv ((ϕK) ∪ (ψL))] is smaller than π, but
is arbitrarily close to π, and for Rd and Hd that this diameter is arbitrarily
large), is centrally symmetric.

(2) K and L are two congruent balls (for the case of Sd of radius less than
π/2).

Observe that in the case of intersections, we had three different equivalent state-
ments for small, for compact, and for all intersections (namely Theorem 1, (2),
Theorem 3, (2) and Theorem 2 (2)), while for the case of closed convex hull of the
union, large convex hulls, or all convex hulls give the same result.

Remark. Possibly Theorems 1 and 2 hold for Sd without any regularity hypothe-
ses, and for Hd only assuming strict convexity (a weakening of (B)). Without
supposing strict convexity Theorem 1 does not hold even for K,L ⊂ Hd having
analytic boundaries. Namely, let 1 ≤ d1, d2 be integers with d1 + d2 < d. Let
K0 ⊂ Hd1 and L0 ⊂ Hd2 be any closed convex sets with nonempty interiors; their
boundaries may be supposed to be analytic. Let πi : H

d → Hdi be the orthogonal
projection of Hd to Hdi (Hdi considered as a subspace of Hd). Then the closed
convex sets with nonempty interiors K := π−1

1 (K0) and L := π−1
2 (L0) are unions

of some point inverses under the maps πi, which point inverses are copies of Hd−d1

and Hd−d2 . Then either (ϕK) ∩ (ψL) = ∅, or the images by ϕ and ψ of two such
point inverses, which images are copies of Hd−d1 and Hd−d2 , intersect. In the sec-
ond case by (d− d1) + (d− d2) > d these images have a straight line in common.
So (1) of Theorem 1 is satisfied vacuously. (Even we could have said “compact
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intersections” or “line-free intersections”, i.e., ones not containing straight lines.)
We do not know a similar example when the dimensions of open portions of He1 in
bdK and of He2 in bdL satisfy e1 + e2 ≤ d. (Strict convexity of K and L means
e1 = e2 = 0. This is related to i-extreme or i-exposed points of closed convex sets
in Rd, for 0 ≤ i ≤ d − 1, cf. [Sch], Ch. 2.1.) As already mentioned at the end of
§1, for Rd where d ≥ 2, for Theorem 2 the only additional example is two parallel
slabs.

Possibly for Sd and Hd Theorem 4 holds without its hypotheses about smooth-
ness and supporting spheres. (For Rd the solution is announced in §1.)

In the proofs of our Theorems we will use some ideas of [H].

3. Preliminaries

In Sd, when saying ball or sphere, we always mean one with radius at most π/2
(thus the ball is convex). For Sd, Rd and Hd we denote by B(x, r) the closed ball
of centre x and radius r. For points x, y in Sd,Rd and Hd, we write [x, y], (x, y)
or line xy for the closed or open segment with end-points x, y, or the line passing
through the points x, y, respectively (these will not be used for x, y antipodal in
Sd, moreover line xy will not be used for x = y) and |xy| for the distance of x
and y. (For x = y we have (x, y) = ∅.) The coordinate planes in Rd will be called
ξ1ξ2-coordinate plane, etc.

A closed convex set K in X = Sd, Rd, Hd with non-empty interior is strictly
convex if its boundary does not contain a non-trivial segment. A boundary point x
of this set K is an extreme point of K if it is not in the relative interior of a segment
contained in bdK. A boundary point x of this set K is an exposed point of K if the
intersection of K and some supporting hyperplane of K is the one-point set {x}.

For hyperbolic plane geometry we refer to [Ba], [Bo], [L], [P], for geometry of
hyperbolic space we refer to [AVS], [C], and for elementary differential geometry
we refer to [St].

The space Hd has two usual models, in the interior of the unit ball in Rd, namely
the collinear (Caley-Klein) model and the conformal (Poincaré) model. In analogy,
we will speak about collinear and conformal models of Sd in Rd, meaning the ones
obtained by central projection (from the centre), or by stereographic projection
(from the north pole) to the tangent hyperplane of Sd, at the south pole, in Rd+1

(this being identified with Rd). These exist of course only on the open southern
half-sphere, or on Sd minus the north pole, respectively. Their images are Rd.

A paraball in Hd is a closed convex set bounded by a parasphere.
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The base hyperplane of a hypersphere in Hd is the hyperplane, for which the
hypersphere is a (signed!) distance surface. It can be given also as the unique
hyperplane, whose infinite points coincide with those of the hypersphere.

In the proofs of our theorems by the boundary components of a set we will mean
the connected components of the boundary of that set.

We shortly recall some two-dimensional concepts to be used later. In S2, H2

there are the following (complete, connected, twice differentiable) curves of constant
curvature (in S2 meaning geodesic curvature). In S2 these are the circles, of radii
r ∈ (0, π/2], with (geodesic) curvature cot r ∈ [0,∞). In H2, these are circles
of radii r ∈ (0,∞), with curvature coth r ∈ (1,∞), paracycles, with curvature 1,
and hypercycles, i.e., distance lines, with (signed!) distance l > 0 from their base
lines (i.e., the straight lines that connect their points at infinity), with curvature
tanh l ∈ (0, 1), and straight lines, with curvature 0. Either in S2 or in H2 (and also
in R2, where we have circles and straight lines), each sort of the above curves have
different curvatures, and for one sort, with different r or l, they also have different
curvatures. The common name of these curves is, except for straight lines in R2

and H2, cycles. In S2 also a great circle is called a cycle, but when speaking about
straight lines, for S2 this will mean great circles. An elementary method for the
calculation of these curvatures for H2 cf. in [V].

4. Proofs of our theorems

The proof of Theorem 1 will be broken up to several lemmas.
In our proofs there will be chosen several times sufficiently small numbers εi > 0.

For one εi there may be several upper bounds. Whenever there are several εi’s, we
always will tell which εi is sufficiently small, for which given εj .

Lemma 1.1. Let X = Hd. Let K $ Hd be a closed convex set with non-empty in-
terior, such that the connected components Ki of bdK are congruent hyperspheres,
with common distance λ > 0 from their base hyperplanes K0i. Then the hyperplanes
K0i bound a non-empty closed convex set K0 (possibly with empty interior, and on
the other closed side of each K0i as Ki), and K equals the parallel domain of K0

for distance λ.

Proof. It will be convenient to use the collinear model. Then the existence, non-
emptyness, closedness and convexity of K0 are evident.

The parallel domain of K0 for distance λ contains the parallel domain of any K0i

for distance λ. Consider the parallel domain of K0 for distance λ, which is closed
and convex. (This follows from the inequality valid for any Lambert quadrangle,
i.e., one which has three right angles: if ABCD has right angles at A,B,C, then
|AB| < |CD|, cf. [C], or [AVS], p. 68, 3.4.) Thus the parallel domain of K0 for
distance λ contains all the hyperspheres Ki, hence also their closed convex hull K.
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Conversely, also K contains the parallel domain of K0 for distance λ. Namely,
on the one hand K0 ⊂ K, hence z ∈ K0 =⇒ z ∈ K. On the other hand, let z 6∈ K0;
then z is separated from K0 by some hyperplane K0i(z). Let dist(z,K0) ≤ λ.
Clearly dist(z,K0) is attained for some point x ∈ K0i(z) (and x is the orthogonal
projection of z to K0i(z)). Therefore dist(z,K0i(z)) = dist(z,K0) ≤ λ, and then
z (lying outside of the “facet” K0i(z) of K0) lies between K0i(z) and Ki(z), hence
z ∈ K. �

In the next Lemma 1.2 we use the notations K,Ki, λ,K0i, K0 from Lemma 1.1,
and for L another set satisfying the same properties as K in Lemma 1.1, we use
the analogous notations Li, λ, L0i, L0, as in Lemma 1.1 for K. (The value of λ > 0
is the same for K and L.)

Lemma 1.2. Let X = Hd and let K,Ki, λ,K0i, K0 and L, Li, λ, L0i, L0 be as
written just before this lemma. Let ϕ and ψ be orientation preserving congruences
of Hd to itself, such that the following hold.

(1) The hyperplanes ϕK01 and ψL01 either have no common finite or infinite
point, or have one common infinite point but no other common finite or infinite
point.

(2) The sets int(ϕK0) and int(ψL0) lie on the opposite closed sides of ϕK01 or
ψL01, as ψL01 or ϕK01, respectively. If one or both of these sets is/are empty, this
requirement is considered as automatically satisfied for the empty one/s of these
sets.

(3) Let ϕK1 and ψL1 denote that connected component of bd(ϕK) or bd(ψL),
whose base hyperplane is ϕK01 or ψL01. If there are two such connected components
of bd(ϕK) or bd(ψL), then we mean that one which lies on the same side of ϕK01

or ψL01, as ψL01 or ϕK01, respectively.
Then, letting ϕK∗

1 and ψL∗

1 be the two closed convex sets bounded by the hyper-
spheres ϕK1 and ψL1, we have

(ϕK) ∩ (ψL) = (ϕK∗

1 ) ∩ (ψL∗

1).

Proof. Observe that ϕK ⊂ ϕK∗

1 and ψL ⊂ ψL∗

1, hence

(1.2.1) (ϕK) ∩ (ψL) ⊂ (ϕK∗

1 ) ∩ (ψL∗

1).

For the converse inclusion it suffices to prove

(1.2.2) M := (ϕK∗

1 ) ∩ (ψL∗

1) ⊂ ϕK.
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Namely, in the analogous way we prove M ⊂ ψL, and then these two inclusions
together will prove

(1.2.3) M ⊂ (ϕK) ∩ (ψL).

Now we show (1.2.2). The hyperplane ϕK01 cuts Hd into two closed halfspaces
ϕH ′ and ϕH ′′. One of them, say, ϕH ′ contains ψL01 in its interior. Then we have
two cases: a point z ∈M belongs either to ϕH ′ or to ϕH ′′. These cases which will
be settled separately.

Let

(1.2.4) z ∈M ∩ (ϕH ′).

Then z ∈M ⊂ ϕK∗

1 , hence z ∈M ∩ (ϕH ′) ⊂ (ϕK∗

1 ) ∩ (ϕH ′) ⊂ ϕK. Thus

(1.2.5) z ∈ ϕK.

Now let

(1.2.6) z ∈M ∩ (ϕH ′′).

Then by z ∈ ϕH ′′ we have that z lies outside of ψL01, with respect to ψL0 (i.e., on
the side where ϕK0 lies). That is,

(1.2.7) z (∈M ⊂ ψL∗

1) lies between ψL01 and ψL1, hence z ∈ ψL.

Then Lemma 1.1 (applied to ψL) implies that

(1.2.8) dist(z, ψL0) ≤ λ.

Clearly dist(z, ψL0) is attained for some point ψy ∈ ψL01 (and ψy is the orthog-
onal projection of z to ψL01). Then z ∈ ϕH ′′ (cf. (1.2.6)) and ψy ∈ ψL01 ⊂ ϕH ′

imply that [z, ψy] intersects ϕK01 at some point ϕx ∈ ϕK01. Then, also using
(1.2.8),

(1.2.9) dist(z, ϕK01) ≤ |z(ϕx)| ≤ |z(ψy)| = dist(z, ψL0) ≤ λ.

That is, z lies in the parallel domain of ϕK01 for distance λ, and thus also in the
parallel domain of ϕK0 for distance λ, which equals ϕK by Lemma 1.1. Thus again

(1.2.10) z ∈ ϕK,
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ending the proof of the lemma. �

Now we are ready to prove

Lemma 1.3. (2) of Theorem 1 implies (1) of Theorem 1.

Proof. For notational convenience we suppose both ϕ and ψ to be the identity
congruence.

Any intersection (not only a small one) of two congruent balls, with non-empty
interior, is centrally symmetric, with centre of symmetry the midpoint of the seg-
ment joining their centres.

Any compact intersection (not only a small one) of two paraballs K and L,
with non-empty interior, is centrally symmetric. In fact, the infinite points of the
two paraballs, say, k and l, are different, since else the intersection would not be
compact. We consider the straight line kl. Let the other points of bdK and bdL
on kl be k′ and l′. We may suppose that k′ 6= l′ and that the order of the points
on kl is k, l′, k′, k (else K ∩ L would have an empty interior). Then the symmetry
with respect to the midpoint of the segment k′l′ interchanges K and L, hence this
midpoint is a centre of symmetry of K ∩ L.

There remain the cases when the connected components of the boundaries both
of K and L are congruent hyperspheres, whose numbers are at least 1, and at most
countably infinite.

For the case when the boundary components both of K and L are congruent
hyperspheres, these hyperspheres are distance surfaces for some distance λ > 0.
Replacing these hyperspheres by their base hyperplanes, we obtain closed convex
sets K0 and L0 (possibly one hyperplane, which has no interior points, but this
makes no difference). Then by Lemma 1.1 the parallel domain of K0 and of L0, at
distance λ, equals K and L, respectively.

Now we show that two different hypersphere boundary components of K have a
distance at least 2λ. In fact, if x, y belong to two different boundary components
Ki, Kj of K, then the segment [x, y] intersects the respective base hyperplanes
K0i, K0j in points x1, y1, with order x, x1, y1, y on [x, y]. Then |xy| ≥ |xx1|+|y1y| ≥
2λ.

Now suppose that diam (K∩L) < 2l. Observe that bd (K∩L) ⊂ (bdK)∪(bdL).
Thus K ∩L cannot contain points from different boundary components of K, or of
L. Therefore K ∩ L contains points of one boundary component Ki of K and of
one boundary component Lj of L. The hyperspheres Ki and Lj bound (uniquely
determined) closed convex sets with interior points, say K∗

i and L∗

j , containing K
and L. Then, by Lemma 1.2, K ∩ L = K∗

i ∩ L
∗

j .
That is, we have a compact intersection (with non-empty interior) of two convex

sets K∗

i and L∗

j , bounded by congruent hyperspheres Ki and Lj . Then the sets of
infinite points of Ki and Lj are disjoint.
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Considering the collinear model, this implies that the base hyperplanes K0i and
L0j have no finite or infinite points in common. Let us consider the segment re-
alizing the distance of these hyperplanes. Then the symmetry with respect to its
midpoint interchanges K∗

i and L∗

j , hence this midpoint is a centre of symmetry of
K∗

i ∩ L
∗

j = K ∩ L. �

Now we turn to the proof of the implication (1) ⇒ (2) in Theorem 1.
We begin with a simple lemma. Observe that by (A) both K and L are smooth.

Lemma 1.4. Let K $ Sd be a smooth convex body. Then, unless K is a half-
sphere, K has an exposed point.

Proof. We consider two cases:
(1): either diamK < π, or
(2): diamK = π.
In case (1) here the cone C ⊂ Rd+1 with base K and vertex 0 is a convex

body, and the relative interiors of its generatrices contain no extreme points of C.
However, 0 is an extreme point of C, hence it is a limit of exposed points ci of C, cf.
[Sch], Theorem 1.4.7, first statement (Straszewicz’s theorem). These exposed points
are in particular extreme, hence 0 = lim ci implies that for sufficiently large i we
have 0 = ci, hence 0 is an exposed point of C. Therefore K is contained in an open
half-sphere. Let us suppose that this half-sphere is the southern half-sphere. Then
the collinear model is defined in a neighbourhood of K, and the image pK of K in
it is a compact convex set in the model Rd (p maps the open southern half-sphere to
Rd, which is identified with the tangent hyperplane of Sd at the south pole). Such a
set pK has an exposed point z ([Sch], above cited, second statement), thus for some
hyperplane H ⊂ Rd we have H ∩ (pK) = {z}. Then H ′ := cl

(
(p−1H) ∪ (−p−1H)

)

is a hyperplane (large Sd−1) in Sd such that H ′ ∩K = {p−1z}. Then p−1z is an
exposed point of K.

