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Forbidden subposet problems with size restrictions
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Abstract

Upper bounds to the size of a family of subsets of an n-element set that avoids certain configu-

rations are proved. These forbidden configurations can be described by inclusion patterns and some

sets having the same size. Our results are closely related to the forbidden subposet problems, where

the avoided configurations are described solely by inclusions.

1 Introduction

In this paper, a generalization of the forbidden subposet problem is discussed. Before getting to this

generalization, let us overview the original problem. We will use the notation [n] = {1, 2, . . . , n}.

Definition Let P be a finite poset (partially ordered set) with the relation <p. Let f be a function that

maps the elements of P to subsets of [n]. We say that f is an embedding of P if it is an injective function

that satisfies f(a) ⊂ f(b) for all a <p b. Similarly, f is called an induced embedding if it is an injective

function such that f(a) ⊂ f(b) if and only if a <p b.

Definition Let P1,P2, . . .Pk be finite posets. La(n, {P1, . . .Pk}) denotes the size of the largest family F
of subsets of [n] such that none of the posets Pi can be embedded into F . Similarly, La⋆(n, {P1, . . .Pk})
denotes the size of the largest family F of subsets of [n] such that none of the posets Pi has an induced

embedding into F . (In most problems, we have only one forbidden poset, and we write La(n,P) or

La⋆(n,P).)

The goal in the forbidden subposet problem is to exactly or asymptotically determine the value of

the functions La(n,P) and La⋆(n,P) for as many posets as possible. There is no general theorem that

applies to all posets. However, it is conjectured by all involved researchers that for all P , the value of the

limit

lim
n→∞

La(n,P)
(

n
⌊n

2
⌋

)

is an integer. In all solved cases, the extremal families consist of sets whose sizes are as close to n
2 as

possible. The problem is asymptotically solved for posets whose Hasse diagram is a tree. (See [2] for the
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noninduced problem and [1] for the induced problem.) Upper bounds were given to La(n,P), depending

on |P| and the length of the longest chain in P [3] [4] [11].

Roughly speaking, these forbidden poset problems ask for the maximal size of a set family without a

configuration (or configurations) that can be described entirely by inclusion. In this paper we consider

problems where there are two types of conditions in the forbidden configuration(s): inclusion and certain

subsets being required to have the same size. In the next section, we prove many such results and compare

them to their counterparts without size restrictions. In the last section, a general theorem is proved. It

states that for any such forbidden configuration S there exists a number C such that |F| ≤ C
(

n
⌊n

2
⌋

)

holds

for any family F of subsets of [n] that avoids S.

Counting via chains is an essential method to deal with these kind of problems. In the rest of this

section, we overview the basics of this technique.

Notation Let A ⊂ B two sets. A chain between A and B is a family of sets A = C|A| ⊂ C|A|+1 ⊂ · · · ⊂
C|B|−1 ⊂ C|B| = B, where |Ci| = i for all |A| ≤ i ≤ |B|. When we say "all chains of [n]" we mean the

chains between ∅ and [n]. (There are n! such chains.)

Notation

Σ(n, k) =

⌈n+k

2
⌉−1

∑

i=⌈n−k

2
⌉

(

n

i

)

denotes the sum of the k largest binomial coefficients belonging to n.

Notation Let F be a family of subsets of [n]. The Lubell function of F is defined as

λ(F) =
∑

F∈F

(

n

|F |

)−1

.

(The name refers to Lubell’s proof of Sperner’s theorem [15].)

Since a set F appears in |F |!(n−|F |)! chains out of n!, the probability of it being in a random chain is
(

n
|F |

)−1
. Denoting the set of all chains of [n] by C, the expected number of the elements of F in a random

chain is

ave
c∈C

(|c ∩ F|) =
∑

F∈F

(

n

|F |

)−1

= λ(F). (1)

Lemma 1.1. Let F be a family of subsets of [n]. Then |F| ≤ λ(F)
(

n
⌊n

2
⌋

)

.

Proof.

λ(F) =
∑

F∈F

(

n

|F |

)−1

≥
∑

F∈F

(

n

⌊n
2 ⌋

)−1

= |F|
(

n

⌊n
2 ⌋

)−1

.

Lemma 1.2. Let F be a family of subsets of [n]. Assume that λ(F) = x + y, where x ∈ N and y is a

non-negative real number. Then

|F| ≤ Σ(n, x) + y

(

n

⌈n+x
2 ⌉

)

.
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Proof. For a fixed |G|, the value of λ(G) is minimal when the sizes of the sets are as close to n
2 as possible.

Assume that |F| > Σ(n, k)+r
(

n
⌈n+k

2
⌉

)

. Select Σ(n, k) sets from F such that their sizes are as close to n
2 as

possible. Then the Lubell function corresponding to their family is at most k. The sizes of all remaining

sets are at least ⌈n+k
2 ⌉ or at most ⌊n−k

2 ⌋. Therefore the Lubell function corresponding to their family is

at least (|F| − Σ(n, k))
(

n
⌈n+k

2
⌉

)−1
> r
(

n
⌈n+k

2
⌉

)(

n
⌈n+k

2
⌉

)−1
= r. So λ(F) > k + r, a contradiction.

2 Results

In this section we prove upper bounds on the sizes of families avoiding certain configurations of inclusion

and size restrictions. The original versions of these problems (having only inclusion restrictions) are

shown before each problem.

The following simple inequalities will be be used in several proofs in this section, so they are proved

separately here.

Notation For k ≥ 2, let q(k) =

k−1
∑

i=1

(

k

i

)−1

.

Lemma 2.1. i) q(k) < 4
k holds for all k ≥ 2.

ii) q(k) ≤ 2
3 holds for all k ≥ 2, with equality at k = 3 and k = 4.

iii) If a, b ≥ 2 and a+ b ≥ 13, then q(a) + q(b) ≤ 1.

Proof. i)

q(k) =

k−1
∑

i=1

(

k

i

)−1

≤ 1

k
+

1

k
+ (k − 3)

2

k(k − 1)
<

4

k
.

ii) The statement can be checked manually for 2 ≤ k ≤ 5, and follows from part i) for k ≥ 6.

iii) The statement can be checked easily with a computer for 13 ≤ a+ b ≤ 23. Assume that a+ b ≥ 24,

and a ≤ b. Then part i) implies q(b) ≤ 4
b ≤ 4

12 = 1
3 and part ii) implies q(a) ≤ 2

3 .

