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POISSON CENTRALIZER OF THE TRACE

SZABOLCS MÉSZÁROS

Abstract. The Poisson centralizer of the trace element
∑

i xi,i is determined
in the coordinate ring of SLn endowed with the Poisson structure obtained
as the semiclassical limit of its quantized coordinate ring. It turns out that
this maximal Poisson-commutative subalgebra coincides with the subalgebra
of invariants with respect to the adjoint action.

1. Introduction

The semiclassical limit Poisson structure on O(SLn) received considerable atten-
tion recently because of the connection between the primitive ideals of the quantized
coordinate ring Oq(SLn) and the symplectic leaves of the Poisson manifold SLn

(see for example [HL2],[G],[Y]). In this paper, we present another relation between
O(SLn) endowed with the semiclassical limit Poisson structure and Oq(SLn).

In [M] it was shown that if q ∈ C
× is not a root of unity then the centralizer of

the trace element σ1 =
∑

i xi,i in Oq(SLn) (resp. in Oq(Mn) and Oq(GLn)) is a
maximal commutative subalgebra, generated by certain sums of principal quantum
minors. By Theorem 2.4 and 5.1 in [DL2], this subalgebra coincides with the
subalgebra of cocommutative elements in Oq(SLn) and also with the subalgebra of
invariants of the adjoint coaction. (This result is generalized in [AZ] for arbitrary
characteristic and q being a root of unity.)

On the Poisson algebra side, the corresponding Poisson-subalgebra of O(SLn)
is generated by the coefficients of the characteristic polynomial c1, . . . , cn−1. We
prove the following:

Theorem 1.1. For n ≥ 1 the subalgebra C[c1, . . . , cn−1] (resp. C[c1, . . . , cn] and
C[c1, . . . , cn, c

−1
n ]) is maximal Poisson-commutative in O(SLn) (resp. O(Mn) and

O(GLn)) with respect to the semiclassical limit Poisson structure.

It is easy to deduce from [DL1] or [DL2] that {ci, cj} = 0 (1 ≤ i, j ≤ n) in O(Mn)
(see Proposition 5.1 below). Therefore, Theorem 1.1 is a direct consequence of the
following statement:

Theorem 1.2. For n ≥ 1 the Poisson-centralizer of c1 in O(SLn) (resp. c1 ∈
O(Mn) and O(GLn)) equipped with the semiclassical limit Poisson bracket is gen-
erated as a subalgebra by

• c1, . . . cn−1 in the case of O(SLn),
• c1, . . . , cn in the case of O(Mn), and
• c1, . . . , cn, c

−1
n in the case of O(GLn).
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Poisson Centralizer of the Trace Szabolcs Mészáros

The proof is based on modifying the Poisson bracket of the algebras that makes
an induction possible. A similar idea is used in the proof of the analogous result in
the quantum setup (see [M]).

It is well known that the coefficient functions c1, . . . , cn ∈ O(Mn) of the char-
acteristic polynomial generate the subalgebra O(Mn)

GLn of GLn-invariants with
respect to the adjoint action. This implies that the subalgebra coincides with the
Poisson center of the coordinate ring O(Mn) endowed with the Kirillov-Kostant-
Souriau (KKS) Poisson bracket. Hence, Theorem 1.1 for O(Mn) can be interpreted
as an interesting interplay between the KKS and the semiclassical limit Poisson
structure. Namely, while the subalgebra O(Mn)

GLn is contained in every maxi-
mal Poisson-commutative subalgebra with respect to the former Poisson bracket,
it is contained in only one maximal Poisson-commutative subalgebra (itself) with
respect to the latter Poisson bracket.

A Poisson-commutative subalgebra is also called an involutive (or Hamiltonian)
system, while a maximal one is called a complete involutive system (see Section 2
or [V]). Such a system is integrable if the (Krull) dimension of the generated sub-
algebra is sufficiently large. In our case, the subalgebra generated by the elements
c1, . . . , cn−1 is not integrable, as its dimension is n − 1 (resp. n for GLn) instead
of the required

(

n+1
2

)

− 1 (resp.
(

n+1
2

)

for GLn), see Remark 5.3.
The article is organized as follows: First, we introduce the required notions, and

in Section 3 we prove that the three statements in Theorem 1.2 are equivalent.
In Section 3.1, we prove Theorem 1.2 for n = 2 as a starting case of an induction
presented in Section 5 that completes the proof of the theorem. In the article, every
algebra is understood over the field C.

2. Preliminaries

2.1. Poisson algebras. First, we collect the basic notions about Poisson algebras
we use in the article. For further details about Poisson algebras, see [V].