In case (2) here K contains two antipodal points of Sd, and we may suppose
that these are ed+1 = (0, ..., 0, 1) and −ed+1. Since K is smooth at ed+1, therefore
we may suppose that it has at ed+1 as tangent hyperplane (in Sd) {(ξ1, ..., ξd, ξd+1)
∈ Sd | ξ1 = 0}, and K lies on the side {(ξ1, ..., ξd, ξd+1) ∈ Sd | ξ1 ≥ 0} of this

hyperplane. For k ∈ K \ {ed+1,−ed+1} both shorter arcs ẽd+1k and ˜(−ed+1)k lie
in K. Therefore K consists of entire half-meridians, connecting ed+1 and −ed+1.
By the hypothesis about the tangent hyperplane of K at ed+1, each half-meridian,
whose relative interior lies in the open half-sphere given by ξ1 > 0, lies entirely in
K. Therefore K contains the closed half-sphere given by ξ1 ≥ 0. By hypothesis we
have K $ Sd, therefore K is a half-sphere. �
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Lemma 1.5. Suppose the hypotheses of Theorem 1, and suppose (1) of Theorem
1. Then the following hold.

(1) For any x ∈ bdK and any y ∈ bdL all sectional curvatures exist, and are
equal to the same non-negative constant, and in case of X = Rd and X = Hd, to
the same positive constant.

(2) For any x ∈ bdK and any y ∈ bdL there exists an ε > 0, such that
B(ϕx, ε) ∩ (bd (ϕK)) and B(ψy, ε) ∩ (bd (ψL)) are rotationally symmetric with
respect to the normal of bd (ϕK) at ϕx, and with respect to the normal of bd (ψL)
at ψy, respectively.

Proof. 1. For Sd by Lemma 1.4 either both K and L are halfspheres, when the
statement of this lemma is satisfied with sectional curvatures 0 — which case we
may further disregard — or, e.g., K has an exposed point x — which we may
suppose.

For Rd, by hypothesis, e.g., K has an extreme point x. Then x is an extreme
point of K∩B(x, 1) as well, hence it is a limit of exposed points xi of K∩B(x, 1), cf.
[Sch], above cited). For |xxi| < 1 we have that xi is an exposed point of K as well.
In fact, for, say, xi = 0 and K ∩ B(x, 1) lying strictly above, say, the ξ1 . . . ξd−1-
coordinate plane, except for xi, also K lies strictly above the ξ1 . . . ξd−1-coordinate
plane, except for xi. Namely else by convexity of K there would be points of
K∩B(x, 1) in any neighbourhood of xi below or on the ξ1 . . . ξd−1-coordinate plane
and different from xi.

ForHd by C2
+ (or by hypothesis (B)) all boundary points ofK and L are exposed.

Thus in Sd, Rd and Hd, we have that, e.g.,

(1.5.1) K has an exposed point x (∈ bdK).

2. Let

(1.5.2)

{
n and m denote the outer unit normals of K

and L, at x ∈ bdK and y ∈ bdL, respectively,

where

(1.5.3) y ∈ bdL is arbitrary.

(Recall that we have C2, or the weaker (A), which still implies smoothness.)
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(1.5.4)





Let us choose a point, say, origin O ∈ X, and let e0, f0 be

opposite unit vectors in the tangent space of X at O. Let us

choose orientation preserving congruences ϕ0, ψ0 of X, such

that ϕ0x = ψ0y = O, and the images (in the tangent bundles)

of n or m (by the maps induced by ϕ0 or ψ0 in the tangent

bundles) should be e0 or f0, respectively.

Then (ϕ0K) ∩ (ψ0L) ⊃ {O}.

(1.5.5) Let g be the geodesic from O in the direction of e0 (equivalently, of f0).

(1.5.6)





Let us move ϕ0K and ψ0L toward each other, so that their

points originally coinciding with O should move on the

straight line g, to the respective new positions OϕK and OψL,

while we allow any rotations of them, independently of each

other, about the axis g. We denote these new images by ϕK

and ψL, and we denote the images of n or m (by the maps

induced by ϕ or ψ in the tangent bundles) by e or f,

respectively, which are the outer unit normals of ϕK and

ψL, at ϕx ∈ bd(ϕK) and ψy ∈ bd(ψL), respectively. Then g

coincides with the line OϕKOψL, and OϕK = ϕx and OψL = ψy.

Let the amount of the moving of the points originally coinciding with O, both for
ϕ0K and ψ0L, be a common small distance

(1.5.7)

{
|OOϕK | = |OOψL| = ε1 ∈ (0,min{ε1(x), ε1(y)}/2),

consequently O is the midpoint of [OϕK , OψL].

Then by (A) OϕK and OψL lie in the balls of radii ε1(x) and ε1(y) from (A), hence
by (A) and (1.5.7)

(1.5.8) B(OϕK , ε1) = B(ϕx, ε1) ⊂ ψL and B(OψL, ε1) = B(ψy, ε1) ⊂ ϕK.

Then
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(1.5.9) C := (ϕK) ∩ (ψL)

has a non-empty interior, and, by exposedness of x in K and convexity of K and
L, has an arbitrarily small diameter, for ε1 > 0 sufficiently small. Whenever its
diameter is less than ε = ε(K,L) > 0, then it has a centre of symmetry, c, say.

Moreover, by (1.5.1), (1.5.3) and (1.5.5),

(1.5.10) OϕK = ϕx ∈ bd (ϕK) and OψL = ψy ∈ bd (ψL).

By (1.5.8) and (1.5.10) we have

(1.5.11) OϕK ∈ bd ((ϕK) ∩ (ψL)) = bdC and OψL ∈ bd ((ϕK) ∩ (ψL)) = bdC.

∗ ∗ ∗

We break up the further proof of Lemma 1.5 to several parts, namely, Lemma
1.6 and Corollary 1.7, after proving which we immediately return to the proof of
Lemma 5, and finish it.

Lemma 1.6. Under the hypotheses of Lemma 1.5, and with the notations from the
proof of Lemma 1.5 above, we have the following. Either

(1) X = Sd, and both K and L are half-spheres, when the statement of Lemma
1.5 is satisfied with sectional curvatures 0, or

(2) for ε1 > 0 sufficiently small, the points O ∈ X, i.e., the origin in X, and the
centre of symmetry c of C := (ϕK) ∩ (ψL) coincide. (For Sd we mean one of the
two antipodal centres of symmetry.)

Proof. First observe that, for ε1 > 0 sufficiently small, we have by hypothesis C2

(or its weakening (A)) of the theorem that

(1.6.1) B(O, ε1) ⊂ C = (ϕK) ∩ (ψL).

We are going to show that B(O, ε1) is the unique ball of maximal radius, con-
tained in C.

We distinguish three cases: X = Sd, X = Rd and X = Hd.
1. First we deal with the case of Sd.
By Lemma 1.4 either
(1) both K and L are halfspheres, when (1) of this Lemma is satisfied, or,
(2) e.g., K has an exposed point x.
Further in this proof we deal with this case (2), and we are going to prove (2)

of this lemma in this case (2), for each of Sd (in 1), Rd (in 2) and Hd (in 3).
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Let ϕK ′ or ψL′ denote the half-Sd containing ϕK or ψL, and containing OϕK =
ϕx or OψL = ψy in its boundary, and thus being there tangent to bd (ϕK), or to
bd (ψL), respectively. By ϕK ⊂ ϕK ′ and ψL ⊂ ψL′, we have also

(1.6.2) C = (ϕK) ∩ (ψL) ⊂ (ϕK ′) ∩ (ψL′).

We are going to show that

(1.6.3)

{
(ϕK ′) ∩ (ψL′) contains a unique ball

of maximal radius, namely B(O, ε1).

In fact, we may suppose that (bd (ϕK ′)) ∩ (bd (ψL′)) (a large Sd−2) lies in the
ξ3 . . . ξd+1-coordinate plane. Then any point in (ϕK ′) ∩ (ψL′) has the same Eu-
clidean distances to bd (ϕK ′) and to bd (ψL′) as its orthogonal projection to the
ξ1ξ2-coordinate plane has to the orthogonal projections of bd (ϕK ′) and of bd (ψL′)
to the ξ1ξ2-coordinate plane. These last projections are two lines containing the
origin and enclosing an angle 2ε1, in the ξ1ξ2-coordinate plane. By elementary
geometry, in the sector of the unit circle bounded by these two lines, which is the
orthogonal projection of (ϕK ′)∩ (ψL′) to the ξ1ξ2-coordinate plane, the maximum
of the distances to these two lines is maximal exactly for the point O∗ of this sector
which is the intersection of S1 (= Sd ∩ [ξ1ξ2-coordinate plane]) and the (inner)
angular bisector of this sector of circle. However, O∗ has exactly one preimage on
Sd, for the above mentioned projection, namely O. This proves (1.6.3).

By (1.6.1), (1.6.2) and (1.6.3) we have

(1.6.4)

{
C = (ϕK) ∩ (ψL) contains a unique ball

of maximal radius, namely B(O, ε1).
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Thus the centre of symmetry c of C must coincide with O (or possibly with −O,
but also in that case one of the centres of symmetry is O), proving that unless we
have (1) of Lemma 1.6, we have (2) of Lemma 1.6, for X = Sd.

2. Now we turn to the case of Rd. We write

(1.6.5) O = (0, . . . , 0, 0), OϕK = (0, . . . , 0,−ε1) and OψL = (0, . . . , 0, ε1).

We recall from (1.5.6) that OϕK and OψL span the line g from there, thus the
opposite unit vectors e and f from there are parallel to the ξd-axis. Then e =
(0, . . . , 0,−1) and f = (0, . . . , 0, 1). Then e and f (being images of the unit outer
normals n of K at x and m of L at y) are the unit outer normals of ϕK at ϕx and of
ψL at ψy. (Since we deal with Rd, the tangent spaces are obtained by translation
from each other, so we need not care about the difference of ϕ0 and ϕ, and similarly
for ψ0 and ψ.) Thus the tangent hyperplanes of ϕK at ϕx and of ψL at ψy (which
exist by (A)) are parallel to the ξ1 . . . ξd−1-coordinate hyperplane.

Moreover, the tangent hyperplane of ϕK at ϕx = OϕK is given by ξd = −ε1 and
ϕK lies (non-strictly) above this hyperplane. Similarly, the tangent hyperplane
of ψL at ψy = OψL is given by ξd = ε1 and ψL lies (non-strictly) below this
hyperplane. Therefore

(1.6.6) C = (ϕK) ∩ (ψL) lies in the parallel slab given by − ε1 ≤ ξd ≤ ε1.

Hence any closed ball contained in C is contained in the parallel slab from (1.6.6),
hence has a radius at most ε1. Moreover, it has radius equal to ε1 only if it touches
both boundary hyperplanes of this parallel slab.

Even, by exposedness of ϕx = OϕK in ϕK (cf. (1.5.1)), for some support
hyperplane of ϕK at ϕx = OϕK — which is unique by (A), and hence is given by
ξd = −ε1 — we have that (ϕK)\{ϕx} lies strictly inside of this support hyperplane,
i.e.,

(1.6.7) ϕK ⊂ {(ξ1, . . . , ξd) ∈ Rd | ξd > −ε1} ∪ {OϕK}.

Hence if some closed ball of radius ε1 is contained in C = (ϕK) ∩ (ψL), then it
touches the hyperplane ξd = −ε1. Also, this ball of radius ε1 lies in ϕK, hence the
only point at which it can touch the hyperplane ξd = −ε1, is OϕK = (0, . . . , 0,−ε1).
Thus this ball is identical to B(O, ε1). Thus also for Rd we have
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(1.6.8)

{
C = (ϕK) ∩ (ψL) contains a unique ball

of maximal radius, namely B(O, ε1)

(like we had for Sd in (1.6.4)).
Thus the centre of symmetry c of C must coincide with O, proving (2) of Lemma

1.6 for X = Rd.
3. Now we turn to the case of Hd. Then, by hypothesis C2

+ (or its weakening
(B)) of the theorem, we have that for ε2 ∈ (0,min{ε2(x), ε2(y)}), for a closed
ε2-neighbourhood B(ϕx, ε2) ⊂ Hd of ϕx and B(ψy, ε2) ⊂ Hd of ψy there holds

(1.6.9) (ϕK) ∩B(ϕx, ε2) ⊂ ϕK ′′ and (ψL) ∩B(ψy, ε2) ⊂ ψL′′,

where ϕK ′′ and ψL′′ are closed convex sets bounded by some hyperspheres of
sectional curvatures at least ε2(x) and ε2(y), respectively, with

(1.6.10) ϕx ∈ bd (ϕK ′′) and ψy ∈ bd (ψL′′).

Since in (B) ε2(x) > 0 and ε2(y) > 0 can be decreased, preserving validity of
(B), therefore for our fixed ϕx ∈ bd (ϕK) and fixed ψy ∈ bd (ψL) we may assume
without loss of generality that

(1.6.11)

{
ϕK ′′ and ψL′′ are distance surfaces with equal distances

ε′(x) = ε′(y) ∈ (0, ε2) from their base hyperplanes.

(Further, recall from §2 that the sectional curvatures of ϕK ′′ and ψL′′ and the
distance for which they are distance surfaces are asymptotically equal. The sectional
curvatures are tanh ε′(x) = tanh ε′(y). In §2 this is stated only for d = 2, but ϕK ′′

and ψL′′ are rotationally symmetric so all sectional curvatures are equal to that in
the two-dimensional case.)

By positivity of the sectional curvatures of these hyperspheres we have exposed-
ness of ϕx ∈ bd (ϕK) for ϕK and ψy ∈ bd (ψL) for ψL.

Moreover, by (1.6.10) and (1.6.11) there hold

(1.6.12) ϕx ∈ bd (ϕK ′′) ⊂ ϕK ′′ and ψy ∈ bd (ψL′′) ⊂ ψL′′

and

(1.6.13)

{
bd (ϕK ′′) and bd (ψL′′) have equal positive sectional

curvatures at ϕx and ψy, which are less than tanh ε2 < ε2.
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Further, ϕK ′′ and ψL′′ contain ϕx = OϕK and ψy = OψL, and are there tangent
to bd (ϕK), and to bd (ψL), respectively. Then necessarily ϕK ′′ and ψL′′ have there
their convex sides towards int (ϕK), or int (ψL), respectively.

By (1.6.9) and (1.5.6) we have

(1.6.14) (ϕK) ∩B(OϕK , ε2) ⊂ ϕK ′′ and (ψL) ∩B(OψL, ε2) ⊂ ψL′′.

Moreover,

(1.6.15)

{
if ε1 is sufficiently small for fixed ε2, we have that

(ϕK ′′) ∩ (ψL′′) has a sufficiently small diameter.

This body (ϕK ′′) ∩ (ψL′′) is rotationally symmetric about the line OϕKOψL, and
also is symmetric with respect to the perpendicular bisector plane of [OϕK , OψL].
Its boundary consists of two geodesic (d − 1)-balls on bd (ϕK ′′) and bd (ψL′′), of
centres OϕK and OψL, respectively. Then also the (equal) geodesic radii of these
two (d− 1)-balls are sufficiently small.

As soon as these geodesic radii are less than ε2, then all points of these two
geodesic (d − 1)-balls are at a distance (in Hd) less than ε2 from their centres
OϕK and OψL. Then by (1.6.14) these two geodesic (d − 1)-balls are disjoint to
int (ϕK) and int (ψL), respectively (else some points of them would lie in int (ϕK ′′)
or int (ψL′′), respectively, while they lie on bd (ϕK ′′) or bd (ψL′′), respectively).
Hence the union of these two geodesic (d − 1)-balls is disjoint to the intersection
(int (ϕK)) ∩ (int (ψL)) = int ((ϕK) ∩ (ψL)). Then the radial function of (ϕK) ∩
(ψL) with respect to O is at most the radial function of (ϕK ′′)∩(ψL′′) with respect
to O. This implies

(1.6.16) C = (ϕK) ∩ (ψL) ⊂ (ϕK ′′) ∩ (ψL′′).