The following classic theorem provides an upper bound to the size of families avoiding two 3-element

posets. Let V denote the 3-element poset with the relations A < B,C and let Λ denote the 3-element

poset with the relations B,C < A.

Theorem 2.2. (Katona-Tarján [13])

La(n, V,Λ) = 2

(

n− 1

⌊n−1
2 ⌋

)

.

The following construction shows that there is a family of size 2
( n−1
⌊n−1

2
⌋

)

that avoids both V and Λ:

F =
{

F ∈ [n]
∣

∣ |F | =
⌊n

2

⌋

, 1 6∈ F
}

∪
{

F ∈ [n]
∣

∣ |F | =
⌈n

2

⌉

, 1 ∈ F
}

.

We prove that the same bound applies if the forbidden configuration includes two of the sets to having

the same size. (The construction obviously works in this case too, so the bound is best possible.)
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Theorem 2.3. Let F be a family of subsets of [n], where n ≥ 3. Assume that there are no 3 different

subsets in F such that

a) A ⊂ B, A ⊂ C and |B| = |C| or

b) B ⊂ A, C ⊂ A and |B| = |C|.

Then |F| ≤ 2
( n−1
⌊n−1

2
⌋

)

.

Proof. The statement of the theorem can be checked easily for n = 3. From now on, we will assume that

n ≥ 4.

It is enough to prove the theorem for even values of n, as it follows from n = 2m to n = 2m+ 1. To

see this, assume that we already proved it for even values, and consider an odd n. Let F be a sets of

subsets of [n], satisfying the conditions of the theorem. Then let

F− = {F | F ∈ F , 1 6∈ F},

F+ = {F\{1} | F ∈ F , 1 ∈ F}.

Then F− and F+ are both families of subsets of [n − 1], satisfying the conditions of the theorem.

Since n− 1 is even, their sizes are at most 2
( n−2
⌊n−2

2
⌋

)

=
(n−1

n−1

2

)

. Therefore

|F| = |F−|+ |F+| ≤ 2

(

n− 1
n−1
2

)

.

From now on, we will assume that n is even, and use the notation m = n
2 . Note that for even n,

2
( n−1
⌊n−1

2
⌋

)

=
(

n
m

)

.

We can assume that ∅, [n] 6∈ F , since ∅ ∈ F or [n] ∈ F would imply that all subsets in F have different

size, therefore |F| ≤ n+ 1 ≤
(

n
m

)

.

The main idea of the proof is the following. For all sets F ∈ F , we will create a collection of chains

called α(F ). These collections will be pairwise disjoint, so F 6= F ′ ⇒ α(F )∩α(F ′) = ∅. These collections

will be defined such that |α(F )| ≥ (m!)2 for all F ∈ F . This will imply |F| ≤ n!
(m!)2 =

(

n
m

)

.

For all F ∈ F , let α(F ) consist of all chains that contain F , and among the elements of F in the

chain, F ’s size is the closest to m + 1
3 . This way, all chains that contain at least one element of F are

added to exactly one of the collections α(F ).

Now we give a lower bound to |α(F )|.

If |F | = m, then all chains passing through F will be added to α(F ), therefore |α(F )| = (m!)2.

Assume that m < |F | < n. There are |F |!(n−|F |)! chains passing through F . All of them are in α(F )

except for those that contain a set G satisfying n− |F |+ 1 ≤ |G| ≤ |F | − 1 and G ⊂ F . The conditions

of the theorem imply that there are at most 2|F | − n − 1 such sets (one for every possible size). The

number of chains passing through both G and F is

|G|!(|F | − |G|)!(n− |F |)! ≤ (|F | − 1)!(n− |F |)!.

Therefore

|α(F )| ≥ |F |!(n− |F |)!− (2|F | − n− 1)(|F | − 1)!(n− |F |)! =

4



(n+ 1− |F |)(|F − 1)!(n− |F |)! = (|F | − 1)!(n+ 1− |F |)! ≥ (m!)2.

Now assume that 1 ≤ |F | < m. There are |F |!(n− |F |)! chains passing through F . All of them are in

α(F ) except for those that contain a set G satisfying |F |+1 ≤ |G| ≤ n− |F | and F ⊂ G. The conditions

of the theorem imply that there are at most n− 2|F | such sets (one for every possible size). The number

of chains passing through both F and G is

|F |!(|G| − |F |)!(n− |G|)!.

Therefore

α(F ) ≥ |F |!(n− |F |)!−
n−|F |
∑

i=|F |+1

|F |!(i− |F |)!(n− i)!. (2)

Assume that 1 ≤ |F | ≤ m−2. Consider the sum

n−|F |
∑

i=|F |+1

(i−|F |)!(n−i)!. It has n−2|F | summands, all

of which are at most (n−|F |−1)!. It is also easy to check that 2!(n−|F |−2)!+3!(n−|F |−3)! ≤ (n−|F |−1)!.

Therefore
n−|F |
∑

i=|F |+1

(i− |F |)!(n− i)! ≤ (n− 2|F | − 1)(n− |F | − 1)!.

It implies by (2) that for 1 ≤ |F | ≤ m− 2 we have

α(F ) ≥ |F |!
(

(n− |F |)!− (n− 2|F | − 1)(n− |F | − 1)!
)

= (|F |+ 1)!(n− |F | − 1)! ≥ (m!)2.

So far, we proved that α(F ) ≥ (m!)2 if |F | 6= m − 1. Now, assume that |F | = m − 1. There are

(m − 1)!(m + 1)! chains passing through F . All of them are in α(F ), with the exception of those that

contain a set of F whose size is m or m+ 1. Note that there can be at most 1 set of size m and 1 set of

size m+ 1 in F that contains F .

If |G| = m, G ∈ F and F ⊂ G, then there are (m − 1)!m! chains containing both F and G. These

chains will not be in α(F ). Similarly, if |H | = m + 1, H ∈ F and F ⊂ H , then there are 2((m − 1)!)2

chains containing both F and G. These chains will also not be in α(F ).