A commutative Poisson algebra
(

A, {., .}
)

is a unital commutative associative
algebra A together with a bilinear operation {., .} : A× A → A called the Poisson
bracket such that it is antisymmetric, satisfies the Jacobi identity, and for any
a ∈ A, {a, .} : A → A is a derivation. For commutative Poisson algebras A and
B, the map ϕ : A → B is a morphism of Poisson algebras if it is both an algebra
homomorphism and a Lie-homomorphism.

There is a natural notion of Poisson subalgebra (i.e. a subalgebra that is also
a Lie-subalgebra), Poisson ideal (i.e an ideal that is also a Lie-ideal) and quotient
Poisson algebra (as the quotient Lie-algebra inherits the bracket). The Poisson
centralizer C(a) of an element a ∈ A is defined as {b ∈ A | {a, b} = 0}. Clearly, it is
a Poisson subalgebra. Analogously, a ∈ A is called Poisson-central if C(a) = A. One
says that a subalgebra C ≤ A is Poisson-commutative (or involutive) if {c, d} = 0
for all c, d ∈ C and it is maximal Poisson-commutative (or maximal involutive) if
there is no Poisson-commutative subalgebra in A that strictly contains C.

The Poisson center (or Casimir subalgebra) of A is Z(A) := {a ∈ A | C(a) =
A}. Let A be a reduced, finitely generated commutative Poisson algebra. The
rank Rk{., .} of the Poisson structure {., .} is defined by the rank of the matrix
(

{gi, gj})i,j ∈ AN×N for a generating system g1, . . . , gN ∈ A. (One can prove that it
is independent of the chosen generating system.) A maximal Poisson-commutative
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subalgebra C is called integrable if

dimC = dimA−
1

2
Rk{., .}

The inequality ≤ holds for any Poisson-commutative subalgebra (Proposition II.3.4
in [V]), hence integrability is a maximality condition on the size of C that does not
necessarily hold for every maximal involutive system.

2.2. Filtered Poisson algebras.

Definition 2.1. A filtered Poisson algebra is a Poisson algebra together with an
ascending chain of subspaces {Fd}d∈N in A such that

• A = ∪d∈NF
d,

• Fd · Fe ⊆ Fd+e for all d, e ∈ N, and
• {Fd,Fe} ⊆ Fd+e for all d, e ∈ N.

Together with the filtration preserving morphisms of Poisson algebras, they form a
category.

For a filtered Poisson algebra A, we may define its associated graded Poisson
algebra grA as

gr(A) :=
⊕

d∈N

Fd/Fd−1

where we used the simplifying notation F−1 = {0}. The multiplication of gr(A) is
defined the usual way:

Fd/Fd−1 ×Fe/Fe−1 → Fd+e/Fd+e−1

(

x+ Fd−1, y + Fe−1
)

7→ xy + Fd+e−1

Analogously, the Poisson structure of gr(A) is defined by
(

x+ Fd−1, y + Fe−1
)

7→

{x, y}+ Fd+e−1. One can check that this way gr(A) is a Poisson algebra.
Let (S,+) be an abelian monoid. (We will only use this definition for S = N and

S = Z/nZ for some n ∈ N.) An S-graded Poisson algebra R is a Poisson algebra
together with a fixed grading

R = ⊕d∈SRd

such that R is both a graded algebra (i.e. Rd · Re ⊆ Rd+e for all d, e ∈ S) and a
graded Lie algebra (i.e. {Rd, Re} ⊆ Rd+e for all d, e ∈ S) with respect to the given
grading.

The above construction A 7→ gr(A) yields an N-graded Poisson algebra. In fact,
gr(.) can be turned into a functor: for a morphism of filtered Poisson algebras
f :

(

A, {Fd}d∈N

)

→
(

B, {Gd}d∈N

)

we define

gr(f) : gr(A) → gr(B)
(

xd + Fd−1
)

d∈N
7→

(

f(xd) + Gd−1
)

d∈N

One can check that it is indeed well defined and preserves composition.