We assert that also for Hd we have that

(1.6.17)

{
C = (ϕK) ∩ (ψL) contains a unique ball

of maximal radius, namely B(O, ε1)

(like we had for Sd in (1.6.4) and for Rd in (1.6.8)). Observe that for (ϕK ′′)∩(ψL′′)
rather than C (cf. (1.6.16)) this is sufficient to be proved for d = 2. Namely, using
(1.6.16), the (one-dimensional) axis of rotation OϕKOψL of (ϕK ′′)∩ (ψL′′) and the
centre of a ball of maximal radius contained in (ϕK ′′) ∩ (ψL′′) are contained in a
2-plane of Hd.

Then (ϕK ′′) ∩ (ψL′′) has as axis of symmetry the orthogonal bisector line g∗ of
[OϕK , OψL], and O ∈ g∗. Say, g∗ is horizontal, and OψL lies above OϕK . Consider
a circle of maximal radius contained in (ϕK ′′) ∩ (ψL′′); say, its centre x lies (not
strictly) above g∗. For contradiction, suppose x 6= O.
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Let ψL′′′ be the base line of ψL′′ (i.e., ψL′′ is a distance line for ψL′′′). Clearly,
the straight line g = OOψL is orthogonal to ψL′′′, l∗ and ψL′′ (these last three
curves being distinct, and their intersections with the straight line g follow each
other in the given order, from downwards to upwards). Let π denote the orthogonal
projection of H2 to ψL′′′. Let ̺(x) and σ(x) denote the points of intersection of
(bd [(ϕK ′′) ∩ (ψL′′)])∩ (bd (ψL′′)) and of g∗ with the straight line passing through
x and orthogonal to ψL′′′, respectively.

If x lies on the line OOψL above O, then by (1.5.7) we have

(1.6.18) |xOψL| < |OOψL| = ε1.

Else we have

(1.6.19) |x̺(x)| ≤ |σ(x)̺(x)| = |π(x)̺(x)| − |π(x)σ(x)|.

Here

(1.6.20) |π(x)̺(x)| = |π(OψL)OψL|

is the distance for which ψL′′ is the distance line for ψL′′′. On the other hand,
[σ(x), π(x)] is an edge of the Lambert quadrangle Oπ(OψL)π(x)σ(x), which has
right angles at its vertices O, π(OψL) and π(x). (A Lambert quadrangle is a quad-
rangle with three right angles, cf. the proof of Lemma 1.1.) For the sides of this
Lambert quadrangle there holds

(1.6.21) |π(x)σ(x)| > |π(OψL)O|,

cf. [C], or [AVS], p. 68, 3.4. Then by (1.6.19), (1.6.20) and (1.6.21) we get

(1.6.22)

{
|x̺(x)| ≤ |π(x)̺(x)| − |π(x)σ(x)| <

|π(OψL)OψL| − |π(OψL)O| = |OOψL| = ε1,

so (1.6.17) is proved.
Thus, as in the cases of Sd and Rd, also for Hd the centre of symmetry c of C

must coincide with O, proving (2) of Lemma 1.6 for X = Hd.
4. Thus the assertion of Lemma 1.6, either (1) or (2), is proved for each of Sd,

Rd and Hd, ending the proof of Lemma 1.6. �

Corollary 1.7. (i) Let X = Sd. Then under the hypotheses of Lemma 1.5, and
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with the notations from the proof of Lemma 1.5 above, we have either that
(1) both K and L are halfspheres (when (2) of Theorem 1 holds), or that
(2) both K and L are strictly convex.
(ii) Let X = Rd. Then under the hypotheses of Lemma 1.5, and with the nota-

tions from the proof of Lemma 1.5 above, we have that both K and L are strictly
convex.

Proof. We have either X = Sd, and that (i) (1) of this Corollary holds, which case
we further disregard, or else both for Sd and Rd, recall that in (1.5.1) x ∈ bdK
was chosen as an exposed point of K. By Lemma 1.6, either

(1) X = Sd, and (i) (1) of this Corollary holds, which case was disregarded just
above, or

(2) for ε1 > 0 sufficiently small, C = (ϕK) ∩ (ψL) is centrally symmetric with
respect to O. Further in this proof we deal with this case (2).

Recall that OϕK = ϕx ∈ bd (ϕK) and OψL = ψy ∈ bd (ψL) are images of each
other under this central symmetry, cf. (1.5.1), (1.5.3), (1.5.6) and (1.5.7).

Now recall from (1.5.8) and (1.5.10) that

(1.7.1) OϕK ∈ (bd (ϕK)) ∩ (int (ψL)) and OψL ∈ (bd (ψL)) ∩ (int (ϕK)) .

This implies that

(1.7.2) OϕK , OψL ∈ bdC = bd ((ϕK) ∩ (ψL))

and

(1.7.3)





for some ε > 0 we have that B(OϕK , ε) ∩ (bd (ϕK)) =

B(OϕK , ε) ∩ bd ((ϕK) ∩ (ψL)) and B(OψL, ε) ∩ bd ((ϕK) ∩ (ψL))

= B(OψL, ε) ∩ (bd (ψL)) are also centrally symmetric

images of each other with respect to O

(by (1.5.8) ε ∈ (0, ε1) suffices for this, for ε1 from (1.5.8)).
Since x ∈ bdK is an exposed point of K (cf. (1.5.1)), also OϕK = ϕx (cf.

(1.5.6)) is an exposed point of ϕK. By OϕK ∈ C ⊂ ϕK (Lemma 1.6, (2)) then
OϕK is an exposed point of C. By central symmetry of C with respect to O (cf.
Lemma 1.6, (2)), also using (1.5.7), then also

(1.7.4) OψL is an exposed point of C.

We claim that then
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(1.7.5) OψL = ψy is an exposed point of ψL as well.

Recall that by (A)

(1.7.6) ψL is smooth, hence has a tangent hyperplane H at OψL = ψy,

and also recall (1.5.6).
Suppose the contrary: ψL has a point p outside of H or on H but different

from OψL. Then ψL, being convex, would contain [OψL, p], thus ψL would have a
point q ∈ [OψL, p], outside of H or on H but different from OψL, and additionally
q being arbitrarily close to OψL. (This holds even in the case when X = Sd and
p is antipodal to OψL. Namely then we take some point r ∈ (ψL) \ {OψL, p}, and
then [OψL, r] ∪ [r, p] ⊂ ψL can play the role of [OψL, p] from above.)

However, in some neighbourhood of OψL we have that bd (ψL) and bdC (and
also ψL and C) coincide (recall OψL ∈ int (ϕK) from (1.7.1)). Then C has a tangent
plane at OψL, which can be defined locally, hence it coincides with H. This tangent
plane is the unique supporting plane of C at OψL, and however C ∩ [OψL, p] (or
C ∩ ([OψL, r]∪ [r, p]) for X = Sd and p antipodal to OψL) contains points q outside
of H or on H but different from OψL, and additionally q being arbitrarily close
to OψL. Then also q (∈ C) is outside of H or is on H but is different from OψL,
contradicting (1.7.4). This contradiction ends the proof of our claim (1.7.5).

Recapitulating: by (1.5.1) and (1.7.5)

(1.7.7)

{
exposedness of x ∈ bdK with respect to K implies

exposedness of y ∈ bdL with respect to L.

Recall from (1.5.1) and (1.5.3) that x was an exposed point of K and y was an
arbitrary boundary point of L. Then by (1.7.7) each boundary point y of L is an
exposed point of L, i.e., L is strictly convex.

In particular, L has an exposed point. Changing the roles of K and L we obtain
that also K is strictly convex. �

Proof of Lemma 1.5, continuation. Recall (1.7.3) and consider the line g, i.e.. the
line containing OϕK , O, OψL (cf. (1.5.4), (1.5.6) and (1.5.7)). Take some 2-plane P
containing the straight line g. By (1.7.3) and P ∋ O

(1.5.12)





for some ε > 0 we have that B(OϕK , ε) ∩ (bd (ϕK)) ∩ P

and B(OψL, ε) ∩ (bd (ψL)) ∩ P are also centrally

symmetric images of each other with respect to O.
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Observe that by (1.6.4), (1.6.8) and (1.6.15), also using (1.5.6) and (1.5.7), for
each of Sd, Rd andHd we have that the segment [OϕK , OψL] is normal to bd (ϕK) at
OϕK and to bd (ψL) at OψL (bd (ϕK) and bd (ψL) are smooth by (A)). Therefore
both sets in (1.5.12) are curves smooth at OϕK and at OψL, respectively.

Therefore,

(1.5.13)





the two curves from (1.5.12) have, at OϕK and OψL,

the same curvatures (sectional curvatures), if one

of them exists, or they do not have curvatures there.

Recall from (1.5.6) that ϕ and ψ were not determined uniquely, but at their def-
initions it was also allowed that we applied any rotations to them, about the axis
g, while C is centrally symmetric with respect to O (cf. Lemma 1.6, (2); recall
that Lemma 1.6, (1) gave X = Sd and K,L being half-spheres, which case was
disregarded at the beginning of the proof of Lemma 1.5). Therefore,

(1.5.14)

{
for some ε > 0, B(OϕK , ε) ∩ (bd (ϕK)) and

B(OψL, ε) ∩ (bd (ψL)) have g as axis of rotation.

Now observe that g is normal to ϕK at ϕx = OϕK , and to ψL at ψy = OψL (cf.
(1.5.10)), by (1.5.14) and smoothness of K and L (following from (A)). This proves
(2) of Lemma 1.5.

Then

(1.5.15)





either all sectional curvatures (i.e., the curvatures of all

above curves in (1.5.12), for all 2-planes P containing

g) , both of ϕK and ψL, at the points OϕK = ϕx and

OψL = ψy exist and are equal, or all of them do not exist.

Recall that x was an arbitrary exposed point of K (cf. (1.5.1)) and y was an
arbitrary boundary point of L (cf. (1.5.3)). However, we already know by Corollary
1.7 that, unless X = Sd and both K and L are halfspheres of Sd (which case was
disregarded at the beginning of the proof of Lemma 1.5), that K and L are strictly
convex. (There this is stated only for Sd and Rd. However, for Hd strict convexity
of K and L follows from the hypotheses of Theorem 1 and of this lemma, namely
from C2

+, or from (B)). Hence also x can be any boundary point of K, as y can be
any boundary point of L, independently of each other.

So either
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a) all sectional curvatures of both K and L exist, at each boundary point x of
K and y of L, and they are equal, namely to some number κ ≥ 0, or

b) they do not exist anywhere.
However, convex surfaces in Rd are almost everywhere twice differentiable (more

exactly, the functions having, locally, in a suitable coordinate system, these graphs,
have Taylor series expansions, of second degree, with error term o(‖x‖2) — cf. [Sch],
pp. 31-32, for Rd, that extends to Sd and Hd by using their collinear models). This
rules out possibility b), so possibility a) holds, as stated in this lemma. Clearly, for
Rd and Hd, the hypotheses of Theorem 1 and of this lemma imply κ > 0.

This ends the proof of Lemma 1.5. �

The later following Lemmas 1.8 and 1.9 will be used not only for the proof
of Theorem 1, but also for the proof of Theorem 4. Therefore the hypotheses of
Lemmas 1.8 and 1.9 will contain alternatively (1) of Theorem 1, or (1) of Theorem
4. Because of this first we have to turn to the proof of Theorem 4, and lead it so
far as we have led the proof of Theorem 1 till now. Thus we have to prove the
necessary analogues of some of Lemmas 1.1 till 1.7, including the complete proof
of Lemma 1.5, as Lemmas 4.1 till 4.3. This we do in order to avoid unnecessary
repetitions (of Lemmas 1.8 and 1.9).

Proof of Theorem 4. 1. The implication (2) ⇒ (1) of this Theorem is evident: the
midpoint of the (any) segment connecting the centres of the balls ϕK and ψL is a
centre of symmetry of cl conv ((ϕK) ∩ (ψL)).

2. Now we turn to the proof of the implication (1) ⇒ (2) of this Theorem.
Let x ∈ bdK and y ∈ bdL. Let S(x) and S(y) denote supporting spheres of

K and L, at x and y, respectively, of radius less than π/2 for Sd. Observe that
increasing the radius of a supporting sphere at x or y, for Sd to a value less than
π/2, while retaining their outer unit normals at x or y, preserves the supporting
property in these points. Therefore we may assume that these two supporting
spheres S(x) and S(y) have equal radii, and this common radius for Sd is less than
π/2. Even, if we increase the radius further, for Sd to a value less than π/2, we
may suppose that

(4.1)

{
these supporting spheres S(x) and S(y) have x and y as

the unique common points with K and L, respectively.

Now we write K(x) and L(y) for the balls bounded by S(x) and S(y), respectively.
The common radius of K(x) and L(y) is denoted by R — for the case of Sd we
have R < π/2.

Clearly
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(4.2)

{
we may assume for Sd that R < π/2 is arbitrarily close

to π/2, and for Rd and Hd that R is arbitrarily large.

(4.3)





Let B0 be a fixed ball of radius R in Sd,Rd or Hd, whose

centre is denoted by O. Let us choose orientation preserving

congruences ϕ and ψ, such that ϕK(x) = ψL(y) = B0, and

ϕ(x) and ψ(y) are antipodal points of bdB0.

Observe that, like in (1.5.6), also here

(4.4)





ϕ and ψ are by their definition not determined uniquely, but

we are allowed to apply any rotation to them, independently

of each other, about the axis g, spanned by ϕ(x) and ψ(y).

Then we have ϕK,ψL ⊂ B0, hence cl conv ((ϕK) ∪ (ψL)) ⊂ B0. Moreover,

(4.5)





since the diameter of B0 (as a convex body) is twice its radius

R, the two points ϕx and ψy form a diametral pair of points

in the centrally symmetrical set cl conv ((ϕK) ∪ (ψL)) .

By (4.5) we have that

(4.6) diam [cl conv ((ϕK) ∪ (ψL))] = 2R.

∗ ∗ ∗
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We break up the further proof of Theorem 4 to several parts, namely, Lemmas
4.1, 4.2 and 4.3. After proving these we continue with the proof of Lemmas 1.8
and 1.9, both being necessary for the proof both of Theorems 1 and 4. Then we
turn to prove Theorem 1. The continuation, i.e., finishing of the proof of Theorem
4 follows after the proof of Theorem 3.

The following Lemma 4.1 will be some analogue of Lemma 1.6, (2), inasmuch
in Lemma 4.1 we determine the centre of symmetry of our set, which set is now
cl conv ((ϕK) ∪ (ψL)) (while in Lemma 1.6, (2) the set was (ϕK) ∩ (ψL)).

Lemma 4.1. Supposing the hypotheses of Theorem 4 and (1) of Theorem 4, and
with the above notations, the centre of symmetry of the centrally symmetrical set
cl conv ((ϕK) ∪ (ψL)) is the centre O of B0. (For Sd we mean one of the two
antipodal centres of symmetry.)

Proof. Observe that B0 is a ball of radius R. Then

(4.1.1)

{
the diameter of B0, in the sense of convex bodies, is 2R, and is

attained exactly for antipodal pairs of points on its boundary.

For Rd we use its usual geometry, for Hd we use its collinear model, with O at
its centre. Thus for Hd the image B′

0 of B0 in the collinear model is a Euclidean
ball with centre O, and also for Rd we have by (4.3) that B′

0 := B0 is a Euclidean
ball with centre O.

For Sd we also use the collinear model. Namely, supposing that O is the south
pole, we use radial projection π from the centre of Sd in Rd+1 to the model tangent
d-plane of Sd in Rd+1 at the south pole O. (This model exists for the open southern
hemisphere.) Thus, also for Sd, the image B′

0 of B0 in the collinear model is a
Euclidean ball with centre O. Thus, also for Sd, for simplicity of notation, we will
work in this model Rd (similarly as for Hd).

For points and sets in the models we will apply upper indices ′. We recall that
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(4.1.2)





in Rd the closed convex hull of the union of two compact convex

sets K ′, L′ is cl conv (K ′ ∪ L′) = conv (K ′ ∪ L′) =
⋃
{[k′, l′] |

k′ ∈ K ′, l′ ∈ L′} = K ′ ∪ L′ ∪ (
⋃
{(k′, l′) | k′ ∈ K ′, l′ ∈ L′}) .