It is easy to see that |α(F )| ≥ (m!)2 holds, unless there are sets from F of size both m and m + 1

containing F . If there would be only one of them, then we would have

|α(F )| ≥ (m− 1)!(m+ 1)!−max
(

(m− 1)!m!, 2((m− 1)!)2
)

= (m− 1)!(m+ 1)!− (m− 1)!m! = (m!)2.

To complete the proof, we need to add some additional chains to the collections corresponding to

these elements, so they get at least (m!)2 chains too. Since we already used all chains passing through

an element from F , we have to use those chains that have no common element with F .

Let F1, F2, . . . , Fp denote the sets of size m− 1 in F that got less than (m!)2 chains assigned to them.

For all Fi, there are two sets Gi and Hi such that Fi ⊂ Gi, Fi ⊂ Hi, |Gi| = m and |Hi| = m + 1. The

conditions of the theorem imply that if i 6= j, then Hi 6= Hj and Fi 6⊂ Hj . For a fixed i, there are two

subsets of size m that contain Fi and are contained in Hi. If these two sets are different from Gi, color

both of them red. If one of them is Gi, color the other one red. We will call this/these set(s) the red

5



set(s) corresponding to Fi. Note that the conditions of the theorem imply that the red sets corresponding

to different indices i are different sets.

There are no two subsets of the same size in F that contain a red set, as they would form a forbidden

configuration with the corresponding Fi. Similarly there are no two subsets of the same size in F that

are contained in a red set, as they would form a forbidden configuration with corresponding Hi.

Let X be a fixed red set such that Fi ⊂ X ⊂ Hi. The total number of chains passing through X

is (m!)2. If T ⊂ X , then the number of chains between ∅ and X , passing through T is |T |!(m − |T |).
Similarly, If X ⊂ S, then the number of chains between X and [n], passing through S is (|S|−m)!(n−|S|)!.
Therefore the total number of chains passing through X and avoiding F is at least

(

m!−
m−1
∑

i=1

i!(m− i)!

)2

= (m!)2

(

1−
m−1
∑

i=1

i!(m− i)!

m!

)2

= (m! · (1− q(m)))2 ≥ ((m− 1)!)2.

(In the last step, we used that m(1 − q(m)) ≥ 1 holds for for m ≥ 2. It follows easily from Lemma 2.1

ii).) Let us add the chains passing through a red set corresponding to Fi and avoiding F to α(Fi).

If Gi 6⊂ Hi, then the original size of α(Fi) can be calculated by taking the number of all chains that

are passing through Fi and subtracting those that are passing through Gi or Hi as well. It gives us

(m− 1)!(m+ 1)!− (m− 1)!m!− 2((m− 1)!)2 = (m!)2 − 2((m− 1)!)2. In this case, there are two red sets

corresponding to Fi, so at least 2((m− 1)!)2 chains are added to α(Fi), making the total number at least

(m!)2.

If Gi ⊂ Hi, then the original size of α(Fi) can be calculated by taking the number of all chains that are

passing through Fi, subtracting those that are passing through both Fi and Hi, and finally subtracting

those that are passing through both Fi and Gi, but not Hi. It gives us (m− 1)!(m+1)!− 2((m− 1)!)2 −
(m− 1)!(m− 1)(m− 1)! = (m!)2 − ((m− 1)!)2. In this case, there is one red set corresponding to Fi, so

at least ((m− 1)!)2 chains are added to α(Fi), making the total number at least (m!)2.

It completes the proof, since now |α(F )| ≥ (m!)2 holds for all F ∈ F . Since there are a total of n!

chains, it implies |F| ≤ n!
(m!)2 =

(

n
m

)

.

Note that there is another theorem strongly related to Theorem 2.2.

Theorem 2.4. (Kleitman [16]) Let F be a family of subsets of [n], where n ≥ 20. Assume that there

are no 3 different subsets in F such that A = B ∩ C or A = B ∪ C. Then |F| ≤
(

n
n

2

)

if n is even, and

|F| ≤ 2
(n−1

n−1

2

)

+ 2 if n is odd.

Now we move over to fork posets.

Theorem 2.5. (De Bonis-Katona [5]) Let Vs denote the fork poset, that consists of s unrelated elements

and a s+ 1-th one that is smaller than all of the others. Then

La(n, Vs) ≤
(

1 +
2(s− 1)

n
+O

(

1

n2

))(

n

⌊n
2 ⌋

)

.

Now we prove that the same bound (with a weaker error term) stays valid when the forbidden

configuration includes that the s unrelated elements must have the same size.
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Theorem 2.6. Let F be a family of subsets of [n] that contains no s + 1 different sets such that B ⊂
C1, C2, . . . Cs and |C1| = |C2| = · · · = |Cs|. Then

|F| ≤
(

1 +
2(s− 1)

n
+O

(√
logn

n3/2

))(

n

⌊n
2 ⌋

)

.

We need the following two lemmas to prove the theorem.

Lemma 2.7. [10] Let k = 2
√
n logn. Then

2

⌊n

2
−k⌋
∑

i=0

(

n

i

)

≤
(

n

⌊n/2⌋

)

·O
(

1

n3/2

)

.

Lemma 2.8. Let F be a family satisfying the conditions of Theorem 2.6. Let k = 2
√
n logn and

Fk =
{

F ∈ F :
n

2
− k ≤ |F | ≤ n

2
+ k
}

.

Then

λ(Fk) ≤ 1 +
2(s− 1)

n
+O(kn−2).

Proof. For all A ∈ F , let CA denote the set of chains whose smallest element from Fk is A. Let C0 denote

the set of chains that contain no element of Fk. These sets CA and C0 form a partition of C. Obviously

ave
c∈C0

(|c ∩ Fk|) = 0.

Let A ∈ Fk be an arbitrary set. Let X1, X2, . . . Xt denote the sets from Fk that contain A. A random

chain between A and [n] meets Xi with a probability of
( n−|A|
|Xi|−|A|

)−1
. There are no s sets of the same size

in {X1, X2, . . . Xt}, so

ave
c∈CA

(|c ∩ Fk|) ≤ 1 + (s− 1)

n

2
+k−|A|
∑

i=1

(

n− |A|
i

)−1

≤ 1 +
s− 1
n
2 − k

+O(n−2) ≤ 1 +
2(s− 1)

n
+O(kn−2).