Remark 2.2. Given an N-graded Poisson algebra R = ⊕d∈NRd, one has a natural
way to associate a filtered Poisson algebra to it. Namely, let Fd := ⊕k≤dRk. In
this case, the associated graded Poisson algebra grR of

(

R, {Fd}d∈N

)

is isomorphic
to R.
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2.3. The Kirillov-Kostant-Souriau bracket. A classical example of a Poisson
algebra is given by the Kirillov-Kostant-Souriau (KKS) bracket on O(g∗), the coor-
dinate ring of the dual of a finite-dimensional (real or complex) Lie algebra

(

g, [., .]
)

(see [ChP] Example 1.1.3, or [W] Section 3).
It is defined as follows: a function f ∈ O(g∗) at a point v ∈ g∗ has a differential

dfv ∈ T ∗
v g

∗ where we can canonically identify the spaces T ∗
v g

∗ ∼= T ∗
0 g

∗ ∼= g∗∗ ∼= g.
Hence, we may define the Poisson bracket on O(g∗) as

{f, g}(v) := [dfv, dgv](v)

for all f, g ∈ O(g∗) and v ∈ g∗. It is clear that it is a Lie-bracket but it can be
checked that the Leibniz-identity is also satisfied. For g = gln, it gives a Poisson
bracket on O(Mn).

Alternatively, one can define this Poisson structure via semiclassical limits.

2.4. Semiclassical limits. Let A = ∪d∈ZA
d be a Z-filtered algebra such that its

associated graded algebra gr(A) := ⊕d∈ZA
d/Ad−1 is commutative. The Rees ring

of A is defined as

Rees(A) :=
⊕

d∈Z

Adhd ⊆ A[h, h−1]

Using the obvious multiplication, it is a Z-graded algebra. The semiclassical limit
of A is the Poisson algebra Rees(A)/hRees(A) together with the bracket

{a+ hAm, b+ hAn} :=
1

h
[a, b] +An+m−2 ∈ An+m−1/An+m−2

for all homogeneous elements a+ hAm ∈ Am+1/hAm, b+ hAn ∈ An+1/hAn. The
definition is valid as the underlying algebra of Rees(A)/hRees(A) is gr(A) that is
assumed to be commutative, hence [a, b] ∈ hAm+n−1.

The Poisson algebra O(g∗) with the KKS bracket can be obtained as the semi-
classical limit of Ug, see [G], Example 2.6.

2.5. Quantized coordinate rings. Assume that n ∈ N+ and define Ot(Mn) as
the unital C-algebra generated by the n2 generators xi,j for 1 ≤ i, j ≤ n over
C[t, t−1] that are subject to the following relations:

xi,jxk,l =











xk,lxi,j + (t− t−1)xi,lxk,j if i < k and j < l

txk,lxi,j if (i = k and j < l) or (j = l and i < k)

xk,lxi,j if (i > k and j < l) or (j > l and i < k)

for all 1 ≤ i, j, k, l ≤ n. It turns out to be a finitely generated C[t, t−1]-algebra
that is a Noetherian domain. (For a detailed exposition, see [BG].) Furthermore, it
can be endowed with a coalgebra structure by setting ε(xi,j) = δi,j and ∆(xi,j) =
∑n

k=1 xi,k ⊗ xk,j . It turns Ot(Mn) into a bialgebra.
For q ∈ C×, the quantized coordinate ring of n×n matrices with parameter q is

defined as the C-algebra

Oq(Mn) := Ot(Mn)/(t− q)

In this article, we only deal with the case when q is not a root of unity, then the
algebra is called the generic quantized coordinate ring of Mn.

Similarly, one can define the non-commutative deformations of the coordinate
rings of GLn and SLn using the quantum determinant
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detq :=
∑

s∈Sn

(−q)ℓ(s)x1,s(1)x2,s(2) . . . xn,s(n)

where ℓ(σ) stands for the length of σ in the Coxeter group Sn. Then – analogously
to the classical case – one defines

Oq(SLn) := Oq(Mn)/(detq − 1) Oq(GLn) := Oq(Mn)
[

det−1
q

]

by localizing at the central element detq.

2.6. Semiclassical limits of quantized coordinate rings. The semiclassical
limits of Oq(SLn) can be obtained via the slight modification of process of Section
2.4 (see [G], Example 2.2). The algebra R := Ot(Mn) can be endowed with a Z-
filtration by defining Fn to be the span of monomials that are the product of at most
n variables. However, instead of defining a Poisson structure on Rees(R)/hRees(R)
with respect to this filtration, consider the algebra R/(t − 1)R that is isomorphic
to O(Mn) as an algebra. The semiclassical limit Poisson bracket is defined as

{ā, b̄} :=
1

t− 1
(ab− ba) + (t− 1)R ∈ R/(t− 1)R

for any two representing elements a, b ∈ R for ā, b̄ ∈ R/(t − 1)R. One can check
that it is a well-defined Poisson bracket.