(Recall from §3 that (x, y) is the open segment with endpoints x, y; in particular,
for x = y it is ∅.) We apply this to the convex bodies

(4.1.3)

{
K ′ ⊂ B′

0 and L′ ⊂ B′

0, which are the images of the

sets ϕK and ψL in the respective collinear models

(by collinear model of Rd we mean Rd itself).
By the collinear models, for Sd the statement corresponding to (4.1.2) is valid

for compact convex subsets ϕK,ψL of the open southern hemisphere, in particular
for compact convex subsets of B0. For H

d we work in its collinear model, contained
in Rd (as the unit ball of Rd), while for Rd by its collinear model we mean Rd itself.
Hence

(4.1.4)

{
the statement corresponding to (4.1.2) is valid for

Sd, Rd and Hd, for convex bodies contained in B0.

By (4.1.2) and (4.1) we have

(4.1.5)

{
[cl conv ((ϕK) ∪ (ψL))] ∩ (bdB0) = ((ϕK) ∪ (ψL)) ∩ (bdB0)

= ((ϕK) ∩ (bdB0)) ∪ ((ψL) ∩ (bdB0)) = {ϕx, ψy}.

Then by (4.5), (4.1.1) and (4.1.5)

(4.1.6)





the diameter of cl conv ((ϕK) ∪ (ψL)) is 2R, and is

attained exactly for antipodal pairs of points of B0 on

bd (cl conv ((ϕK) ∪ (ψL))) , i.e., for the unique diametral

pair of points of cl conv ((ϕK) ∪ (ψL)) , i.e., for {ϕx, ψy}.

Thus a central symmetry of cl conv ((ϕK) ∪ (ψL)) preserves the pair of points
{ϕx, ψy}. Hence its centre of symmetry is the mid-point of the segment [ϕx, ψy],
i.e., the point O. (For Sd we mean one of the two antipodal centres of symmetry
— namely the one in the open southern hemisphere.) �

The following Lemma 4.2 also is an analogue of some step in the proof of Theorem
1. Namely in Lemma 1.6, (2) we had information about the central symmetry, with
respect to the point there denoted also by O, of the set (ϕK)∩(ψL). Then in (1.7.3)
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we could turn from the boundary of this intersection to the boundaries of ϕK
and ψL. The same will happen in Lemma 4.2, for the set cl conv ((ϕK) ∪ (ψL)).

Lemma 4.2. Supposing the hypotheses of Theorem 4 and (1) of Theorem 4, and
using the above notations, in a neighbourhood of ϕx (or of ψy) the sets bd (ϕK) (or
bd (ψL)) and bd [cl conv ((ϕK) ∪ (ψL))] coincide. In particular, for some ε > 0 we
have that B(ϕx, ε)∩(bd (ϕK)) and B(ψy, ε)∩(bd (ψL)) are also centrally symmetric
images of each other with respect to O.

Proof. 1. By (4.1) we have ϕx 6∈ ψL and ψy 6∈ ϕK. Thus some neighbourhoods of
ϕx and of ψy do not intersect ψL and ϕK, respectively. Thus there are hyperplanes
Px and Py orthogonally intersecting the segment [ϕx, ψy], in points sufficiently close
to ϕx or ψy, and having the entire ψL or ϕK on one side (on the side containing
ψy or ϕx, respectively).

Recall (4.1.4), which will permit us to work further in the proof of this Lemma
in the collinear model, the Euclidean space Rd or its open unit ball.

2. We write the usual basic unit vectors of Rd as e1, . . . , ed. Then

(4.2.1)

{
B′

0 is, or can be supposed to be a ball with

centre the origin 0 and with radius R′,

and we assume that

(4.2.2)

{
π(ϕx) = R′ed, and π(ψy) = −R′ed, where the map π associates

to points of Sd, Rd and Hd their images in the respective model.

(By the collinear model of Rd we mean Rd itself.) Since [π(ψy), π(ϕx)] = [−R′ed, R
′

ed] contains 0 (which is, for Hd and Sd, the image of the centre O in the model;
also cf. (4.2.1)), therefore the image in the model of the orthogonally intersecting
plane Px is also an orthogonally intersecting plane of [−R′ed, R

′ed] in the model
Rd or its open unit ball, hence is given by ξd = R′′ where R′′ < R′ (and R′ −R′′ is
small). Therefore, with the notations from (4.1.3),

(4.2.3) L′ ⊂ {(ξ1, . . . , ξd) | ξd ≤ R′′}.

Observe that the smooth convex body K ′ ⊂ B′

0 (cf. (4.1.3)) has at R′ed the
outer unit normal ed, thus for its support function hK′ : Sd−1 → R we have
hK′(ed) = R′. On the other hand, by (4.2.3), with the analogous notation, we have
hL′(ed) ≤ R′′ < R′. Since the support functions are continuous, therefore
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(4.2.4)

{
for some neighbourhood of ed in Sd−1

we have the inequality hL′(·) < hK′(·).

Now recall that K ′ is smooth. Therefore it is even C1, and hence for some ε > 0,
in the open ε-neighbourhood U(R′ed, ε) of R′ed (in Rd) we have that (bdK ′) ∩
U(R′ed, ε) is a connected smooth manifold with outward unit normals very close
to ed. The support function of conv (K ′ ∪L′) = cl conv(K ′ ∪L′) (cf. (4.1.2)) is the
pointwise maximum of the support functions hK′ and hL′ . In particular, for points
of a subset of Sd−1 where we have hL′(·) < hK′(·), the support sets of K ′ and of
cl conv (K ′ ∪ L′) coincide. This implies by (4.2.2) and (4.2.4) that for some δ > 0

(4.2.5)





(bdK ′) ∩ U (π(ϕx), δ) = (bdK ′) ∩ U(R′ed, δ)

= [bd cl conv (K ′ ∪ L′)] ∩ U(R′ed, δ)

= [bd cl conv (K ′ ∪ L′)] ∩ U (π(ϕx), δ) .

Turning back from the sets in the model to the original sets in X = Sd,Rd, Hd,
we obtain the statement of the Lemma for ϕx. In fact, π−1U (π(ϕx), δ) is a neigh-
bourhood of ϕx, hence contains an open ball in X with centre ϕx and radius some
ε > 0.

The analogous statement about coincidence of the intersections of some open
ball of centre ψy, with bd (ψL) and bd cl conv ((ϕK) ∪ (ψL)), follows analogously.

This proves the first sentence of this Lemma. The second sentence of this Lemma
is an immediate consequence of its first sentence and of Lemma 4.1. �

The following Lemma 4.3 is an analogue of Lemma 1.5.

Lemma 4.3. Suppose the hypotheses of Theorem 4, and suppose (1) of Theorem
4. Then both conclusions (1) and (2) of Lemma 1.5 hold. Moreover, the constant
sectional curvatures in Lemma 1.5 (1) are positive for Sd and Rd, and are greater
than 1 for Hd.

Proof. In analogy with (1.7.3), we have here Lemma 4.2, second sentence. As in
the proof of Lemma 1.5, continuation, we consider the line g containing ϕx and
ψy, hence also O, as the midpoint of the segment [ϕx, ψy] (cf. (4.1.6) — for Sd we
mean the midpoint in the open southern hemisphere). As in the proof of Lemma
1.5, continuation, we take some 2-plane P containing the straight line g. Then, in
analogy with (1.5.12), by Lemma 4.2 we have

(4.3.1)





for some ε > 0 that B(ϕx, ε) ∩ (bd (ϕK)) ∩ P

and B(ψy, ε) ∩ (bd (ψL)) ∩ P are also centrally

symmetric images of each other with respect to O.
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Here, by the hypotheses of Theorem 4, the two sets in (4.3.1) are smooth curves.
Again as in the proof of Lemma 1.5, continuation, (1.5.13), here by (4.3.1)

(4.3.2)





the two curves in (4.3.1) have, at ϕx and ψy, the

same curvatures (sectional curvatures), if one of

them exists, or they do not have curvatures there.

Recall that Theorem 4 has as hypothesis the existence of support spheres at any
boundary point of K and L, for Sd of radius less than π/2. Take into account that
spheres, for Sd of radius less than π/2, have positive sectional curvatures for Sd and
Rd, and have sectional curvatures greater than 1 for Hd. Therefore each (existing)
sectional curvature of K and L has to be at least the sectional curvature of some
sphere. Now recall that the sectional curvatures of a sphere have the strict lower
bounds stated in this Lemma. Therefore

(4.3.3)

{
any existing sectional curvature of ϕK at ϕx ∈ bd(ϕK) and of

ψL at ψy ∈ bd(ψL) is positive, and for Hd is greater than 1.

Analogously as in (1.5.6), here we have (4.4), which implies the analogue of
(1.5.14), namely

(4.3.4)

{
for some ε > 0, B(ϕx, ε) ∩ (bd(ϕK)) and

B(ψy, ε)∩ (bd (ψL)) have g as an axis of rotation.

Now observe that g is normal to ϕK at ϕx, and to ψL at ψy, by (4.3.4) and
smoothness of K and L. This proves (2) of Lemma 1.5, as stated in Lemma 4.3.

Then, by (4.3.1) and (4.4) (as in (1.5.15))

(4.3.5)





either all sectional curvatures of ϕK and ψL, at the points

ϕx ∈ bd (ϕK) and ψy ∈ bd (ψL) (i.e., the curvatures

of all above curves in (4.3.1), at the points ϕx ∈ bd (ϕK)

and ψy ∈ bd (ψL), for all 2-planes P containing

g) , exist and are equal, or all of them do not exist.

From now on we turn to the original sets K and L.
Again as in the proof of Lemma 1.5, continuation, varying x in bdK and y in

bdL, independently of each other, we have either that
a) all sectional curvatures of both K and L exist, at each boundary point x of

K and y of L, and are equal — namely to some number κ > 0 for Sd and Rd, and
to some number κ > 1 for Hd, by (4.3.3), or that

b) they do not exist anywhere.
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Then, as in the last paragraph of the proof of Lemma 1.5, almost everywhere
twice differentiability of convex surfaces rules out possibility b), so possibility a)
holds, as stated in this lemma. This proves (1) of Lemma 1.5, as stated in Lemma
4.3.

The statement of Lemma 4.3 about the inequalities for the sectional curvatures
follows from (4.3.3). This ends the proof of Lemma 4.3. �

Now we can turn already to the proofs of Lemmas 1.8 and 1.9. These lemmas
will be common tools for the proofs of Theorem 1 and Theorem 4. Therefore the
hypotheses of Lemmas 1.8 and 1.9 will be alternatively those of Theorem 1, and
those of Theorem 4.

Lemma 1.8. Let X be Sd, Rd or Hd, and let K,L and ϕ, ψ be as in (*). Suppose
(1) of Theorem 1, or (1) of Theorem 4. Suppose that both conclusions (1) and (2)
of Lemma 1.5 hold (in particular, that the second sentence of Lemma 4.3 holds).

Then any x ∈ bdK and any y ∈ bdL have some open neighbourhoods relative to
bdK and to bdL, which are congruent to relatively open geodesic (d−1)-balls on a
fixed sphere, this fixed sphere having a radius at most π/2, for Sd, on a fixed sphere
for Rd, and on a fixed sphere, parasphere or hypersphere for Hd. (Fixed means: we
have the same sphere, parasphere or hypersphere for all x ∈ bdK and all y ∈ bdL.)
Moreover, the congruences carrying these relatively open neighbourhoods of x and
y to these relatively open geodesic (d−1)-balls carry x and y to the centres of these
relatively open geodesic (d− 1)-balls. (For Rd and Hd hyperplanes are excluded —
thus for Hd hyperspheres cannot degenerate to hyperplanes).

Proof. 1. For the case of the proof of Theorem 1 recall (1.5.6), (1.5.9), (1.5.111)
and (1.5.12). Then, for any 2-planes PϕK and PψL containing g, we have for some
ε > 0 that

(1.8.1)





B(OϕK , ε) ∩ (bd (ϕK)) ∩ PϕK and B(OψL, ε) ∩ (bd (ψL)) ∩ PψL

are congruent, contain OϕK and OψL,with e being an outer unit

normal of ϕK and f being an outer unit normal of ψL, at OϕK

and OψL, respectively.

Observe that (1.8.1) implies congruence of B(OϕK , ε)∩(bd (ϕK)) and B(OψL, ε)
∩ (bd (ψL)), both having g as an axis of rotation.

2. For the case of the proof of Theorem 4 recall (4.3.1) and (4.3.2). By these we
have, for some ε > 0, and for any 2-planes PϕK and PψL containing g, that

(1.8.2)





B(ϕx, ε) ∩ (bd (ϕK)) ∩ PϕK and B(ψy, ε)∩ (bd (ψL)) ∩ PψL

are congruent, contain ϕx and ψy, with g being a normal to

ϕK at ϕx and to ψL at ψy.
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Observe that (1.8.2) implies congruence of B(ϕx, ε)∩ (bd (ϕK)) and B(ψy, ε)∩
(bd (ψL)), both having g as an axis of rotation.

3. Here the notations are different. To exclude this, we rewrite both (1.8.1) and
(1.8.2) for K and L, by using (1.5.6) and its analogue (4.3.4), and Lemma 1.5, (2)
and its analogue Lemma 4.3 (about (2) of Lemma 1.5), as

(1.8.3)





B(x, ε) ∩ (bdK) and B(y, ε) ∩ (bdL) are congruent

surfaces of revolution, with axes of rotation their outer

unit normals n and m at x ∈ bdK and y ∈ bdL, respectively.

Yet we do not know the (congruent) shapes of the 2-dimensional normal sec-
tions of B(x, ε) ∩ (bdK) at x ∈ bdK and of B(y, ε) ∩ (bdL) at y ∈ bdL. How-
ever, the surfaces mentioned in (1.8.3) are surfaces of revolution about n and m.
Therefore they are also symmetric with respect to any hyperplane containing their
respective axes of rotation. This however implies that the normals at any points
x∗ ∈ B(x, ε)∩ (bdK) or y∗ ∈ B(y, ε)∩ (bdL) of a 2-dimensional normal section of
K or L with 2-planes PK or PL containing n or m, respectively, lie in PK or PL,
respectively. (Normals exist for Theorem 1 by hypothesis (A), and for Theorem 4
by its hypotheses). Then the 2-dimensional normal sections of bdK at x and of
bdL at y, containing n and m, are normal sections of bdK at x∗ and of bdL at
y∗, respectively.

Now applying conclusion (2) of Lemma 1.5 (the proof of Lemma 1.5 already has
been completed), or its analogue, conclusion of Lemma 4.3 about (2) of Lemma 1.5
(also already proved), we get the following. For the above x, x∗, y, y∗ all sectional
curvatures of K or L, respectively, are equal to some κ ≥ 0, where for Theorem 1
for Rd and Hd actually κ > 0, while for Theorem 4 κ > 0. Fixing x, y and varying
x∗, y∗ we get that the 2-dimensional normal sections B(x, ε) ∩ (bdK) ∩ PK and
B(y, ε) ∩ (bdL) ∩ PL have constant curvature κ. That is, they are relatively open
arcs of congruent circles, paracycles or hypercycles in PK and PL, with midpoints
x and y. For Theorem 1, for Rd and Hd by κ > 0 they cannot be straight line
segments, while for Theorem 4 for Sd they cannot be large-circles, for Rd they
cannot be straight lines, and for Hd they cannot be straight lines, hypercycles and
paracycles, by the hypotheses of Theorem 4.

Last, we obtain B(x, ε) ∩ (bdK) and B(y, ε) ∩ (bdL) by rotation of B(x, ε) ∩
(bdK) ∩ PK and B(y, ε) ∩ (bdL) ∩ PL about the axes n and m. Therefore these
sets are exactly such as stated in this lemma. �
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Lemma 1.9. Let X be Sd, Rd or Hd, and let K,L and ϕ, ψ be as in (*). Suppose
(1) of Theorem 1, or (1) of Theorem 4. Then the conclusion of Lemma 1.8 implies
(2) of Theorem 1. In particular, any of (1) of Theorem 1 and (1) of Theorem 4
implies (2) of Theorem 1.