We proved the bound for all CA and also for C0, so it holds for C too.

λ(Fk) = ave
c∈C

(|c ∩ Fk|) ≤ max

(

max
A∈Fk

ave
c∈CA

(|c ∩ Fk|), ave
c∈C0

(|c ∩ Fk|)
)

≤ 1 +
2(s− 1)

n
+O(kn−2).

Remark 2.9. In the above proof, we divided the set of all chains into many parts and investigated them

separately. This is technique is called the partition method, developed by Griggs, Lu and Li. [7] (See

also [8].) The proofs of Theorem 2.14, Theorem 2.16 and Theorem 2.19 will also use a partition method,

though the the partitions are defined differently is each case.

Proof. (of Theorem 2.6)

By Lemmas 1.1 and 2.8 we get that

|Fk| ≤ λ(Fk)

(

n

⌊n/2⌋

)

≤
(

1 +
2(s− 1)

n
+O

(√
logn

n3/2

))(

n

⌊n/2⌋

)

.

7



Lemma 2.7 implies that the number of the remaining sets is negligible compared to that.

|F\Fk| ≤ 2

⌊n

2
−k⌋
∑

i=0

(

n

i

)

≤
(

n

⌊n/2⌋

)

· O
(

1

n3/2

)

.

Therefore

|F| ≤
(

1 +
2(s− 1)

n
+O

(√
logn

n3/2

))(

n

⌊n/2⌋

)

.

Remark 2.10. One can get an alternative bound in Theorem 2.6 that is weaker for large n but contains

no unspecified error term. Follow the proof, but define Fk as the family of all sets from F that are

different from [n].

ave
c∈CA

(|c ∩ Fk|) ≤ 1 + (s− 1)

n−1−|A|
∑

i=1

(

n− |A|
i

)−1

= 1 + (s− 1)q(n− |A|).

From Lemma 2.1, we get that q(n− |A|) ≤ 2
3 , so

λ(Fk) ≤ 1 +
2

3
(s− 1).

Using Lemma 1.2 (with x = 1, y = 2
3 (s− 1)) and |F\Fk| ≤ 1 it follows that

|F| ≤
(

n

⌊n
2 ⌋

)

+
2

3
(s− 1)

(

n

⌊n
2 ⌋+ 1

)

+ 1. (3)

Using our results about fork posets, we can prove upper bounds for batons too.

Notation The baton poset Ph(s, t)) consists of h+ s+ t− 2 elements A1, . . . As, B1, . . . Bh−2, C1, . . . Ct.

The relations are A1, A2, . . . , As < B1 < B2 < · · · < Bh−2 < C1, C2, . . . , Ct.

Theorem 2.11. (Griggs-Lu [10])

La(n,Ph(s, t)) ≤ Σ(n, h− 1) +

(

n
⌊

n+h
2

⌋

)

(

2h(s+ t− 2)

n
+O

(

√

log(n)

n3/2

))

.

We strengthen this theorem in two ways. We add size restrictions to the forbidden poset and even

under this weaker condition, we prove a stronger bound. (An h can be omitted due to more careful

analysis.)

Theorem 2.12. Let F be a family of subsets of [n] that contains no h+s+t−2 sets A1, . . . As, B1, . . . Bh−2,

C1, . . . Ct such that A1, A2, . . . , As ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bh−2 ⊂ C1, C2, . . . , Ct and |A1| = |A2| = · · · =
|As|, |C1| = |C2| = · · · = |Ct|. (s, t ≥ 1, h ≥ 3.) Then

|F| ≤ Σ(n, h− 1) +

(

n
⌊

n+h
2

⌋

)

(

2(s+ t− 2)

n
+O

(

√

log(n)

n3/2

))

.

Proof. Define k and Fk as in Lemma 2.8.

Let F1 be the family of those members of Fk that do not contain s other members of the same size

from Fk. Let F2 be the family of those members of Fk, that contain s other members of the same size
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from Fk and are also contained in t other members of the same size from Fk. Let F3 denote the family of

the remaining sets of Fk. (They contain s other members of the same size from Fk, but are not contained

in t other members of the same size from Fk.) We will give upper bounds on the Lubell functions of

these families separately.

There is no chain of h − 2 sets in F2, otherwise a forbidden configuration would appear. It means

that every chain contains at most h− 3 members of F2, so

λ(F2) = ave
c∈C

(|c ∩ F2|) ≤ h− 3.

There is no member of F3 that contains t other sets of the same size from F3. Lemma 2.8 implies

λ(F3) ≤ 1 +
2(t− 1)

n
+O(kn−2).

There is no member of F1 that contains s other sets of the same size from F1. By considering the

complements of the sets in F1, an upper bound can be given by Lemma 2.8:

λ(F1) ≤ 1 +
2(s− 1)

n
+O(kn−2).

After adding these bounds, we get

λ(Fk) = λ(F1) + λ(F2) + λ(F3) ≤ h− 1 +
2(s+ t− 2)

n
+O(kn−2).

Lemma 1.2 implies

|Fk| ≤ Σ(n, h− 1) +

(

n
⌊

n+h
2

⌋

)

(

2(s+ t− 2)

n
+O

(

√

log(n)

n3/2

))

.

Since Lemma 2.7 says that

|F\Fk| ≤
(

n

⌊n/2⌋

)

· O
(

1

n3/2

)

,

which is negligible compared to the above, the statement of the theorem follows.

Next, we generalize the following theorem about the butterfly poset B.

Theorem 2.13. (De Bonis-Katona-Swanepoel, [6]) Let B denote the poset that has 4 elements and

the relations A,B < C,D. Then La(n,B) = Σ(n, 2).

Our theorem gives the same bound when n is large enough even with size restrictions. It is believed

that the theorem holds for smaller values, but proving it would require more complicated calculations or

case-by-case analysis.