This Poisson structure of O(Mn) can be given explicitly by the following rela-
tions:

{xi,j , xk,l} =











2xi,lxk,j if i < k and j < l

xi,jxk,l if (i = k and j < l) or (j = l and i < k)

0 otherwise

extended according to the Leibniz-rule (see [G]). It is a quadratic Poisson structure
in the sense of [V], Definition II.2.6. The semiclassical limit for GLn and SLn

is defined analogously using Oq(GLn) and Oq(SLn) or by localization (resp. by
taking quotient) at the Poisson central element det (resp. det− 1) in O(Mn).

2.7. Coefficients of the characteristic polynomial. Consider the characteristic
polynomial function Mn → C[x], A 7→ det(A − xI). Let us define the elements
c0, c1, . . . , cn ∈ O(Mn) as

det(A− xI) =

n
∑

i=0

(−1)icix
n−i

In particular, c0 = 1, c1 = tr and cn = det. Their images in O(SLn) ∼= O(Mn)/(det−
1) are denoted by c1, . . . , cn−1. If ambiguity may arise, we will write ci(A) for the
element corresponding to ci for an algebra A with a fixed isomorphism A ∼= O(Mk)
for some k.

The coefficient functions c1, . . . , cn can also be expressed via matrix minors as
follows: For I, J ⊆ {1, . . . , n}, I = (i1, . . . , ik) and J = (j1, . . . , jk) define

[I | J ] :=
∑

s∈Sk

sgn(s)xi1,js(1) . . . xik,js(k)

i.e. it is the determinant of the subalgebra generated by {xi,j}i∈I,j∈J that can be
identified with O(Mk). Then

5
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ci =
∑

|I|=i

[I | I] ∈ O(Mn)

for all 1 ≤ i ≤ n. It is well.known that c1, . . . , cn generate the same subalgebra of
O(Mn) as the trace functions A 7→ Tr(Ak), namely, the subalgebra O(Mn)

GLn of
GLn-invariants with respect to the adjoint action.

3. Equivalence of the statements

Consider O(Mn) endowed with the semiclassical limits Poisson bracket. As it is
discussed in the Introduction, Theorem 1.1 follows directly from Theorem 1.2 and
Proposition 5.1.

The following proposition shows that it is enough to prove Theorem 1.2 for the
case of O(Mn).

Proposition 3.1. For any n ∈ N+ the following are equivalent:

(1) The Poisson-centralizer of c1 ∈ O(Mn) is generated by c1, . . . , cn.
(2) The Poisson-centralizer of c1 ∈ O(GLn) is generated by c1, . . . , cn, c

−1
n .

(3) The Poisson-centralizer of c1 ∈ O(SLn) is generated by c1, . . . , cn−1.

Proof. The first and second statements are equivalent as det is a Poisson-central
element, so we have {c1, h · detk} = {c1, h} · det

k for any h ∈ O(GLn) and k ∈ Z.
Hence,

O(GLn) ⊇ C(c1) =
(

O(Mn) ∩ C(c1)
)

[det−1]

proving 1) ⇐⇒ 2).

1) ⇐⇒ 3): First, assume 1) and let h ∈ O(SLn) such that {c1, h} = 0.
Since O(SLn) is Z/nZ-graded (inherited from the N-grading of O(Mn)) and c1 is
homogeneous with respect to this grading, its Poisson-centralizer is generated by
Z/nZ-homogeneous elements, so we may assume that h is Z/nZ-homogeneous.

Let k = deg(h) ∈ Z/nZ. Let h ∈ O(Mn) be a lift of h ∈ O(SLn) and consider the

N-homogeneous decomposition h =
∑d

j=0 hjn+k of h, where hjn+k is homogeneous
of degree jn+ k for all j ∈ N. Define

h′ :=

d
∑

j=0

hjn+kdet
d−j ∈ O(Mn)dn+k

that is a homogeneous element of degree dn + k representing h ∈ O(SLn) in
O(Mn). Then {c1, h

′} ∈ (det−1) ∩ O(Mn)dn+k+1 since {c1, h′} = {c1, h} =
0, c1 is homogeneous of degree 1 and the Poisson-structure is graded. Clearly,
(det−1)∩O(Mn)dn+k+1 = 0 hence {c1, h

′} = 0. Applying 1) gives h′ ∈ C[c1, . . . , cn]

so h ∈ C[c1, . . . , cn−1] as we claimed.
Conversely, assume 3) and let h ∈ O(Mn) such that {c1, h} = 0. Since c1 is

N-homogeneous, we may assume that h is also N-homogeneous and so the image
h ∈ O(SLn) of h is Z/nZ-homogeneous. By the assumption, h = p(c1, . . . , cn−1) for
some p ∈ C[t1, . . . , tn−1]. Endow C[t1, . . . , tn] with the N-grading deg(ti) = i. As h
is Z/nZ-homogeneous, we may choose p ∈ C[t1, . . . , tn−1] so that its homogeneous
components are all of degree dn+deg(h) ∈ N with respect to the above grading for
some d ∈ N.