Proof. By the conclusion of Lemma 1.8, locally, any of bdK and bdL is an analytic
surface (namely, sphere, parasphere or hypersphere), given up to congruence. (I.e.,
we have congruent spheres, paraspheres or hyperspheres for any points of bdK and
bdL.)

Now let x ∈ bdK be arbitrary. By the conclusion of Lemma 1.8, for some
relatively open geodesic (d− 1)-ball Bx on bdK, with centre x, we have that Bx is
a subset of an above analytic hypersurface, given up to congruence. Then

(1.9.1)





for x1, x2 ∈ bdK, with Bx1
∩Bx2

6= ∅, we have that Bx1
, Bx2

⊂ bdK are subsets of the same analytic hypersurface, i.e., they

are open subsets of the same sphere, parasphere or hypersphere.

This follows by simple geometry (recall that in the conformal model these surfaces
are portions of spherical surfaces inside the model Sd), or by analytic continuation.

Now let us introduce an equivalence relation ∼ on the points x of bdK.

(1.9.2)





Two points x′, x′′ ∈ bdK are called equivalent, written x′

∼ x′′, if there exists a finite sequence x′ = x1, . . . , xN = x′′ ∈

bdK, such that Bxi
∩Bxi+1

6= ∅, for each i = 1, . . . , N − 1.

It is standard to show that ∼ is in fact an equivalence relation. Let the equivalence
classes with respect to ∼ be denoted by Cα, the α’s forming an index set A. (It is
easy to see that A is at most countably infinite, but this is not necessary for us.)

By the conclusion of Lemma 1.8 and from (1.9.1), by using induction with respect
to N , we get that

(1.9.3)





each equivalence class Cα ⊂ bdK is a relatively open subset

of a sphere, parasphere or hypersphere, this surface being

given up to congruence, and also is relatively open in bdK.

Two different sets Cα ⊂ bdK are disjoint, since else their union would be a subset of
some equivalence class, a contradiction. Thus {Cα | α ∈ A} forms a relatively open
partition of bdK (by (1.9.3)), which implies that it forms a relatively open-and-



36 J. JERÓNIMO-CASTRO, E. MAKAI, JR.

closed partition of bdK. Now observe that a connected component of bdK
cannot intersect a relatively open-and-closed subset Cα of bdK, and also its com-
plement in bdK, which implies that

(1.9.4) each Cα (for α ∈ A) is the union of some connected components of bdK.

On the other hand, each Bx is connected, and thus no Bx can intersect different
connected components of bdK. Hence, by the definition of ∼ and by induction for
N , we get that

(1.9.5)

{
the sets Cα for α ∈ A are also subsets

of some connected components of bdK.

Now observe that both {Cα | α ∈ A} and the connected components of bdK form
partitions of bdK. Then (1.9.4) and (1.9.5) imply that

(1.9.6) the sets Cα for α ∈ A are exactly the connected components of bdK.

Up to now, we know the following. By (1.9.6) and (1.9.3),

(1.9.7)





the connected components Cα of bdK (for α ∈ A) are

relatively open subsets of some congruent spheres, para-

spheres or hyperspheres, and also are relatively open in bdK.

Since bdK is closed in X , its connected components Cα, being relatively closed in
bdK, are closed in X as well. Therefore

(1.9.8)





the connected components Cα of bdK are also closed

in the above congruent spheres, paraspheres or

hyperspheres containing them (from (1.9.3)).

By (1.9.7) and (1.9.8)

(1.9.9)





the connected components Cα of bdK are non-empty,

relatively open-and-closed subsets of some congruent

spheres, paraspheres or hyperspheres.
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However, spheres, paraspheres and hyperspheres are connected, i.e., have no
non-empty, relatively open-and-closed proper subsets. Therefore, taking in consid-
eration that by the conclusion of Lemma 1.8 the congruent spheres, paraspheres or
hyperspheres for bdK are congruent to those for bdL, we have that

(1.9.10)

{
the connected components of bdK, and, similarly, of

bdL, are congruent spheres, paraspheres or hyperspheres.

This shows that (1) of Theorem 1 implies the first sentence of (2) of Theorem 1.
(For Sd we have radius of the sphere at most π/2, by hypothesis (∗) of Theorem
1.)

The second sentence of (2) of Theorem 1 follows for K (and analogously for
L) like this. For the case that in (1.9.10) we have one sphere or one parasphere
(= bdK), its convex hull K ′ is the ball or paraball bounded by the sphere or
parasphere. Therefore K ′ ⊂ K. If we had K ′ $ K, then k ∈ K \K ′ and k′ ∈ intK ′

would imply that for k′′ ∈ [k, k′]∩(bdK) we would have k′′ ∈ intK, a contradiction.
(For X = Sd we can choose k, k′ not antipodal.) Hence K ′ = K.

However, if in (1.9.10) we have several spheres or paraspheres, then by the con-
clusion of Lemma 1.8 they are necessarily disjoint, and their closed convex hull
contains the balls and paraballs bounded by these spheres or paraspheres. More-
over, their closed convex hull contains a segment [x, y] with x and y some interior
points of two different above balls or paraballs B(x) and B(y), respectively, and
even contains a small neighbourhood of this segment. (For X = Sd we may choose
x, y not antipodal in Sd.) Then [x, y] intersects the boundaries of B(x) and B(y)
at points x′, y′, with order x, x′, y′, y on [x, y]. Then x′ lies in the interior of the
(closed) convex hull of B(x) and B(y), hence in intK. However, x′ lies in a con-
nected component of bdK, thus also in bdK, a contradiction. This proves that
(1) of Theorem 1 implies also the second sentence of (2) of Theorem 1. This ends
the proof of (1) =⇒ (2) in Theorem 1. �

Proof of Theorem 1. Recall that we have (*). By Lemma 1.3, (2) of Theorem 1
implies (1) of Theorem 1. By Lemma 1.9, (1) of Theorem 1 implies (2) of Theorem
1. �

Before the proof of Theorem 2 we need a lemma.
For a ((d− 1)-dimensional) spherical cap C in Rd we write S(C) for the sphere

containing C, and B(C) for the ball bounded by S(C). We write c(·) for the centre
of a ball. In the next lemma we will use the conformal model for Hd, and we will
consider this model as a subset of the Euclidean space Rd in the usual way.

Lemma 2.1. Using the notations of Lemma 1.2 and those introduced just before
this lemma, but supposing the second possibility in Lemma 1.2 (1), we write u0 for
the unique common infinite point of ϕK01 and ψL01 (and also of ϕK1 and ψL1).
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Further let us suppose that the hyperplane H, with respect to which ϕK01 and
ψL01, and also ϕK1 and ψL1 are symmetric images of each other, contains the
centre 0 of the conformal model in Bd (⊂ Rd). Further we consider everything in
the Euclidean geometry of Rd. Then

{
B(ϕK1) and B(ψL1) are different congruent balls in

Rd, and u0 ∈ B(ϕK1) ∩B(ψL1) ⊂ (intBd) ∪ {u0}.

Proof. We may suppose that u0 = (0, . . . , 0,−1) and (u0 ∈) H ⊂ Hd is the hyper-
plane ξ1 = 0.

By 0 ∈ H the symmetry with respect to the hyperplane H in Hd is just the
restriction of the symmetry with respect to aff(H) in Rd, i.e., with respect to the
hyperplane ξ1 = 0 in Rd.

We have that each of ϕK01, ψL01, ϕK1 and ψL1 are spherical caps in Rd, which
are relatively open in S(ϕK01), S(ψL01), S(ϕK1) and S(ψL1), respectively.

The spherical caps ϕK01 and ψL01 are symmetric images of each other with
respect to aff(H) in Rd. Say, ϕK01 and ψL01 lie in the open halfspaces ξ1 < 0
and ξ1 > 0, respectively. Also ϕK01 and ψL01 (as hyperplanes in Hd) inter-
sect Sd−1 orthogonally, and touch each other at (0, . . . , 0,−1). This implies that
c (B(ϕK01)) and c (B(ψL01)) lie on the line parallel to the ξ1-axis and passing
through (0, . . . , 0,−1), and are symmetric images of each other with respect to
aff(H) in Rd, with c (B(ϕK01)) and c (B(ψL01)) lying in the open halfspaces ξ1 < 0
and ξ1 > 0, respectively.

The spherical caps ϕK1 and ψL1 are also symmetric images of each other with
respect to aff(H) in Rd. Therefore also

(2.1.1)

{
B(ϕK1) and B(ψL1) are the symmetric images of each other with

respect to aff (H), hence are (different) congruent balls in Rd,

proving the first statement of the lemma.

(2.1.2)





The intersection B(ϕK1) ∩B(ψL1) is thus bounded by two

congruent spherical caps ϕCK on S(ϕK1) and ψCL on S(ψL1),

respectively, and these spherical caps are smaller than halfspheres.

The common relative boundary of ϕCK and ψCL (with respect to S(ϕK1) and
S(ψL1), respectively) is a (d− 2)-sphere lying in the hyperplane ξ1 = 0 in Rd, and
having centre [c (B(ϕK1)) + c (B(ψL1))]/2.
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Observe that relbd(ϕK01) = relbd(ϕK1) (taken in S(ϕK01) and S(ϕK1), re-
spectively), and also relbd(ψL01) = relbd(ψL1) (taken in S(ψL01) and S(ψL1),
respectively), and all these sets lie in Sd. Therefore c (B(ϕK1)) and c (B(ψL1))
lie on the open segments (c (B(ϕK01)) , 0) and (c (B(ψL01)) , 0), and are symmetric
images of each other with respect to the hyperplane ξ1 = 0 in Rd. In particu-
lar, they lie in the ξ1ξd-coordinate-plane, and also in the open slab −1 < ξd < 0,
with c (B(ϕK01)) and c (B(ψL01)) lying in the open halfspaces ξ1 < 0 and ξ1 > 0,
respectively.

We consider (0, . . . , 0, 1) as a vertical upward vector. We have that B(ϕK1) ∩
B(ψL1) is rotationally symmetric with respect to the line c (B(ϕK1)) c (B(ψL1)).
The lowest and highest points of B(ϕK1) ∩ B(ψL1) lie in the ξ1ξd-coordinate
plane, and they are the points of intersection of S(ϕK1) and S(ψL1) and the ξ1ξd-
coordinate plane. These are uniquely determined points: namely (0, . . . , 0,−1) and
c (B(ϕK1)) + c (B(ψL1))− (0, . . . , 0,−1). In particular, this proves

(2.1.3) u0 = (0, . . . , 0,−1) ∈ B(ϕK1) ∩B(ψL1),

proving the first half of the second statement of the lemma.
Since c (B(ϕK1)) and c (B(ψL1)) lie in the open slab −1 < ξd < 0, the highest

point of B(ϕK1)∩B(ψL1) lies on the ξd-axis, in the open segment ((0, . . . , 0,−1),
(0, . . . , 0, 1)), i.e., is of the form (0, . . . , 0, β), where β ∈ (−1, 1).

We strictly increase B(ϕK1) ∩ B(ψL1) if we replace the congruent spherical
caps ϕCK and ψCL by halfspheres with the same relative boundary (with respect
to S(ϕK1), S(ψL1), and the sphere containing these halfspheres, respectively),
lying on the same side of the hyperplane ξ1 = 0 as ϕCK and ψCL, respectively.
Thus we obtain a sphere bounding a ball B(ϕK1, ψL1) with the above common
relative boundaries of the spherical caps ϕCK and ψCL as its equator (Thales
ball). Its lowest point is (0, . . . , 0,−1) and its highest point is (0, . . . , 0, β). Then
B(ϕK1, ψL1) arises by diminishing Bd from (0, . . . , 0,−1) in ratio (1+β)/2 ∈ (0, 1).
Hence

(2.1.4)

{
B(ϕK1) ∩B(ψL1) ⊂ B(ϕK1, ψL1) ⊂

(intBd) ∪ {(0, . . . , 0,−1)} = (intBd) ∪ {u0},

proving the second half of the second statement of the lemma. �

Proof of Theorem 2. The implication (2) =⇒ (1) of this Theorem follows since
(ϕK) ∩ (ψL) has as centre of symmetry the midpoint of the segment connecting
the centres of ϕK and ψL.
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Therefore we have to prove only (1) =⇒ (2) of this Theorem.
Observe that (1) of Theorem 2 implies (1) of Theorem 1, and (1) of Theorem 1

implies, by Theorem 1, (2) of Theorem 1, i.e., that the connected components of
the boundaries both of K and L are either

(1) congruent spheres (for X = Sd of radius at most π/2), or
(2) paraspheres, or
(3) congruent hyperspheres,

and in cases (1) and (2) here K and L are congruent balls (for X = Sd of radius
at most π/2), or they are paraballs, respectively.

In case (1) here K and L are congruent balls (for X = Sd of radius at most π/2),
hence Theorem 2, (2) is proved.

There remained the cases here when we have X = Hd and
(2) K and L are two paraballs, or
(3) the boundary components both of K and L are congruent hyperspheres, and

their numbers are at least 1, but at most countably infinite.
We are going to show that neither of these two cases can occur.
In case (2) here K and L are paraballs. We choose ϕ and ψ so that ϕK = ψL.

Then their intersection is the paraball ϕK = ψL, which is not centrally symmetric,
since it has exactly one point at infinity. (This shows also the statement in brackets
in (1) of Theorem 2 in this case.) Hence case (2) here cannot occur.

In case (3) here, let all boundary components ϕKi of ϕK, and ψLi of ψL be
congruent hyperspheres, with base hyperplanes ϕK0,i and ψL0,i. Denote by λ the
common value of the distance, for which these hyperspheres are distance surfaces
for their base hyperplanes. By the hypothesis C2

+ (or its weakening (A) and (B)
of the theorem) we have λ > 0. These base hyperplanes bound closed convex sets
ϕK0 and ψL0, respectively, possibly with empty interior, and on the other closed
side of each ϕK0i as ϕKi, and such that the parallel domains of ϕK0 and ψL0,
with distance λ, equal ϕK and ψL, respectively, by Lemma 1.1.

Let

(2.1)

{
H ′, H ′′ ⊂ Hd be two hyperplanes, having one common infinite

point u0 , but no other common finite or infinite point.

They are symmetric images of each other with respect to a hyperplane H ⊂ Hd,
having u0 as an infinite point. As in Lemma 2.1, for simplicity we may assume that
H contains the centre of the conformal model, which model we use also here.

Then there exists isometries ϕ, ψ of Hd to itself such that
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(2.2)





ϕK01 = H ′ and ψL01 = H ′′, and int(ϕK0) lies on

the opposite closed side of H ′ as H ′′, and int(ψL0)

lies on the opposite closed side of H ′′ as H ′.

If one or both of these interiors is/are empty, we consider the last two statements
of (2.2) as satisfied for the respective interior/s.

Possibly ϕ (or ψ) is not orientation preserving. In this case we apply after ϕ (or
ψ) a symmetry with respect to a hyperplane orthogonally intersecting H ′ (or H ′′).
Then the composed isometry satisfies the same properties which ϕ and ψ in (2.2)
satisfied, and additionally it is orientation preserving. So we may suppose that ϕ
and ψ are orientation preserving.

Then the hypotheses of Lemma 1.2 are satisfied: (1) and (2) of Lemma 1.2 by
(2.1) and (2.2), and (3) of Lemma 1.2 is just a notation. Then Lemma 1.2 gives,
using its notations, that

(2.3) (ϕK) ∩ (ψL) = (ϕK∗

1 ) ∩ (ψL∗

1).

Here ψL01, ψL1 and ψL
∗

1 are symmetric images of ϕK01, ϕK1 and ϕK
∗

1 with respect
to the hyperplane H ⊂ Hd, respectively.