Theorem 2.14. Let F be a family of subsets of [n], where n ≥ 13. Assume that there are no 4 different

subsets A,B,C,D in F such that A and B are both subsets of both C and D and either |A| = |B| or

|C| = |D| holds. Then |F| ≤ Σ(n, 2).
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Proof. Let F be such a family. Assume that ∅ ∈ F . Then there are no three subsets in F\{∅} satisfying

B ⊂ C, B ⊂ D and |C| = |D|. Using Remark 2.10 and that n is large enough, we get

|F| ≤
(

n

⌊n
2 ⌋

)

+
2

3

(

n

⌊n
2 ⌋+ 1

)

+ 1 + 1 ≤ Σ(n, 2).

If [n] ∈ F , then consider the family of the complements of the sets in F . It also satisfies the conditions of

the theorem, and contains ∅, so |F| ≤ Σ(n, 2) holds in this case too. From now on, we will assume that

∅, [n] 6∈ F .

We will prove that λ(F) ≤ 2, then Lemma 1.2 (with x = 2, y = 0) will imply |F| ≤ Σ(n, 2).

Let G denote the set of all members of F that contain an other member of F and are also contained

in an other member of F . Let C denote the set of all chains. Let C0 denote the set of all chains not

containing any member of G. For any set F ∈ G, let CF denote the set of all chains that are passing

through F , and F is the smallest member of G in them. In this way, the collections of chains C0 and CF
(F ∈ G) form a partition of C. It means that

|C0|+
∑

F∈G

|CF | = |C| = n!. (4)

Obviously, the chains in C0 contain at most two elements of F , so

∑

c∈C0

|c ∩ F| ≤ 2|C0|. (5)

Let F ∈ G. Let SF denote the set of all chains passing through F (so |SF | = |F |!(n − |F |)! and

CF ⊂ SF ). Note that F can not be contained in two sets from F of the same size, since they would form

a forbidden configuration together with F and one of its subsets from F (F has a subset like that, since

F ∈ G). If F ⊂ G, then G appears in |F |!(|G| − |F |)!(n− |G|)! =
( n−|F |
|G|−|F |

)−1|SF | chains of SF .

Similarly, F can not contain two sets from F of the same size, since they would form a forbidden

configuration together with F and one of sets from F that contain F . If G ⊂ F , then G appears in

|G|!(|F | − |G|)!(n− |F |)! =
(|F |
|G|

)−1|SF | chains from SF . It follows from Lemma 2.1 iii) that

∑

c∈SF

|c ∩ F| ≤ (1 + q(n− |F |) + q(|F |))|SF | ≤ 2|SF |. (6)

If C ∈ SF \CF then C contains at least two members of G. Therefore

∑

c∈SF\CF

|c ∩ F| ≥ 2|SF \CF |. (7)

From the inequalities (6) and (7) it follows that

∑

c∈CF

|c ∩ F| =
∑

c∈SF

|c ∩ F| −
∑

c∈SF \CF

|c ∩ F| ≤ 2|SF | − 2|SF \CF | = 2|CF |. (8)

Using (5), (8) and (4) we get that

∑

c∈C

|c ∩ F| =
∑

c∈C0

|c ∩ F|+
∑

F∈G

(

∑

c∈CF

|c ∩ F|
)

≤ 2|C0|+
∑

F∈G

2|CF | = 2|C|.

10



Using (1) we get

λ(F) = ave
c∈C

(|c ∩ F|) ≤ 2,

which completes the proof.

Theorem 2.15. (Li [14]) Let J denote the poset that consists of 4 elements A,B,C and D such that

A ⊂ B ⊂ D and A ⊂ C. Then La(n,J ) ≤ Σ(n, 2).

(See [9] for a general theorem about fan posets, containing the above theorem as a special case.)

We prove that the same bound holds even if the forbidden configuration contains an additional re-

quirement of two sets having the same size.

Theorem 2.16. Let F be a family of subsets of [n]. Assume that there are no 4 different subsets A,B,C

and D in F such that A ⊂ B ⊂ D, A ⊂ C and |B| = |C|. Then |F| ≤ Σ(n, 2).

Proof. It is enough to prove the theorem for even values of n, as it follows from n = 2m to n = 2m+ 1.

To see this, assume that we already proved it for even values, and consider an odd n. Let F be a sets of

subsets of [n], satisfying the conditions of the theorem. Then let

F− = {F | F ∈ F , 1 6∈ F},

F+ = {F\{1} | F ∈ F , 1 ∈ F}.

Then F− and F+ are both families of subsets of [n − 1], satisfying the conditions of the theorem.

Since n− 1 is even, their sizes are at most Σ(n− 1, 2). Therefore

|F| = |F−|+ |F+| ≤ 2Σ(n− 1, 2) = 2

((

n− 1
n−1
2

)

+

(

n− 1
n−1
2 − 1

))

= 2

(

n
n−1
2

)

= Σ(n, 2).

From now on, we will assume that n is even, and use the notation m = n
2 . We may also assume that

n ≥ 4, since the statement is trivial for n = 2.

Assume that [n] ∈ F . Then F\[n] contains no three sets such that A ⊂ B, A ⊂ C and |B| = |C|.
Remark 2.10 (with s = 2) and n ≥ 4 implies that

|F| ≤
(

n

m

)

+

⌊

2

3

(

n

m+ 1

)⌋

+ 1+ 1 ≤ Σ(n, 2).

From now on, we will assume that [n] 6∈ F .

In the case of this theorem, λ(F) ≤ 2 is not always true, so it is not possible to prove the required

bound using the Lubell function. We need a more precise approach. For a set F ∈ F let w(F ) =
(

n
|F |

)

denote the weight of F . If C denotes the set of all chains of [n], then

ave
c∈C

(

∑

F∈c∩F

w(F )

)

=
1

n!

∑

F∈F

w(F )|F |!(n − |F |)! = 1

n!

∑

F∈F

n! = |F|. (9)

It means that we can give an upper bound to F by analysing the quantity ave
c∈C

(

∑

F∈c∩F

w(F )

)

. The

following lemma is the key to the proof.
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Lemma 2.17. Assume that n = 2m. Let F be a proper subset of [n], and let DF denote the set of chains

between F and [n]. Assume that R is a family of subsets of [n] such that there are no 3 different sets

B,C and D in R such that B ⊂ D and |B| = |C|. Let us use the notation

S(F ) = ave
c∈DF









∑

X∈c∩R
F(X([n]

w(X)









=
1

(n− |F |)!
∑

c∈DF









∑

X∈c∩R
F(X([n]

w(X)









.