By h − p(c1, . . . , cn−1) ∈ (det−1) and the assumptions on degrees, we may
choose a polynomial q ∈ C[t1, . . . , tn] that is homogeneous with respect to the above

6
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grading and q(t1, . . . , tn−1, 1) = p. Let h′ := h·detr where r := 1
n
(deg q−degh) ∈ Z

so deg(h′) = deg(q) ∈ N. Then

h′ − q(c1, . . . , cn) ∈ (det−1) ∩ O(Mn)degq = 0

hence h′ ∈ C[c1, . . . , cn] and h ∈ C[c1, . . . , cn, c
−1
n ]. This is enough as C[c1, . . . , cn, c

−1
n ]∩

O(Mn) = C[c1, . . . , cn] by the definitions. �

4. Case of O(SL2)

In this section, we prove Theorem 1.2 for O(SL2) that is the first step of the
induction in the proof of the general case.

We denote by a, b, c, d the generators x1,1, x1,2, x2,1, x2,2 ∈ O(SL2) and tr :=
c1 = a+ d.

Proposition 4.1. The centralizer of tr ∈ O(SL2) is C[tr].

By ad− bc = 1 we have a monomial basis of O(SL2) consisting of

aibkcl, bkcldj , bkcl (i, j ∈ N
+, k, l ∈ N)

The Poisson bracket on the generators is the following:

{a, b} = ab {a, c} = ac {a, d} = 2bc

{b, c} = 0 {b, d} = bd {c, d} = cd

The action of {tr, .} on the basis elements can be written as
{

(a+ d), aibkcl
}

=

= (k + l)ai+1bkcl − 2iai−1bk+1cl+1 − (k + l)aibkcld

= (k + l)ai+1bkcl − (2i+ k + l)ai−1bk+1cl+1 − (k + l)ai−1bkcl

By the same computation on bkcl and bkcldj one obtains
{

(a+ d), bkcl
}

= (k + l)abkcl − (k + l)bkcld

{

(a+ d), bkcldj
}

= (k + l + 2j)bk+1cl+1dj−1 + (k + l)bkcldj−1 − (k + l)bkcldj+1

Hence, for a polynomial p ∈ C[t1, t2] and i ≥ 1:

{

(a+ d), aip(b, c)
}

= ai+1
∑

m

m · pm(b, c)(4.1)

−ai−1
∑

m

(

(2i+m)bc+m
)

pm(b, c)

where pm is the m-th homogeneous component of p. The analogous computations
for p(b, c)dj (j ≥ 1) and p(b, c) give

{

(a+ d), p(b, c)dj
}

= −dj+1
∑

m

m · pm(b, c)(4.2)

+dj−1
∑

m

(

(m+ 2j)bc+m
)

pm(b, c)

(4.3)
{

(a+ d), p(b, c)
}

= (a− d)
∑

m

m · pm(b, c)

7
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Proof of Proposition 4.1. Assume that 0 6= g ∈ C(tr) and write it as

g =

α
∑

i=1

airi +

β
∑

j=1

sjd
j + u

where ri, sj and u are elements of C[b, c], and α and β are the highest powers of a
and d appearing in the decomposition.

We prove that rα ∈ C · 1. If α = 0 then rα = u so the aibkcl terms (i > 0)
in {a + d, g} are the same as the aibkcl terms in {a + d, u} by Eq. 4.1, 4.2 and
4.3. However, by 4.3, these terms are nonzero if u /∈ C and that is a contradiction.
Assume that α ≥ 1 and for a fixed k ∈ N define the subspace

Ak :=
∑

l≤k

alC[b, c, d] ⊆ O(SL2)

By
{

tr,Aα−1
}

⊆ Aα we have

Aα = {tr, g}+Aα =
{

tr, aαrα +Aα−1
}

+Aα =

= aα{tr, rα}+ αaα−1bcrα +Aα = aα{tr, rα}+Aα

By Eq. 4.3 it is possible only if {tr, rα} = 0 so rα ∈ C[b, c] ∩ C(tr) = C · 1.
If α > 0 we may simplify g by subtracting polynomials of tr from it. Indeed,

by rα ∈ C× we have g − rαtr
α ∈ Aα−1 ∩ C(tr) so we can replace g by g − rαtr

α.
Hence, we may assume that α = 0. Then, again, rα = u ∈ C · 1 ⊆ C(tr) so we may
also assume that u = 0.