Now we consider the conformal model as embedded in Rd in the usual way. We
will apply Lemma 2.1 together with its notations. Thus, int (·) and cl (·) denote
interior and closure in Rd, which contains the conformal model in the canonical
way. We have

(2.4) ϕK∗

1 = B(ϕK1) ∩ (intBd) and ψL∗

1 = B(ψL1) ∩ (intBd), implying

(2.5) (ϕK∗

1 ) ∩ (ψL∗

1) = B(ϕK1) ∩B(ψL1) ∩ (intBd).

By Lemma 2.1, (2.5) and once more by Lemma 2.1 we have

(2.6)





B(ϕK1) ∩B(ψL1) = [B(ϕK1) ∩B(ψL1)] ∩ [(intBd) ∪ {u0}]

= [B(ϕK1) ∩B(ψL1) ∩ (intBd)]∪

[B(ϕK1) ∩B(ψL1) ∩ {u0}] = ((ϕK∗

1 ) ∩ (ψL∗

1)) ∪ {u0}.

Then, also using (2.3) and (2.6),

(2.7)





the set of infinite points of (ϕK) ∩ (ψL) = (ϕK∗

1 ) ∩ (ψL∗

1) is contained

in [cl ((ϕK∗

1 ) ∩ (ψL∗

1))] ∩ S
d−1 ⊂ [cl ((ϕK∗

1 )) ∩ cl ((ψL∗

1))] ∩ S
d−1 ⊂

[B(ϕK1) ∩B(ψL1)] ∩ S
d−1 = [((ϕK∗

1 ) ∩ (ψL∗

1)) ∪ {u0}] ∩ S
d−1 = {u0}.
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On the other hand, by (2.1) and (2.2) u0 is an infinite point both of H ′ = ϕK01

and H ′′ = ψL01. Therefore, also using (2.3) (and meaning (1− ε)u0 in Rd),

(2.8)





for sufficiently small ε > 0 we have (1− ε)u0 ∈

int[(ϕK) ∩ (ψL)] = int[(ϕK∗

1 ) ∩ (ψL∗

1)], hence u0 is

an infinite point of (ϕK) ∩ (ψL) = (ϕK∗

1 ) ∩ (ψL∗

1).

Then (2.7) and (2.8) imply, also using (2.3), that

(2.9)

{
(ϕK) ∩ (ψL) = (ϕK∗

1 ) ∩ (ψL∗

1) has a unique infinite

point, namely u0, hence it is not centrally symmetric.

(This shows also the statement in brackets in (1) of Theorem 2 in this case as well.)
Hence here also case (3) of this proof cannot occur, ending the proof of Theorem
2. �

Before the proof of Theorem 3 we give five simple lemmas.

Lemma 3.1. Let X = Hd, and let K∗ and L∗ be closed convex sets, bounded by
two congruent hyperspheres K and L, respectively. Suppose that the base planes
ϕK0 of ϕK and ψL0 of ψL either have no common finite or infinite point, or have
one common infinite point but no other common finite or infinite point. Suppose
that ϕK lies on that side of ϕK0 as ψL, but ψL lies on the opposite side of ψL0 as
ϕK. Then ϕK∗ ⊂ int (ψL∗).

Proof. Let λ > 0 denote the common distance for which K and L are distance
surfaces.

Let ϕx ∈ ϕK∗. If ϕx lies in the same (closed) side of ψL0 as ϕK0, then ϕx ∈
int (ψL∗).

If ϕx lies in the other (open) side of ψL0 as ϕK0, then for some ϕx0 ∈ ϕK0 we
have |(ϕx0)(ϕx)| ≤ λ. Then [ϕx0, ϕx] intersects ψL0 in some point ψy ( 6= ϕx0).
Consequently, dist (ψL0, ϕx) ≤ |(ψy)(ϕx)| < |(ϕx0)(ϕx)| ≤ λ, hence again ϕx ∈
int (ψL∗). �

Lemma 3.2. Let X = Hd, and let K∗ and L∗ be closed convex sets, bounded by
two congruent hyperspheres K and L, respectively. Suppose that ϕK∗ and ψL∗ have
no common infinite points. Then (ϕK∗) ∩ (ψL∗) has a centre of symmetry.

Proof. Since ϕK∗ and ψL∗ have no common infinite points, therefore, by the
collinear model, the base hyperplanes ϕK0 and ψL0 of the hyperspheres ϕK and
ψL have no common finite or infinite points, moreover ϕK lies on the side of ϕK0

where ψL0 lies, and similarly, ψL lies on the side of ψL0 where ϕK0 lies. Then the
symmetry with respect to the midpoint of the segment realizing the (positive) dis-
tance of ϕK0 and ψL0 (which exists by compactness and by ϕK0 and ψL0 having
no common infinite points, and which is orthogonal both to ϕK0 and ψL0)
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interchanges ϕK0 and ψL0, as well as ϕK and ψL, and also ϕK∗ and ψL∗.
Hence it is a centre of symmetry of the set (ϕK∗) ∩ (ψL∗). �

Lemma 3.3. Let K ⊂ H2 be a closed convex set whose boundary has two connected
components K1 and K2, which are two congruent hypercycles.

(1) If the total number of different infinite points of K1 and K2 is 2, then K
is a parallel domain of a line, and the centres of symmetry of K form the
entire base line for K.

(2) If the total number of different infinite points of K1 and K2 is 3, then K
has no centre of symmetry.

(3) If the total number of different infinite points of K1 and K2 is 4, then K has
a unique centre of symmetry, namely the midpoint of the (unique) segment
realizing the distance of the base lines of K1 and K2. Moreover, the infinite
points of K1 and K2 do not separate each other on the boundary S1 of the
model circle (conformal or collinear).

Proof. (1) We need to show only the statement about the centres of symmetry.
The points of the base line are centres of symmetry of the base line, hence also

of the parallel domain of the base line.
On the other hand, through any point k of K, not on the base line, we can draw

a straight line l orthogonal to the base line. Then k divides the chord of the parallel
domain of the base line, lying on l, into two segments, one shorter than the distance
λ > 0 for which the hypercycle is a distance line, and one longer than this distance
λ. Therefore k is not a centre of symmetry of the parallel domain of the base line.

(2) Suppose that K1 and K2 have one common infinite point, but their other
infinite points are different. Then any symmetry of K preserves K1 ∪K2 = bdK,
hence also the set of all different infinite points of K1 and K2. Then for K centrally
symmetric the total number of different infinite points of K1 and K2 has to be even,
a contradiction.

(3) We have that K1 and K2, as well as their base lines, are interchanged by
the central symmetry with respect to the mid-point m of the segment realizing the
distance of the base lines (cf. the proof of Lemma 3.2). This segment is unique,
cf. [AVS], Ch. 1, Theorem 4.2, and Ch. 4, 1.7. Hence this segment, as well as its
mid-point m are invariant under any symmetry of K. Hence a central symmetry
of K has symmetry centre O, say, which is the midpoint of the segment with end-
points m and the image of m under this central symmetry, which is m (by the
last sentence). That is, O is the midpoint of the degenerate segment [m,m], i.e.,
O = m.
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Then the straight line through m, orthogonal to the segment realizing the dis-
tance of the base lines of K1 and K2, strictly separates these base lines, and also
their infinite points. Therefore the infinite points of K1 and of K2 cannot separate
each other on the boundary S1 of the model circle. �

Lemma 3.4. Let P = (ϕK) ∩ (ψL) be a compact convex hypercycle-arc polygon
with the hypercycles containing its arc-sides being congruent (and P has non-empty
interior, has finitely many arc-sides, and has angles in (0, π)). Let the arc-sides of
P lie alternately on bd (ϕK) and on bd (ψL). Suppose that bdP does not consist
of two finite hypercycle arcs. Let s1 and s2 be two neighbouring arc-sides of P ,
following each other in the positive sense. Then the total number of the infinite
points of the hypercycles H1 and H2 containing the hypercycle-arc-sides s1 and s2
is 4, and the infinite points of H1 and H2 separate each other on the boundary S1

of the model circle (conformal, or collinear).
More exactly, let us orient bdP in the positive sense, and let us orient H1 and

H2 coherently with the orientations of s1 and s2. Let us denote by h11, h12 ∈
S1 (or h21, h22 ∈ S1) the first and last infinite points of H1 (or H2) on S1.
Then these points have the following cyclic order on the positively oriented S1:
h11, h21, h12, h22.

Proof. Let, e.g., s1 lie on bd (ϕK) and s2 lie on bd (ψL). Let us suppose that the
common vertex of the arc-sides s1 and s2 is the centre of the model circle, and that
H1 \ {0} lies in the open upper half of the model circle (thus has as tangent at 0
the horizontal axis). (Observe that the statement of the Lemma is invariant under
the choice of the centre of the model.) Then H2 is obtained from H1 by a rotation
about 0, through some angle β ∈ (0, π), in the positive sense. This rotation has
centre 0, therefore it is a rotation in the Euclidean sense as well. In particular, H1

and H2 are congruent in the Euclidean sense as well. We orient the base lines of
H1 (and of H2) from h11 to h12 (and from h21 to h22).

Let the central angle at 0 of the base lines of both hypercycles be α ∈ (0, π) (for
this observe that H1 \ {0} lies in the open upper half of the model circle).

Then for β ∈ (0, α) we have that h11, h12 and h21, h22 are all different and
separate each other on S1, and follow each other in the positive cyclic order on S1,
as asserted by the lemma.

For β = α and for β ∈ (α, π) we obtain by Lemma 1.2 (applied with H1 and
H2 as ϕK1 and ψL1 in Lemma 1.2) that P = (ϕK) ∩ (ψL) equals the intersection
of two closed convex sets, bounded by H1 and H2, respectively. Therefore bdP
consists of two hypercycle-arcs, one on H1 and the other on H2.

Therefore, for β = α we have that P is bounded by two semi-infinite arcs on H1

and H2, hence is not compact, contrary to the hypothesis of the lemma.
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For β ∈ (α, π) we have that P is bounded by two finite arcs on H1 and H2, again
contrary to the hypothesis of the lemma. This proves the lemma. �

Lemma 3.5. Let P0 = (ϕ0K)∩(ψ0L) satisfy all hypotheses of Lemma 3.4 (written
there for P = (ϕK)∩(ψL)), with each vertex lying only on the boundary component
hypercycles of bd (ϕ0K) and of bd (ψ0L) which contain the arc-sides incident to
the vertex. Moreover, let P0 have a centre of symmetry O0. Then O0 is uniquely
determined.

Moreover, for all sufficiently small perturbations ϕ of ϕ0 and ψ of ψ0, satisfying
that P = (ϕK) ∩ (ψL) has a centre of symmetry O, we have the following. Any
pair of opposite arc-sides of P0 (i.e., images of each other by the central symmetry
with respect to O0) remains by the small perturbation a pair of opposite arc-sides
of P (i.e., are the images of each other by the central symmetry with respect to O),
the arc-sides of P0 and P being identified via the small perturbation.

Proof. 1. First we prove the first statement. Even, we prove that any compact set
∅ 6= C ⊂ Hd has at most one centre of symmetry. In fact, we can copy the proof for
Rd. We may suppose that C has at least two points, else the statement is immediate
(observe that now X = Hd, and we can have two centres of symmetry only for
X = Sd). Then consider a ball B ⊂ Hd of minimal (positive) radius, containing
C (existing by a compactness argument). Then B is uniquely determined. In
fact, if there existed two such balls B1 and B2, then their intersection also would
contain C, and this intersection would be contained in the Thales ball with equator
(bdB1) ∩ (bdB2), which has a smaller radius than those of B1 and B2.

Then a centre of symmetry of C coincides with the centre of this unique ball B.
That is, O0 is uniquely determined, and hence the first statement of the Lemma is
proved.

2. We may suppose that also P is compact. Then the topological type of P
is the same as that of P0 (identifying the arc-sides of P0 and P via the small
perturbations), including also which arc-side lies on bd (ϕK) (on bd (ϕ0K)) and
which arc-side lies on bd (ψL) (on bd (ψ0L)).

We already know that O0 and O are uniquely determined.
Let us suppose the contrary of the second statement of the Lemma. I.e., there

are arbitrarily small perturbations ϕ of ϕ0 and ψ of ψ0, such that the “oppositeness
relation” for the arc-sides of P is not the same, as the oppositeness for the arc-sides
of P0, when we identify the arc-sides of P0 and of P via the small perturbations.
Observe that the oppositeness relation is a cyclic perturbation of the arc-sides, and
there are exactly n such cyclic perturbations, where n is the number of arc-sides of
P0 (and of P ). Therefore we may suppose that among the arbitrarily small
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perturbations we consider only such ones, for which these cyclic permutations
are a fixed cyclic permutation, which is different from the cyclic permutation given
by the oppositeness relation for P0 (and for O0).

Then choosing a suitable subsequence of these small perturbations, we obtain
in its limit the same arc-polygon P0, but with another oppositeness relation, than
that via O0. That is, for some arc-side s0 of P0 its opposite arc-side with respect
to O0 is s′0, and in this limit situation the opposite arc-side of s0 is some other
arc-side s′′0 ( 6= s′0) of P0. Then the centres of symmetry cannot be the same, and
thus P0 has two different centres of symmetry. This however contradicts the first
statement of this lemma, and hence the second statement of the Lemma is proved.
�

Proof of Theorem 3. 1. Let X be Sd or Rd. Then by the already proved Theorems
1 and 2, we have

(3.1)





Theorem 3, (1) =⇒ Theorem 1, (1) =⇒ Theorem 1, (2)

⇐⇒ Theorem 3, (2) (a) (⇐⇒ Theorem 3, (2)) ⇐⇒

Theorem 2, (2) =⇒ Theorem 2, (1) =⇒ Theorem 3, (1).

In particular,

(3.2) For X = Sd, Rd we have that Theorem 3, (1) ⇐⇒ Theorem 3, (2).

2. There remained the case X = Hd.
First we prove Theorem 3, (2) =⇒ Theorem 3, (1).
By Theorem 2 we have

(3.3)

{
Theorem 3, (2) (a) ⇐⇒ Theorem 2, (2) =⇒

Theorem 2, (1) =⇒ Theorem 3, (1).

We have

(3.4) Theorem 3, (2) (b) =⇒ Theorem 3, (1)

by the proof of the implication Theorem 1, (2) =⇒ Theorem 1, (1), in Lemma 1.3.
For the following recall that by Theorem 1 we have

(3.5) Theorem 3, (1) =⇒ Theorem 1, (1) =⇒ Theorem 1, (2).

Recall that the case of congruent balls, or of two paraballs already were settled
above, at Theorem 3, (2), (a) or (b) =⇒ Theorem 3, (1).
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There remained to prove

(3.6) Theorem 3, (2) (c) =⇒ Theorem 3, (1).

Observe that the connected components of bdK and of bdL are disjoint. Therefore
at proving (3.6), by Theorem 3, (2), (c) we may suppose that

(3.7)





the connected components of the boundaries of

both K and L are disjoint congruent hyperspheres

(degeneration to hyperplanes being not admitted).

We are going to prove (3.6) in each of the cases listed in Theorem 3, (2) (c).
2.1. First we prove that

(3.8) Theorem 3, (2) (c), and d ≥ 3 =⇒ Theorem 3, (1)

(i.e., case (2), (c) (α) in Theorem 3).
By (3.7), the infinite points of all connected components of bdK or of bdL are

sub-(d − 2)-spheres of the boundary of the model (either conformal, or collinear).
They bound open spherical caps on the boundary of the model, called associated
to K and L, such that the convex hulls of these open spherical caps (meant in Rd,
containing the collinear model of Hd in the canonical way) contain the respective
connected component of bdK or of bdL.

We will show that these open spherical caps are disjoint (but may have common
boundary points). We use the notation K0 from Lemma 1.1 (and analogously we
use the notation L0). In the collinear model, K0 or L0 can be obtained from the
model (open) unit ball by cutting off the interiors (in Rd) of the convex hulls of
these open spherical caps. (Thus we obtain a set “like a polytope”, with possibly
infinitely many facets, and with other boundary points on the boundary of the
model.) This implies that, for any of K and L, no such open spherical cap can
contain another such open spherical cap (recall Lemma 3.1), and also that no two
such open spherical caps can have a partial overlap (else bdK0, meant in Rd, would
have points on both sides of an above “facet” of it — which is the convex hull of
the infinite points of an above (d− 2)-sphere, in the collinear model).