Then the following inequalities hold:

i) If |F | ≥ m− 1, then

S(F ) ≤
(

n

|F |+ 1

)

.

ii) If |F | ≤ m− 1, then

S(F ) ≤
(

n

m

)

+

m−1
∑

i=|F |+1

1

n− i+ 1

(

n

i

)

.

Proof. The statement is trivially true for |F | = n− 1 and |F | = n− 2. For m− 1 ≤ |F | ≤ n− 3, we will

prove the statement by induction, decreasing |F | by 1 at every step.

Let m− 1 ≤ |F | ≤ n− 3, and assume that we already proved the lemma for the greater values of |F |.
Let A1, A2, . . . An−|F | be the sets of size |F |+1 that contain F . We will investigate the families of chains

that pass through the sets Ai individually. Let us use the notation |{A1, A2, . . . , An−|F |}∩R| = N . Then

S(F ) =
N

n− |F |

(

n

|F |+ 1

)

+
1

n− |F |

n−|F |
∑

i=1

S(Ai). (10)

By induction, S(Ai) ≤
(

n
|F |+2

)

for all i. If Ai, Aj ∈ R, then there can’t be any set of R that contains

Ai, so S(Ai) = S(Aj) = 0. Using these two observations and (10), we give an upper bound to S(F ).

If N = 0, then

S(F ) ≤ 1

n− |F | (n− |F |)
(

n

|F |+ 2

)

=

(

n

|F |+ 2

)

≤
(

n

|F |+ 1

)

.

If N = 1, then

S(F ) ≤ 1

n− |F |

(

n

|F |+ 1

)

+

(

n

|F |+ 2

)

≤
(

n

|F |+ 1

)

.

(The second inequality follows easily from m− 1 ≤ |F |.)

If N ≥ 2, then

S(F ) ≤ N

n− |F |

(

n

|F |+ 1

)

+
1

n− |F | (n− |F | −N)

(

n

|F |+ 2

)

≤
(

n

|F |+ 1

)

.

This proves part i). Now we move on the the proof of part ii). We will use induction again, decreasing

|F | by one at every step. The case |F | = m− 1 was proved already in part i). (The summation is empty

in this case.) Assume that 0 ≤ |F | ≤ m − 2. We can use the same observations as before. The value of

S(Ai) can be estimated by induction for all i. Additionally, S(Ai) = S(Aj) = 0, if i 6= j and Ai, Aj ∈ R.
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If N ≤ 1, then

S(F ) ≤ 1

n− |F |

(

n

|F |+ 1

)

+

(

n

m

)

+

m−1
∑

i=|F |+2

1

n− i+ 1

(

n

i

)

=

(

n

m

)

+

m−1
∑

i=|F |+1

1

n− i+ 1

(

n

i

)

.

Now assume that N ≥ 2. Then N of the values S(Ai) are 0, and the others are at most

(

n

m

)

+
m−1
∑

i=|F |+2

1

n− i+ 1

(

n

i

)

by induction. So

S(F ) ≤ N

n− |F |

(

n

|F |+ 1

)

+
n− |F | −N

n− |F |





(

n

m

)

+

m−1
∑

i=|F |+2

1

n− i+ 1

(

n

i

)



 .

Using the obvious inequality

max





(

n

|F |+ 1

)

,

(

n

m

)

+

m−1
∑

i=|F |+2

1

n− i+ 1

(

n

i

)



 ≤
(

n

m

)

+

m−1
∑

i=|F |+1

1

n− i+ 1

(

n

i

)

,

we get that

S(F ) ≤
(

n

m

)

+

m−1
∑

i=|F |+1

1

n− i+ 1

(

n

i

)

.

This completes the proof of part ii).

Now we continue the proof of Theorem 2.16. We want to show that

ave
c∈C

(

∑

F∈c∩F

w(F )

)

≤ Σ(n, 2).

Then (9) will imply |F| ≤ Σ(n, 2).

We define a partition of C (the set of all chains). For all sets A ∈ F , let CA denote the family of chains

that pass through A, and A is the smallest element of F in them. Additionally, let C0 denote the family

of chains that avoid F .

Obviously

ave
c∈C0

(

∑

F∈c∩F

w(F )

)

= 0.

We want to show that

ave
c∈CA

(

∑

F∈c∩F

w(F )

)

≤ Σ(n, 2)

for all groups CA.

Let R = {G ∈ F | A ( G}. Then there are no 3 different sets B,C and D in R such that B ⊂ D

and |B| = |C|. (Otherwise they would form a forbidden configuration with A.) By the definition of CA,

its chains do not not contain any sets smaller than A. The number of chains in CA passing through a set
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G ∈ R is proportional to the number of chains between F and [n], passing through G. Therefore, using

the notation from Lemma 2.17, we have

ave
c∈CA

(

∑

F∈c∩R

w(F )

)

= S(A).

Since all chains of CA contain A,

ave
c∈CA

(

∑

F∈c∩F

w(F )

)

= w(A) + ave
c∈CA

(

∑

F∈c∩R

w(F )

)

=

(

n

|A|

)

+ S(A).

If m− 1 ≤ |A|, then Lemma 2.17 i) implies

ave
c∈CA

(

∑

F∈c∩F

w(F )

)

≤
(

n

|A|

)

+

(

n

|A|+ 1

)

≤ Σ(n, 2).

Now let |A| ≤ m− 2. Lemma 2.17 ii) implies

ave
c∈CA

(

∑

F∈c∩F

w(F )

)

≤
(

n

|A|

)

+

(

n

m

)

+

m−1
∑

i=|A|+1

1

n− i+ 1

(

n

i

)

.

We have to prove that

(

n

|A|

)

+

(

n

m

)

+

m−1
∑

i=|A|+1

1

n− i + 1

(

n

i

)

≤ Σ(n, 2) =

(

n

m

)

+

(

n

m− 1

)

.