If g is nonzero after the simplification, we get a contradiction. Indeed, let
p(b, c)dγ be the summand of g with the smallest γ ∈ N. By the above simplifi-
cations, γ ≥ 1. Then the coefficient of dγ−1 in {tr, g} is the same as the coefficient
of dγ−1 in

{tr, p(b, c)dγ} = {tr, p(b, c)}dγ + 2γbcp(b, c)dγ−1

so it is 2γbcp(b, c)dγ−1 that is nonzero if p(b, c) 6= 0 and γ ≥ 1. That is a contra-
diction. �

5. Proof of the main result

Let n ≥ 2 and let us denote An := O(Mn).

Proposition 5.1. C[σ1, . . . , σn] ≤ An is a Poisson-commutative subalgebra.

Proof. Consider the principal quantum minor sums

σi =
∑

|I|=i

∑

s∈Si

t−ℓ(s)xi1,is(1) . . . xit,is(t) ∈ Ot(Mn)

When An is viewed as the semiclassical limit R/(t − 1)R where R = Ot(Mn) (see
Subsection 2.5), one can see that σi represents ci ∈ R/(t−1)R ∼= O(Mn). In [DL1],
it is proved that σiσj = σjσi in Oq(Mn) if q is not a root of unity, in particular, if
q is transcendental.

Since the algebra Oq(Mn) is defined over Z[q, q−1], the elements σ1, . . . , σn (that
are defined over Z[q, q−1]) commute in Oq

(

Mn(Z)
)

≤ Oq

(

Mn(C)
)

as well. Hence,

σ1, . . . , σn also commute after extension of scalars, i.e. in the ring Oq

(

Mn(Z)
)

⊗Z

C ∼= Ot

(

Mn(C)
)

. Consequently, in An
∼= R/(t − 1)R the subalgebra C[c1, . . . , cn]

is a Poisson-commutative subalgebra, by the definition of semiclassical limit. �

8
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By Proposition 5.1, C[c1, . . . , cn] is in the Poisson-centralizer C(c1). To prove
the converse, Theorem 1.2, we need further notations. Consider the Poisson ideal

I := (x1,j , xi,1 | 2 ≤ i, j ≤ n)⊳An

We will denote its quotient Poisson algebra by B2,n := An/I and the natural
surjection by ϕ : An → B2,n. Note that B2,n

∼= An−1[t] as Poisson algebras by
xi,j + I 7→ xi−1,j−1 (2 ≤ i, j ≤ n) and x1,1 7→ t where the bracket of An−1[t] is the
trivial extension of the bracket of An−1 by {t, a} = 0 for all a ∈ An−1[t].

Furthermore, Dn will stand for C[t1, . . . , tn] endowed with the zero Poisson
bracket. Define the map δ : B2,n → Dn as xi,j + I 7→ δi,jti that is morphism
of Poisson algebras by {xi,i, xj,j} ∈ I. Note that (δ ◦ ϕ)(ci) = si, the elementary
symmetric polynomial in t1, . . . , tn. In particular, δ ◦ϕ restricted to C[c1, . . . , cn] is
an isomorphism onto the symmetric polynomials in t1, . . . , tn by the fundamental
theorem of symmetric polynomials. In the proof of Theorem 1.2 we verify the same
property for C(σ1).

Although the algebras An, B2,n and Dn are N-graded Poisson algebras (see
Section 2) using the total degree of An and the induced gradings on the quotients,
we will instead consider them as filtered Poisson algebras where the filtration is not
the one that corresponds to this grading. For each d ∈ N, let us define

Ad = {a ∈ An | degx1,1
(a) ≤ d}

This is indeed a filtration on An. Note, that the grading degx1,1
is incompatible

with the bracket by {x1,1, x2,2} = x1,2x2,1. The algebras B2,n, Dn and C(c1) inherit
a filtered Poisson algebra structure as they are Poisson sub- and quotient algebras
of An so we may take Bd := ϕ(Ad), Dd := (δ ◦ ϕ)(Ad) and Cd = Ad ∩ C(c1). This
way, the natural surjections ϕ and δ and the embedding C(c1) →֒ An are maps of
filtered Poisson algebras.