Let us consider the infinite points of K0 (or of L0), denoted by (clK0) ∩ S
d−1

(or by (clL0)∩S
d−1), where we mean closure cl in Rd and Sd−1 is the boundary of

the model. These can be obtained from Sd−1, by deleting all above disjoint open
spherical caps, associated to K (or to L).

We use on the boundary Sd−1 of the model (conformal or collinear) the geodesic
metric inherited from its superset Rd.

We are going to show that

(3.9) (clK0) ∩ S
d−1 (and also (clL0) ∩ S

d−1) is connected.
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In fact, any two of the points of the set(s) in (3.9) can be connected by a geodesic
segment S on Sd−1. This segment S may have relatively open subsegments S ∩ C
lying in some above open spherical caps C, associated to K (or to L), but

(3.10)





then these subsegments S ∩ C will be replaced by the

shorter (or some equal) geodesic segments S(C) on the

relative boundaries of these spherical caps C, where

the endpoints of S ∩ C and those of S(C) coincide.

(Observe that now d − 2 ≥ 1, therefore these sub-(d − 2)-spheres are connected.)
Doing this simultaneously for all these relatively open subsegments, we claim that

(3.11)





we obtain a continuous path connecting the arbitrarily chosen

points of (clK0) ∩ S
d−1 (and also of (clL0) ∩ S

d−1), in

(clK0) ∩ S
d−1 (in (clL0) ∩ S

d−1), proving arcwise

connectedness of (clK0) ∩ S
d−1 (and also of (clL0) ∩ S

d−1).

Now we are going to prove (3.11). Actually, this “perturbation” (via (3.10)) of
the original geodesic segment S is a continuous image of S, which suffices to prove
(3.11). We define the continuous function f from S to the path described in (3.10)
as follows. The function f maps points of S in some above open spherical cap C
(i.e., points of some S ∩ C) to the smaller (or some equal) geodesic segment S(C)
on the boundary of the spherical cap C, connecting the two endpoints of S ∩ C,
in the following way. If a point in S ∩ C moves with constant velocity between
the two endpoints of S ∩ C, then its image in S(C) moves with constant velocity
between the same two endpoints of the geodesic segment S(C) (i.e., between the
two endpoints of S ∩ C). All other points of S are mapped by f to themselves.
Evidently this function f has a Lipschitz constant at most π/2, hence is in fact
continuous. This proves our claim (3.11).

Now let (ϕK) ∩ (ψL) be compact. Then

(3.12)





ϕK and ψL cannot have any common infinite point —

equivalently, ϕK0 and ψL0 cannot have any common

infinite point. (In fact, this holds for d ≥ 2.)

In fact, else, using the collinear model, and int ((ϕK) ∩ (ψL)) 6= ∅, we obtain a
contradiction to compactness of (ϕK) ∩ (ψL).

Therefore (cl (ϕK0))∩S
d−1 and (cl (ψL0))∩S

d−1 are disjoint. Then (cl (ϕK0))∩
Sd−1 is, by (3.11), a connected subset of Sd−1 \ (cl (ψL0)), therefore
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(3.13)





(cl(ϕK0)) ∩ S
d−1 is contained in a connected component

of Sd−1 \ (cl (ψL0)) , which component is the image by

ψ of some of the open spherical caps associated to L.

Now we change the roles of ϕK and ψL. Therefore also

(3.14)





(cl (ψL0)) ∩ S
d−1 is contained in a connected component

of Sd−1 \ (cl (ϕK0)) , which component is the image by

ϕ of some of the open spherical caps associated to K.

By (3.13) and (3.14) we are in the situation of Lemma 1.2. Therefore we have,
with the notations of Lemma 1.2, that

(3.15) (ϕK) ∩ (ψL) = (ϕK∗

1 ) ∩ (ψL∗

1).

Then ϕK∗

1 and ψL∗

1 have no common infinite points, by (3.13) and (3.14). Then
by Lemma 3.2 the set in (3.15) has a centre of symmetry, and thus (3.8) is proved.

2.2. Second we prove that

(3.16)

{
Theorem 3, (2) (c), and d = 2 and one of K and L

is bounded by one hypercycle =⇒ Theorem 3, (1)

(i.e., case (2) (c) (β) (β′) in Theorem 3).
Suppose, e.g., that bdK has only one connected component K1. Then, with the

notations of Lemma 1.2, we have K∗

1 = K. Then (cl (ϕK∗

1 )) ∩ S
1 = (cl (ϕK)) ∩ S1

is a closed subarc of the boundary S1 of the model, of length in (0, 2π). Therefore,
by (3.12), (cl (ψL)) ∩ S1 is contained in the complementary open subarc, of length
in (0, 2π), which is the complement of the above closed subarc in S1. Then again
we are in the situation of Lemma 1.2, with K1 from above, and with a suitable
connected component ψL1 of bd (ψL). Then by Lemma 1.2 and using its notations
we have that (3.15) holds once more. Then, as in the end of 2.1, by Lemma 3.2
the set in (3.15) has a centre of symmetry, and thus (3.16) is proved.

2.3. Third we prove that

(3.17)





Theorem 3, (2) (c), and d = 2 and K and L are

congruent parallel domains of straight lines K0

and L0, respectively =⇒ Theorem 3, (1)
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(i.e., case (2) (c) (β) (β′′) in Theorem 3).
Suppose that ϕK0 and ψL0 have a common finite point. Any of these finite

points is a centre of symmetry both of ϕK and ψL (cf. Lemma 3.3, Proof, (1)),
hence also of (ϕK) ∩ (ψL).

If ϕK0 and ψL0 have no common finite point, but have a common infinite point,
then we obtain a contradiction to (3.12).

Let ϕK0 and ψL0 have no common finite or infinite point. Then

(3.18)





(ϕK) ∩ (ψL) is the intersection of four closed convex sets

ϕK∗

1 , ϕK
∗

2 and ψL∗

1, ψL
∗

2, bounded by the hypercycles

ϕK1, ϕK2 and ψL1, ψL2, which are the connected

components of bd (ϕK) and of bd (ψL), respectively.

Let ϕK1 (and ψL1) lie on that side of ϕK0 (and ψL0) where ψL0 (and ϕK0) lies,
and then ϕK2 (and ψL2) lies on the other side of ϕK0 (and ψL0). Then Lemma
3.1 implies

(3.19)

{
(ϕK) ∩ (ψL) = ((ϕK∗

1 ) ∩ (ϕK∗

2 )) ∩ ((ψL∗

1) ∩ (ψL∗

2)) =

((ϕK∗

1 ) ∩ (ψL∗

2)) ∩ ((ψL∗

1) ∩ (ϕK∗

2 )) = (ϕK∗

1 ) ∩ (ψL∗

1).

The (last) set in (3.19) has by Lemma 3.2 a centre of symmetry, and thus (3.17) is
proved.

2.4. Fourth we prove that

(3.20)





Theorem 3, (2) (c), and d = 2 and there are no more

compact intersections (ϕK) ∩ (ψL) than those bounded

by two finite hypercycle arcs =⇒ Theorem 3, (1).

(i.e., case (2) (c) (β) (β′′′) in Theorem 3).
If (ϕK) ∩ (ψL) is bounded by two finite hypercycle arcs, then it has a centre of

symmetry by Lemma 3.2. Else we have Theorem 3, (1) vacuously. Thus (3.20) is
proved.

3. Summing up: we have shown Theorem 3, (1) ⇐⇒ Theorem 3, (2) for X =
Sd,Rd (cf. (3.2)). Further, we have shown Theorem 3, (2) =⇒ Theorem 3, (1), in
all cases: for X = Hd: for case (a) (cf. ((3.3)); for case (b) (cf. (3.4)); for case (c)
(α) (cf. (3.8), and last sentence of 2.1); for case (c) (β) (β′) (cf. (3.16), and last
sentence of 2.2); for case (c) (β) (β′′) (cf. (3.17), and last sentence of 2.3); for case
(c) (β) (β′′′) (cf. (3.20), and last sentence of 2.4).
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There remained the case X = Hd, and still we have to prove (1) =⇒ (2). We
will show the equivalent implication ¬(2) =⇒ ¬(1). In other words, if neither of
Theorem 3, (2), (a), (b), (c) (α), (β) holds, then we have the negation of Theorem
3 (1). In formula (taking in account the last sentence of Theorem 1, (2) and (3.7)):

(3.21)





we have X = Hd, d = 2, and the connected components of

the boundaries of both K and L are congruent hypercycles

(degeneration to straight lines being not admitted), both bdK

and bdL have at least two connected components, and at

least one of them is not a parallel domain of a straight line

(observe that at the negation of Theorem 3, (c), (β), (β′′) we

cannot have incongruent parallel domains of straight lines, by

congruence of the boundary components of K and L), and

there exists a compact intersection (ϕK) ∩ (ψL) not bounded

by two finite hypercycle arcs =⇒ ¬ Theorem 3, (1).

That is, under the hypotheses of (3.21) we have to give ϕ, ψ so that

(3.22)

{
(ϕK) ∩ (ψL) is compact, but is not centrally symmetric (in particular,

is not bounded by two finite hypercycle arcs, cf. Lemma 3.2).

We begin with choosing a compact intersection P0 := (ϕ0K)∩(ψ0L) not bounded
by two finite hypercycle arcs. We may suppose that

(3.23)

{
P0 = (ϕ0K) ∩ (ψ0L) (which is compact and is not bounded

by two finite hypercycle arcs) is centrally symmetric,

else we are done.
First we observe that

(3.24)





for (ϕK) ∩ (ψL) compact, only finitely many connected

components of ϕK and of ψL can contribute to bd ((ϕK) ∩ (ψL))

(even, bd ((ϕK) ∩ (ψL)) has an empty intersection with all other

connected components of bd (ϕK) and of bd (ψL)).

In fact, using the collinear model, suppose that (ϕK) ∩ (ψL) lies in a closed circle
of radius 1− ε about the centre 0 of the model, where ε is small. Then the
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base lines of those hypercycles, which are connected components of bd (ϕK) (and
also of bd (ψL)) whose some points are on bd ((ϕK) ∩ (ψL)), are disjoint, hence
span disjoint open angular domains with vertex at the centre 0 of the model, with
spanned angles at least 2 arccos(1 − ε). (If 0 is strictly separated by one of the
base lines of the hypercycle boundary components of ϕK (or of ψL) from the base
lines of the remaining hypercycle boundary components of ϕK (or of ψL), then the
corresponding angle is considered as greater than π.) Hence the total number of
the hypercycle boundary components, taken together for ϕK and ψL, whose some
points are on bd ((ϕK) ∩ (ψL)), is at most 2 · 2π/ (2 arccos(1− ε)), hence is finite.
This proves (3.24).

Therefore we may say that

(3.25) (ϕK) ∩ (ψL) is a hypercycle-arc-polygon (later arc-polygon).

(3.26)





(ϕK) ∩ (ψL) cannot have two neighbourly sides, belonging to

different connected components of either bd (ϕK) or bdψL

(these components being disjoint), neither belonging to the

same component of either bd (ϕK) or ψL (else the union of

these sides would form a single side of (ϕK) ∩ (ψL)). By the

same reason, it is impossible that two different neighbourly

arc-sides would lie on the same hypercycle, which is a common

boundary component of ϕK and ψL. (This excludes angles π.)

Therefore (ϕK) ∩ (ψL) has alternately arc-sides on hypercycles

(only) in bd (ϕK) and (only) in bd (ψL) — in particular, it has

an even number of arc-sides. Also by the same reason, through

any vertex of our arc-polygon there cannot pass a third

boundary component either of ϕK or of ψL.

Therefore (cf. (3.23), and applying (3.25), (3.26) for ϕ0 and ψ0 rather than ϕ
and ψ),

(3.27)





P0 = (ϕ0K) ∩ (ψ0L) is a centrally symmetric hypercycle-arc-polygon,

whose arc-sides lie alternately (only) on bd (ϕ0K) and (only) on

bd (ψ0L), and whose centre of symmetry will be denoted by O0.

Since P0 is not bounded by two finite hypercycle arcs (cf. (3.23)), by (3.26)
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(3.28) the (even) number n of the arc-sides of P0 is at least 4.

We are going to show that

(3.29)

{
for some small perturbations ϕ and ψ of the original ϕ0 and

ψ0,we have that P := (ϕK) ∩ (ψL) is not centrally symmetric.

Observe that since no vertex of P0 lies on any boundary component either of ϕ0K
or ψ0L other than the (only) boundary components containing the arc-sides at this
vertex, therefore

(3.30)





by small perturbations ϕ of ϕ0 and ψ of ψ0, the topological

type of P remains the same as that of P0, including also that

which arc-sides lie only on bd (ϕK) (respectively only on

bd (ϕ0K)) and only on bd (ψL) (respectively only on bd (ψ0L)),

the arc-sides of P0 and P identified via the small perturbations.

So each arc-side of (ϕ0K)∩(ψ0L) has an opposite arc-side, its centrally symmetric
image with respect to O0. (This is not necessarily opposite according to the cyclic
order of the arc-sides.)

(3.31)

{
Then also the entire hypercycles containing these two opposite arc-

sides are centrally symmetric images of each other with respect to O0

(by the conformal model, choosing O0 = 0, and by elementary geometry, or by
analytic continuation). Now we are going to show that

(3.32)

{
the hypercycles containing two opposite arc-sides

of (ϕ0K) ∩ (ψ0L) have no common finite points.

In fact, if both of these hypercycles are boundary components of ϕ0K (or of
ψ0L) then they are disjoint, i.e., have no common finite points.

Now let one of these hypercycles, ϕ0K1, say, be a boundary component of ϕ0K,
and the other hypercycle, ψ0L1, say, be a boundary component of ψ0L. Let the
respective base lines be ϕ0K01 and ψ0L01. Then also ϕ0K1 and ψ0L1 are symmetric
images of each other with respect to O0 (cf. (3.31)), and the same holds for their
base lines ϕ0K01 and ψ0L01 as well. We may suppose provisionally that O0 is the
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centre 0 of the collinear model circle.
Then for O0 ∈ ϕ0K01 we have ϕ0K01 = ψ0L01, and therefore ϕ0K1 and ψ0L1

have two common infinite points (those of their common base line), but have no
common finite point, proving (3.32) in this case.

Now suppose 0 = O0 6∈ ϕ0K01. Then, by symmetry, 0 = O0 6∈ ψ0L01, and, in
the collinear model, these base lines are two opposite sides of a rectangle inscribed
to the model circle S1. Then ϕ0K1, and by symmetry, also ψ0L1, lie either on the
same, or on the other side of their own base lines, as the other base line lies. In
the second case ϕ0K1 and ψ0L1 have no common finite or infinite point, proving
(3.32) in this case. In the first case, by Lemma 1.2 we have that (ϕ0K) ∩ (ψ0L)
equals the intersection of two closed convex sets, bounded by ϕ0K1 and by ψ0L1,
respectively. However, now this intersection is bounded by two finite hypercycle
arcs, contradicting (3.23). This ends the proof of (3.32).

By (3.32), we may apply Lemma 3.3. This yields that the hypercycles in (3.32)
either constitute the boundary of a parallel domain of a line, and then O0 (not
fixed at 0 any more!) can be any point of this base line, or these hypercycles have
altogether four different infinite points, and then the closed convex set bounded by
them has a unique centre of symmetry O0.

We continue with case distinctions.
3.1. Let us suppose that, e.g., K is the parallel domain of a straight line (then

L cannot be such, by (3.21)). Then, by the alternance property of the arc-sides of
P0, we have that P0 is an arc-quadrangle, and that two opposite arc-sides of P0 lie
(only) on bd (ϕK), and the other two opposite arc-sides of P0 lie (only) on bd (ψL).