Note that if i ≤ m− 1, then

1

n− i+ 1

(

n

i

)

=
n!

i!(n− i+ 1)!
≤ n!

(m− 1)!(m+ 2)!
.

So it suffices to prove

(

n

|A|

)

+

(

n

m

)

+
(m− |A| − 1)n!

(m− 1)!(m+ 2)!
≤
(

n

m

)

+

(

n

m− 1

)

.

After subtracting
(

n
m

)

from both sides and dividing by n!, we get

1

|A|!(n− |A|)! +
(m− |A| − 1)

(m− 1)!(m+ 2)!
≤ 1

(m− 1)!(m+ 1)!
.

After further rearranging, it becomes

(m− 1)!(m+ 2)! ≤ (|A| + 3)|A|!(n− |A|)!.

Obviously |A|+ 1 < |A|+ 3, so it suffices to prove

(m− 1)!(m+ 2)! ≤ (|A|+ 1)!(n− |A|)!,

or equivalently
(

n+ 1

m− 1

)−1

≤
(

n+ 1

|A|+ 1

)−1

.
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This is true, since |A|+ 1 ≤ m− 1 < n+1
2 implies

(

n+1
|A|+1

)

≤
(

n+1
m−1

)

.

With this, we proved that Σ(n, 2) is an upper bound to the average total weight of the intersection

of F with a random chain from any CA. Therefore this bound also applies when we consider C, since

ave
c∈C

(

∑

F∈c∩F

w(F )

)

≤ max

(

ave
c∈C0

(

∑

F∈c∩F

w(F )

)

, max
A∈F

ave
c∈CA

(

∑

F∈c∩F

w(F )

))

≤ Σ(n, 2).

Then (9) implies

|F| = ave
c∈C

(

∑

F∈c∩F

w(F )

)

≤ Σ(n, 2).

Our last theorem in this section will be about diamond posets.

Notation The diamond poset Dm consists of m+ 2 elements such that A < B1, B2, . . . , Bm < C.

The following theorem exactly determines the value of La(n,Dm) for infinitely many values of m.

However, for infinitely many values (including m = 2) it is unknown. (See [12] for the current best bound

for m = 2.)

Theorem 2.18. (Griggs-Li-Lu [7]) Let n,m ≥ 2, and let t = ⌈log2(m+ 2)⌉.

If 2t−1 − 1 ≤ m ≤ 2t −
(

t
⌊t/2⌋

)

− 1, then

La(n,Dm) = Σ(n, t).

If 2t −
(

t
⌊t/2⌋

)

≤ m ≤ 2t − 2, then

Σ(n, t) ≤ La(n,Dm) ≤
(

t+ 1− 2t −m− 1
(

t
⌊t/2⌋

)

)

(

n

⌊n/2⌋

)

.

Roughly speaking, this theorem tells us that

La(n,Dm) = (log2 m+O(1))

(

n

⌊n/2⌋

)

.

Now we prove that if the forbidden configuration includes that the middle elements must have the

same size, the upper bound to the size of the family increases only by a constant factor.

Theorem 2.19. Let F be a family of subsets of [n], and m ≥ 2. Assume that there are no m+2 different

subsets A, B1, B2, . . . Bm, C ∈ F such that A ⊂ Bi ⊂ C for all 1 ≤ i ≤ m and |B1| = |B2| = · · · = |Bm|.
Then |F| ≤ 3(⌈log3(m− 1)⌉+ 1) ·

(

n
⌊n

2
⌋

)

.

Proof. Let us use the notation K = ⌈log3(m− 1)⌉+ 1. We will prove that λ(F) ≤ 3K, then Lemma 1.1

will imply the statement of the theorem.

Now we partition C (the set of all chains of [n]) into some sets. Let F,G ∈ F be two sets such that

F ( G. Let CFG denote the set of chains whose smallest intersection with F is F and the largest one is
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G. Let C0 denote the set of chains that contain at most 1 element of F . Then every chain is in exactly

one of these sets.

We will prove that in every CFG (and also in C0), the chains contain at most 3K elements of F on

average. Then all chains contain at most 3K elements of F on average, in other words λ(F) ≤ 3K. This

is obviously true for C0, since its chains contain at most 1 element of F .

Now let F,G ∈ F be two sets such that F ⊂ G. Assume CFG is not empty, and consider the chains

in it. These chains pass through F and G and possibly some sets that contain F and are contained in

G. For any |F | < k < |G| there are
(

|G|−|F |
k−|F |

)

sets satisfying F ⊂ X ⊂ G, but at most m− 1 of them can

be in F , otherwise we would get a forbidden configuration. Therefore the average number of sets from F
contained in the chains of CFG is at most

ave
c∈CFG

(|c ∩ F|) ≤ 2 +

|G|−|F |−1
∑

i=1

min

(

m− 1
(

|G|−|F |
i

) , 1

)

. (11)

After introducing the notation N = |G| − |F | and moving the 2 inside the summation it becomes

ave
c∈CFG

(|c ∩ F|) ≤
N
∑

i=0

min

(

m− 1
(

N
i

) , 1

)

.

There are N +1 terms and all of them are at most 1, so the sum is at most N +1. This fact finishes the

proof when N < 3K. From now on, we will assume that N ≥ 3K.

The sum of the first K and the last K summands is obviously at most 2K. We will show that the

rest of the terms are sufficiently small. Assume that K ≤ i ≤ N −K. Then

m− 1
(

N
i

) ≤ m− 1
(

N
K

) ≤ m− 1

(NK )K
=

K

N
· m− 1

(NK )K−1
≤ K

N
· m− 1

3log3(m−1)
=

K

N
.

So the sum of the middle terms is at most (N + 1− 2K) · K
N ≤ K. Therefore

ave
c∈CFG

(|c ∩ F|) ≤ 3K.

Since this holds for all FFG and also for C0, we get

λ(F) = ave
c∈C

(|c ∩ F|) ≤ 3K.

Theorem 2.20. Let m = 4 and n ≥ 3 in the above theorem. Then |F| ≤ Σ(n, 4) and this bound is the

best possible.