In the proof of Theorem 1.2 we use the associated graded Poisson algebras of
B2,n, Dn and C(c1) (see Section 2). First, we describe the structure of these. The
filtrations on B2,n and Dn are induced by the x1,1- and t1-degrees, hence we have
grB2,n

∼= B2,n and grDn
∼= Dn as graded Poisson algebras (and grδ = δ), so we

identify them in the following.
The underlying graded algebra of grAn is isomorphic to An using the x1,1-degree

but the Poisson bracket is different: it is the same on the generators xi,j and xk,l

for (i, j) 6= (1, 1) 6= (k, l) but

{x1,1, xi,j}gr = 0 (2 ≤ i, j ≤ n)

{x1,1, x1,j}gr = x1,1x1,j (2 ≤ j ≤ n)

{x1,1, xi,1}gr = x1,1xi,1 (2 ≤ i ≤ n)

where {., .}gr stands for the Poisson bracket of grAn. Consequently, as maps we
have grϕ = ϕ, we still have {ci, cj}gr = 0 for all i, j, and the underlying algebra of
grC(c1) can be identified with C(c1).

Note, that C(c1) is defined by the original Poisson structure {., .} of An and not
by {., .}gr, even if it will be considered as a Poisson subalgebra of grAn. The reason
of this slightly ambiguous notation is that we will also introduce Cgr(x1,1) ⊆ grAn

as the centralizer of x1,1 with respect to {., .}gr.
Our associated graded setup can be summarized as follows:

C(c1) ⊆ grAn

ϕ
// // B2,n

δ
// // Dn

9
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Proof of Theorem 1.2. We prove the statement by induction on n. The statement
is verified for O(SL2) in Section 4 so, by Proposition 3.1 the case n = 2 is proved.
Assume that n ≥ 3. We shall prove that

• (δ ◦ ϕ)|C(c1) : C(c1) → Dn is injective, and

• the image (δ ◦ ϕ)
(

C(c1)
)

is in DSn
n .

These imply that the restriction of δ ◦ϕ to C(c1) is an isomorphism onto DSn
n since

C(c1) ∋ ci for i = 1, . . . , n (see Section 2) and δ ◦ ϕ restricted to C[c1, . . . , cn] is
surjective onto DSn

n . The statement of the theorem follows.
To prove that δ ◦ ϕ is injective on C(c1) it is enough to prove that δ is injective

on C
(

ϕ(c1)
)

and that ϕ is injective on C(c1). Indeed, as ϕ is a Poisson map we

have ϕ
(

C(c1)
)

⊆ C
(

ϕ(c1)
)

.

First, we prove δ is injective on C
(

ϕ(c1)
)

. By B2,n
∼= An−1[t] where t is Poisson-

central, we have

B2,n ⊇ C
(

ϕ(c1)
)

∼= CAn−1[t]

(

t+ c1(An−1)
)

= CAn−1

(

c1(An−1)
)

[t] ⊆ An−1[t]

By the induction hypothesis

CAn−1

(

c1(An−1)
)

= C
[

c1(An−1), . . . , cn−1(An−1)
]

Therefore, δ restricted to C
(

ϕ(c1)
)

is an isomorphism onto C[s1, . . . , sn−1][t1] ⊆ Dn

where si is the symmetric polynomial in the variables t2, . . . , tn. In particular, δ is
injective on C

(

ϕ(c1)
)

.
To verify the injectivity of ϕ on C(c1), define

Cgr(x1,1) := {a ∈ grAn | {x1,1, a}gr = 0}

The subalgebra C(c1) is contained in Cgr(x1,1) since for a homogeneous element a
of degree d, we have

Ad+1/Ad ∋ {x1,1, a}gr +Ad = {x1,1 +A0, a+Ad−1}+Ad = {c1, a}+Ad

hence {c1, a} = 0 implies {x1,1, a}gr = 0 ∈ grAn. Our setup can be visualized on
the following diagram:

gr(An)
ϕ

// // B2,n
δ

// // Dn

Cgr(x1,1)

⋃

C
(

ϕ(c1)
)

⋃

,

�

;;
✈
✈
✈
✈
✈
✈
✈
✈
✈

C(c1)

⋃
88
r
r
r
r
r
r
r
r
r
r

Now, it is enough to prove that ϕ restricted to Cgr(x1,1) is injective.
We can give an explicit description of Cgr(x1,1) in the following form:

Cgr(x1,1) = C[x1,1, xi,j | 2 ≤ i, j ≤ n] ≤ grAn

Indeed,

{x1,1, xi,j}gr =

{

x1,1xi,j if j 6= i = 1 or i 6= j = 1

0 otherwise

Therefore, the map adgrx1,1 : a 7→ {x1,1, a}gr acts on a monomial m ∈ grAn as
{x1,1,m}gr = c(m) · x1,1m where c(m) is the sum of the exponents of the x1,j ’s