Then by (3.31) the centre of symmetry O0 of P0 is the centre of symmetry of the
union of the entire hypercycles containing any two opposite arc-sides of P0. Then
by (3.32) and Lemma 3.3, on the one hand, O0 lies on the base line of ϕ0K, and on
the other hand, O0 is a point O′ uniquely determined by the hypercycles containing
the other two opposite arc-sides of P0 (which lie in bd (ψ0L)). By central symmetry
of P0 we have that the base line of ϕ0K contains the above uniquely determined
point O′. Then small generic motions of ϕ0K and of ψ0L (yielding ϕK and ψL)
preserve the oppositeness relation for the perturbed arc-sides, by Lemma 3.5, but
destroy this incidence property. Hence, (ϕK)∩(ψL) will be generically not centrally
symmetric. This ends the proof for case 3.1.

3.2. Let us suppose that P0 is an arc-quadrangle, such that no two opposite arc-
sides of P0 lie on hypercycles with identical infinite points. Then, by Lemma 3.3, for
both pairs of opposite arc-sides of P0 the union of the hypercycles containing them
have altogether four infinite points. Moreover, O0 coincides with a pointO′ uniquely
determined by the union of the hypercycles containing some two opposite arc-sides
of P0 (contained in bd (ϕ0K)) and also with a point O′′ uniquely determined by
the
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union of the hypercycles containing the other two opposite arc-sides of P0 (con-
tained in bd (ψ0L)). Once more, a small generic motion of ϕ0K and of ψ0L (yield-
ing ϕK and ψL) preserves the oppositeness relation for the perturbed arc-sides, by
Lemma 3.5, but destroys this coincidence property. Hence, (ϕK) ∩ (ψL) will be
generically not centrally symmetric. This ends the proof for case 3.2.

3.3. By (3.23) we know that (ϕ0K)∩ (ψ0L) is not bounded by two finite hyper-
cycle arcs. Moreover, in 3.1 and 3.2 we have settled the case when (ϕ0K)∩ (ψ0L)
was an arc-quadrangle. Therefore, in what follows, by (3.28) we may suppose that

(3.33) the arc-polygon P0 has n ≥ 6 arc-sides.

Let s′1 and s
′′

1 be two opposite arc-sides of P0 (i.e., corresponding to each other by
the central symmetry of P0, with respect to O0). Then, by (3.32) and Lemma 3.3,
the hypercycles containing s′1 and s′′1 have altogether two, or four infinite points.
Accordingly, in the first case, O0 lies on the common base line of these two hyper-
cycles, and in the second case, O0 is a point uniquely determined by the union of
these hypercycles.

3.4. We are going to show that

(3.34)





it is impossible that for any two opposite arc-sides s′1 and s′′1 of

P0 the first case would hold, i.e., that the hypercycles containing

s′1 and s′′1 would have altogether two infinite points.

(3.35) Suppose the contrary, i.e., that always the first case holds.

Then the central angles, at the centre 0 of the collinear model, of the base lines of
the hypercycles containing any two opposite arc-sides of P0 sum to 2π. We mean
the central angle as π if the base line passes through the centre 0 of the model, and
as less than π or greater than π according to whether 0 lies on the side of this base
line, not containing, or containing the respective hypercycle. Hence

(3.36) the arithmetic mean of these central angles, for all arc-sides of P0, is π.

On the other hand, we are going to show that

(3.37)

{
the sum of these angles for those arc-sides of P0, which

belong to bd (ϕ0K) (or to bd (ψ0L)) is at most 2π.
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This will follow if we will have shown that the corresponding open angular do-
mains are disjoint. Since different such open angular domains are disjoint, this
means that

(3.38)





we have to show only that it is impossible that

two different arc-sides of P0 would lie on the

same boundary component of ϕ0K (or of ψ0L).

Let s1, . . . , sn be the arc-sides of P0, following each other in the positive ori-
entation. Then we have n oriented chords ci of the collinear model circle, which
are the base lines of the boundary components either of bd (ϕ0K) or of bd (ψ0L),
containing the arc-sides si of P0, respectively, and the orientation is as follows.
The first (last) infinite point of ci is the first (last) infinite point of the respective
hypercycle boundary component, according to the positive orientation of bd (ϕ0K)
or of bd (ψ0L).

We investigate the arc-sides sn, s1, s2. Let, e.g., sn ∪ s2 ⊂ bd (ϕ0K), and s1 ⊂
bd (ψ0L). We measure all angles in R2, containing the collinear model of H2 in the
canonical way. We may suppose that c1 is of horizontal right direction. Then by
Lemma 3.4 we have that cn goes from upward to downward, and c2 from downward
to upward. This means that the direction of cn lies in the angular interval (−π, 0),
while the direction of c2 lies in the angular interval (0, π). Therefore the sum of
the angles of the positive rotations which take the direction of cn to the direction
of c1, and the direction of c1 to the direction of c2, lies in (0, 2π). In other words,

(3.39)





the angle of the positive rotation, lying in the interval

(0, 2π), which takes the direction of cn to the direction

of c2, is the sum of the angles of the positive rotations,

lying in the interval (0, 2π), which take the direction

of cn to the direction of c1, and the direction of c1 to

the direction of c2.

(Observe that without using Lemma 3.4, the sums of the angles of the positive
rotations, lying in the interval (0, 2π), taking the direction of cn to the direction of
c1, and the direction of c1 to the direction of c2, could be any angle in (0, 4π). Then
the angle of positive rotation, lying in the interval (0, 2π), taking the direction of
cn to the direction of c2, can be just 2π less, than the sum of the above two angles.)
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Applying (3.39) to any three consecutive arc-sides of P0, we obtain that

(3.40)





the total rotation of the directions of the base lines ci (for

1 ≤ i ≤ n+ 1, where cn+1 := c1), measured in R2, containing

the collinear model of H2 in the canonical way, is equal to

the total rotation of the directions of the base lines ci for

1 ≤ i ≤ n+ 1,with i being even, which is by (3.26) the

total rotation of the directions of the base lines ci for

1 ≤ i ≤ n+ 1, with si ⊂ bd (ϕ0K), which is the total

rotation of bd (ϕ0K), which is 2π.

(Observe that bd (ϕ0K) may have other boundary components, not contributing
to bdP0. However, then we may delete them, and this does not change the total
rotation of the directions of the above investigated base lines ci. Also observe that
these base lines ci can be supposed to be distinct, since we already have settled the
case when K was a parallel domain of a straight line, cf. 3.1.) Then (3.39) and
(3.40) imply that if we suppose, like above, that the direction of c1 is horizontal
to the right, then the directions of c2, . . . , cn form a strictly increasing sequence in
(0, 2π). In particular, no two sides si of P0 can lie on the same boundary component
either of ϕK0 or of ψL0. Thus (3.38) is proved.

Hence, by (3.33), (3.37) and (3.40),

(3.41)

{
the arithmetic mean of the central angles from (3.36),

for all arc-sides of P0, is at most 4π/n ≤ 2π/3.

Then (3.36) and (3.41) lead to a contradiction, and thus (3.34) is proved.
3.5. By (3.32), Lemma 3.3 and (3.34),

(3.42)





there exist opposite arc-sides s′1 and s′′1 of P0, such

that the hypercycles containing them have altogether

four infinite points, and the infinite points of the

hypercycles containing s′1 and s′′1 do not separate

each other on the boundary S1 of the model circle.

In this case, by Lemma 3.3, the centre of symmetry O0 of P0, being also the centre
of symmetry of the union of the hypercycles containing s′1 and s′′1 (cf. (3.31)), is a
point uniquely determined by this union.

3.6. Again we make a case distinction. Either s′1 and s′′1 from (3.42) belongs to
the same boundary from among the boundaries bd (ϕ0K) and bd (ψ0L), or they
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belong to different boundaries. By the alternance property of the arc-sides of
P0, if any of these cases holds for some opposite pair of arc-sides of P0, then the
same case holds also for all opposite pairs of arc-sides of P0.

3.6.1. We begin with the case when both s′1 and s′′1 from (3.42) belong, e.g., to
bd (ϕ0K).

Let s′2 and s′′2 be the arc-sides of P0, following the arc-sides s′1 and s′′1 in the
positive sense. Then they are also centrally symmetric images of each other, with
respect to the central symmetry with centre O0. Then O0 coincides with O1, which
is the unique centre of symmetry of the union of the hypercycles containing s′1 and
s′′1 . Depending on the fact whether the union of the hypercycles containing s′2 and
s′′2 has altogether two or four infinite points, O0 lies on a unique line l2, or coincides
with a unique point O2 (cf. Lemma 3.3).

Then take some fixed small generic perturbations ϕ and ψ of ϕ0 and ψ0. We may
suppose that they preserve the oppositeness relation for the arc-sides, by Lemma
3.5.

Then the perturbed arc-sides s′1 and s′′1 are opposite in P = (ϕK)∩(ψL) as well.
Then the perturbed point O1 is uniquely determined. The centre of symmetry of
the union of the hypercycles containing the perturbed arc-sides s′2 and s

′′

2 (these arc-
sides being opposite also in P , by Lemma 3.5), either lies on the unique perturbed
line l2, or is the unique perturbed point O2 (cf. Lemma 3.3). Then generically
the perturbed point O1 will not lie on the perturbed line l2, or will not coincide
with the perturbed point O2. Therefore, (ϕK) ∩ (ψL) is generically not centrally
symmetric. This ends the proof for case 3.6.1.

3.6.2. We turn to the other case when, e.g., s′1 belongs to bd (ϕ0K), while s′′1
belongs to bd (ψ0L).

We choose s′2 and s′′2 like in 3.6.1. Then, by the alternance property, s′2 belongs
to bd (ψL), and s′′2 belongs to bd (ϕK). Then s′1 and s′′1 , as well as s′2 and s′′2 are
opposite pairs of arc-sides for (ϕ0K)∩ (ψ0L), and their perturbations are opposite
pairs of arc-sides for (ϕK) ∩ (ψL), by Lemma 3.5.

Then

(3.43)





we take ϕ := ϕ0, while ψ is obtained from ψ0 by applying after ψ0

a small translation along the base line of the hypercycle containing

s′1, so that the topological type of P remains the same as that of

P0, including also that which arc-sides lie on bd (ϕK) (respectively

on bd (ϕ0K)) and on bd (ψL) (respectively on bd (ψ0L)) — the

sides of P0 and of P identified via the small perturbations.
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Then the base line from (3.43) is invariant under all (not only small) such trans-
lations, and in general, the orbits of the points of H2 for all (not only small) such
translations are the hypercycles, i.e., (signed) distance curves, for this base line.

Now consider the base lines l′1 and l′2 of the hypercycles containing s′1 and s′2.
These have the same infinite points as the respective hypercycles. Hence, by Lemma
3.4, the (altogether four) infinite points of these base lines separate each other on
the boundary S1 of the model circle (conformal, or collinear). Therefore

(3.44) the base lines l′1 and l′2 intersect each other.

For simplicity, let us assume that l′1 contains 0 and is horizontal, and the small
translation is to the left hand side. Let l′′1 and l′′2 denote the base lines of the
hypercycles containing the arc-sides s′′1 and s′′2 . Then, by (3.42), and using the
collinear model, the straight lines l′1 and l′′1 have no common finite or infinite point.
We may suppose that l′′1 lies above l′1.

(3.45) Let d > 0 denote the distance of l′1 and l′′1 .

The translation along l′1 preserves the segment s realizing this distance d, i.e., takes
this original segment to the segment realizing the distance of l′1 and the translated
line l′′1 . Now observe that s is orthogonal to both l′1 and l′′1 , and both of l′1 and
the hypercycle at distance d from l′1 are symmetrical and orthogonal to the line
spanned by s. Hence this hypercycle is orthogonal to s as well. In other words,

(3.46)

{
l′′1 moves so that it always touches the (signed)

distance line at distance d for the base line l′1.

Let the intersecting straight lines l′1 and l′2 (cf. (3.44)) enclose an angle of size
α′. We mean the angle of the open angular domain, disjoint to the convex hulls of
the hypercycles containing the arc-sides s′1 and s′2 (“inner angle”).

Recall that the arc-sides s′1 and s′′2 belong to bd (ϕK), and the arc-sides s′2 and
s′′1 belong to bd (ψL). Therefore the hypercycles containing the arc-sides s′1 and
s′′2 , as well as their base lines l′1 and l′′2 are not moved by our translation, but the
hypercycles containing the arc-sides s′2 and s′′1 , as well as their base lines l′2 and
l′′1 are moved by our translation. However, this translation is a congruence, hence
preserves the above described “inner” angle α′ of the fixed l′1 and the moving l′2.
Now let us investigate the “opposite” angle α′′ of l′′1 and l′′2 , again meant as the
angle of the open angular domain, disjoint to the convex hulls of the hypercycles
containing the arc-sides s′′1 and s′′2 (“inner angle”).

Recall (3.46). Let (l′′1 )new denote the translated position of the straight line l′′1 .
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For a sufficiently small translation we have that l′′1 and (l′′1 )new intersect each
other (even their directions “to the left” are close to each other, in the collinear
model, in the Euclidean sense), and both intersect the fixed l′′2 . Thus

(3.47) l′′1 , (l
′′

1 )new and l′′2 bound a triangle T, and

(3.48)

{
the “inner” angle α′′ gets moved to the analogously defined

“inner angle” of (l′′1 )new and l′′2 , denoted by α′′

new.

Then

(3.49)

{
α′′ is an inner angle of T, at its vertex l′′1 ∩ l′′2 , and

π − α′′

new is the inner angle of T, at its vertex (l′′1 )new ∩ l′′2 .

Let the angle of T at its vertex l′′1 ∩ (l′′1 )new be β′′. Then

(3.50) α′′ + (π − α′′

new) < α′′ + (π − α′′

new) + β′′ < π, thus α′′ < α′′

new.

However, by an eventual central symmetry of (ϕK)∩ (ψL), the moved arc-sides s′1
and s′2 should be taken over to the moved arc-sides s′′1 and s′′2 (cf. Lemma 3.5),
therefore the angle α′ (= α′′) of the base lines of the hypercycles containing the
moved arc-sides s′1 and s′2 should be taken over by this central symmetry to the
angle α′′

new, and then

(3.51) α′′ = α′ = α′′

new.

Then (3.50) and (3.51) yield a contradiction. This ends the proof of case 3.6.2, and
thus the proof of (3.21), and thus the proof of Theorem 3. �

Proof of Theorem 4, continuation. Recall that we already have to prove only the
implication (1) ⇒ (2) of this Theorem, cf. 1 of the proof of this Theorem.

By Lemma 4.3 both conclusions (1) and (2) of Lemma 1.5 hold, and moreover,

(4.7)

{
the constant sectional curvatures in Lemma 1.5 (1) are

positive for Sd and Rd, and are greater than 1 for Hd.

By Lemma 1.8, (1) of Theorem 4 and conclusions (1) and (2) of Lemma 1.5 imply
the conclusions of Lemma 1.8. By Lemma 1.9, (1) of Theorem 4 and the conclusions
of Lemma 1.8 imply the conclusions of Lemma 1.9, namely (2) of Theorem 1. In
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particular, (1) of Theorem 4 implies (2) of Theorem 1.
Then (4.7) ensures that, under the hypotheses of Theorem 4 and (1) of Theorem

4, in (2) of Theorem 1 parasphere or (congruent) hypersphere connected compo-
nents of the boundaries of K and L cannot occur. (Also recall that (2) of Theorem
1 excluded hyperplane connected components for Rd and Hd, which is now a con-
sequence of (4.7).) That is, by (2) of Theorem 1, K and L are congruent balls, and,
by (4.7), for the case of Sd they have radius less than π/2.

This proves that (1) of Theorem 4, without the statement in brackets, implies
(2) of Theorem 4. Since in the beginning of the proof we could assume (4.2), and we
have (4.6), we have that (1) of Theorem 4, even when only taken with the statement
in brackets, also implies (2) of Theorem 4.

This ends the proof of Theorem 4. �
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