Proof. Consider formula (11). We will give an elementary upper bound using Lemma 2.1 ii).

ave
c∈CFG

(|c ∩ F|) ≤ 2 +
N−1
∑

i=1

min

(

m− 1
(

N
i

) , 1

)

≤ 2 + (m− 1) · q(N) ≤ 2 +
2

3
(m− 1) = 4.

This leads to

λ(F) = ave
c∈C

(|c ∩ F|) ≤ 4,
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and Lemma 1.2 implies

|F| ≤ Σ(n, 4).

It is easy to see that the forbidden configuration does not appear is the family that consists of all subsets

of the 4 middle levels, therefore the bound is the best possible.

Remark 2.21. So far, the results in the size restricted problems were equal or almost equal to their

counterparts without size restrictions. However, this is not true for diamond posets.

The answer found in the above theorem is different from the one for the same problem without size

restrictions. Substituting m = 4 to Theorem 2.18, we get that the best possible bound is

|F| ≤ Σ(n, 3).

For general m, Theorem 2.18 implies that the answer is

La(n,Dm) = Σ(n, log2 m+O(1))

in the simple case. In the size restricted case, Theorem 2.19 gives the upper bound

|F| ≤ 3(⌈log3(m− 1)⌉+ 1) ·
(

n

⌊n
2 ⌋

)

.

Now we construct a large family |F| that does not contain Dm with size restrictions. Let r be the largest

integer such that
(

r
⌊ r

2
⌋

)

< m, and let F consist of all subsets of [n] in the r middle levels. Using Stirling’s

formula, it follows that r = log2 m+O(log2 log2 m), therefore

|F| = Σ(n, r) = Σ(n, log2 m+O(log2 log2 m)).

3 A general bound

In this section we prove a general theorem about forbidden poset problems with size restrictions. It was

motivated by the following result about induced subposets.

Theorem 3.1. (Methuku-Pálvölgyi, [17]) For every finite poset P, there exists a constant C such

that

La⋆(n,P) ≤ C

(

n

⌊n
2 ⌋

)

.

Now let us add size restrictions instead of the induced property. We prove that the bound C
(

n
⌊n

2
⌋

)

applies in this case too. (The theorems are independent, neither one implies the other.)

Theorem 3.2. Let P be a finite poset. The elements of P are colored with the colors 1, 2, . . . , k. (Each

element has exactly one color and all colors are used.) Assume that the coloring is order-preserving. (If

a <p b, then a’s color is smaller than b’s color.) Then there exists a constant C (depending on P and

its coloring) such that for any family F of subsets of [n] satisfying |F| > C
(

n
⌊n

2
⌋

)

, there is an embedding

f : P → F that maps all elements of the same color into sets of the same size.

The above theorem is an easy consequence of the following lemma.
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Lemma 3.3. Let a1, a2, . . . ak be given positive integers. Then there exist a constant C(a1, a2, . . . ak) such

that the following holds for every n ∈ N and family F of subsets of n satisfying |F| > C(a1, a2, . . . ak)
(

n
⌊n

2
⌋

)

.

One can find 2 +

k
∑

i=1

ai different sets called X,Y 1
1 , Y

1
2 , . . . Y

1
a1
, Y 2

1 , . . . Y
k
ak

and Z in F such that

i) |Y i
1 | = |Y i

2 | = · · · = |Y i
ai
| for all 1 ≤ i ≤ k.

ii) If 1 ≤ i1 < i2 ≤ k, then Y i1
j1

⊂ Y i2
j2

for all 1 ≤ j1 ≤ ai1 , 1 ≤ j2 ≤ ai2 .

iii) X ⊂ A1
j for all 1 ≤ j ≤ a1.

iv) Ak
j ⊂ Z for all 1 ≤ j ≤ ak.

Proof. The lemma will be proved by induction on k. If k = 1, then the statement directly follows from

Theorem 2.19, since we are looking for ak + 2 sets forming a diamond poset with size restrictions. Now

assume that k ≥ 2 and we already proved the lemma for smaller values of k.

Let G denote the set of those sets G ∈ F for which there are ak + 1 another members of F (named

Q1, Q2 . . . Qak
and T ) such that |Q1| = |Q2| = · · · = |Qak

| and G ⊂ Qi ⊂ T for all 1 ≤ i ≤ ak.

Then the diamond poset Dak
can not be embedded into F\G in a way that the middle elements

are mapped into sets of the same size. (Otherwise the set corresponding to the bottom element of the

diamond would belong in G.) Theorem 2.19 implies that |F\G| ≤ C′
(

n
⌊n

2
⌋

)

, where C′ depends only on ak.

Let C(a1, a2, . . . ak) = C′ + C(a1, a2, . . . ak−1). If |F| > C(a1, a2, . . . ak)
(

n
⌊n

2
⌋

)

, then we have |G| >

C(a1, a2, . . . ak−1)
(

n
⌊n

2
⌋

)

. By induction, one can find 2 +

k−1
∑

i=1

ai sets in G satisfying the conditions of the

lemma. The largest of these sets, Z is also in G, so there are some sets Q1, Q2 . . . Qak
, T ∈ F such that

|Q1| = |Q2| = · · · = |Qak
| and Z ⊂ Qi ⊂ T for all 1 ≤ i ≤ ak. By renaming Qj to Y k

j for all 1 ≤ j ≤ ak,

removing Z, and picking T as the new Z, we found a configuration of 2 +

k
∑

i=1

ai sets satisfying the

conditions of the lemma.

Proof. (of Theorem 3.2) Let ai denote the number of elements that are colored with i. Let F be a family

of subsets of [n] such that |F| > C
(

n
⌊n

2
⌋

)

= C(a1, a2, . . . ak)
(

n
⌊n

2
⌋

)

. Consider the sets Y i
j given by Lemma

3.3. Let f : P → F be a function that maps the elements of color i to the sets Y i
1 , Y

i
2 , . . . , Y

i
ai

in an

arbitrary order.

Then f will obviously satisfy the requirements. Lemma 3.3 i) means that the elements having the

same color are mapped into sets of the same size. If a, b ∈ P and a <p b, then the color of a must be

smaller than the color of b. Lemma 3.3 ii) implies that f(a) ⊂ f(b), so f is an embedding.

Note that since every poset P has a finite number of possible colorings, we can pick a constant C that

depends only on P and not on the coloring.
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