10
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and xi,1’s (2 ≤ i, j ≤ n) in m. Hence, adgrx1,1 maps the monomial basis of grAn

injectively into itself. In particular,

Cgr(x1,1) = Ker
(

adgrx1,1

)

= {a ∈ grAn | c(m) = 0} ∼= An−1[t]

using the isomorphism x1,1 7→ t and xi,j 7→ xi−1,j−1.
The injectivity part of the theorem follows: ϕ is injective on Cgr(x1,1) (in fact it

is an isomorphism onto B2,n), and ϕ maps C(c1) into C
(

ϕ(c1)
)

on which δ is also
injective.

To prove (δ ◦ϕ)
(

C(c1)
)

⊆ DSn
n , first note that in the above we have proved that

(δ ◦ ϕ)
(

C(c1)
)

⊆ δ
(

C
(

ϕ(c1)
))

⊆ DSn−1
n

where Sn−1 acts on Dn by permuting t2, . . . , tn. Consider the automorphism γ
of An given by the reflection to the off-diagonal: γ(xi,j) = xn+1−i,n+1−j . It is
not a Poisson map but a Poisson antimap (using the terminology of [ChP]), i.e.
γ({a, b}) = −{γ(a), γ(b)}. It maps c1 into itself and consequently C(c1) into itself.
For the analogous involution γ : Dn → Dn, ti 7→ tn+1−i (i = 1, . . . , n) we have
(δ ◦ ϕ) ◦ γ = γ ◦ (δ ◦ ϕ). Hence,

(δ ◦ ϕ)
(

C(c1)
)

= (δ ◦ ϕ ◦ γ)
(

C(c1)
)

= (γ ◦ δ ◦ ϕ)
(

C(c1)
)

⊆ γ
(

DSn−1
n

)

proving the symmetry of (δ ◦ϕ)
(

C(c1)
)

in t1, . . . , tn−1, so it is symmetric in all the
variables by n ≥ 3. �

Remark 5.2. In contrast with Theorem 1.1, in the case of the KKS Poisson struc-
ture, every Poisson-commutative subalgebra contains the Poisson center C[c1, . . . , cn],
see [W]. For a maximal commutative subalgebra with respect to the KKS bracket,
see [KW].

Remark 5.3. We prove that C[c1, . . . cn−1] is not an integrable complete involutive
system (see Section 2). First, observe that the rank of the semiclassical Poisson
bracket of O(SLn) is n(n− 1).

Indeed, by Section 2, the rank is the maximal dimension of the symplectic leaves
in SLn. The symplectic leaves in SLn are classified in [HL1], Theorem A.2.1, based
on the work of Lu, Weinstein and Semenov-Tian-Shansky [LW], [S]. The dimension
of a symplectic leaf is determined by an associated element of W×W where W = Sn

is the Weyl group of SLn. According to Proposition A.2.2, if (w+, w−) ∈ W ×W
then the dimension of the corresponding leaves is
(5.1)
ℓ(w+) + ℓ(w−) +min{m ∈ N | w+w

−1
− = r1 · · · · · rm | ri is a transposition for all i}

where ℓ(.) is the length function of the Weyl group that – in the case of SLn –
is the number of inversions in a permutation. By the definition of inversion using
elementary transpositions, the above quantity is bounded by

ℓ(w+) + ℓ(w−) + ℓ(w+w
−1
− )

The maximum of the latter is n(n−1) since ℓ(w+) =
(

n
2

)

−ℓ(w+t) where t = (n . . . 1)
stands for the longest element of Sn. Therefore,

ℓ(w+)+ℓ(w−)+ℓ(w+w
−1
− ) = n(n−1)−ℓ(w+t)−ℓ(w−t)+ℓ

(

(w+t)(w−t)
−1

)

≤ n(n−1)

because ℓ(gh) ≤ ℓ(g) + ℓ(h) = ℓ(g) + ℓ(h−1) for all g, h ∈ Sn. This maximum is
attained on w+ = w− = t, even for the original quantity in Equation 5.1. Hence,

11
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Rk{., .} = n(n− 1) for SLn and Rk{., .} = n(n− 1)+1 for Mn and GLn. However,
a complete integrable system should have dimension

dimSLn −
1

2
Rk{., .} = n2 − 1−

(

n

2

)

=

(

n+ 1

2

)

− 1

So it does not equal to dimC[c1, . . . cn−1] = n− 1 if n > 1. Similarly, the system is
non-integrable for Mn and GLn.
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